
An Empirical Analysis of Bug Reports and Bug Fixing in Open Source Android Apps

Pamela Bhattacharya Liudmila Ulanova Iulian Neamtiu Sai Charan Koduru
Department of Computer Science and Engineering

University of California, Riverside, CA, USA
Email:{pamelab,lulan001,neamtiu,scharan}@cs.ucr.edu

Abstract—Smartphone platforms and applications (apps)
have gained tremendous popularity recently. Due to the novelty
of the smartphone platform and tools, and the low barrier to
entry for app distribution, apps are prone to errors, which
affects user experience and requires frequent bug fixes. An
essential step towards correcting this situation is understanding
the nature of the bugs and bug-fixing processes associated with
smartphone platforms and apps. However, prior empirical bug
studies have focused mostly on desktop and server applications.
Therefore, in this paper, we perform an in-depth empirical
study on bugs in the Google Android smartphone platform
and 24 widely-used open-source Android apps from diverse
categories such as communication, tools, and media. Our
analysis has three main thrusts. First, we define several metrics
to understand the quality of bug reports and analyze the bug-
fix process, including developer involvement. Second, we show
how differences in bug life-cycles can affect the bug-fix process.
Third, as Android devices carry significant amounts of security-
sensitive information, we perform a study of Android security
bugs. We found that, although contributor activity in these
projects is generally high, developer involvement decreases in
some projects; similarly, while bug-report quality is high, bug
triaging is still a problem. Finally, we observe that in Android
apps, security bug reports are of higher quality but get fixed
slower than non-security bugs. We believe that the findings of
our study could potentially benefit both developers and users
of Android apps.

Keywords-smartphone apps; Google Android; bug reports;
bug fixing; empirical studies; security bugs

I. INTRODUCTION

Smartphone platforms, such as Android and iOS, and
the applications (apps) that run on these platforms have
gained tremendous popularity recently [1]. The presence of
app construction frameworks and rich libraries, as well as
easy distribution via online app stores such as Google Play
and Apple App Store have significantly lowered the barrier
to entry in app development and deployment. However,
the low barrier to enter the market means apps (or app
updates) are subject to limited scrutiny before dissemination,
allowing error-prone apps through and therefore affecting
user experience. A first step towards correcting this situation
is to understand the nature of bugs and the bug-fixing process
associated with smartphone platforms and apps. However,
empirical bug studies have so far focused mostly on desktop
and server applications [2]. The open-source nature of the
Android smartphone platform and myriad Android apps
hosted on Google Code provide an opportunity to conduct

empirical studies and provide a quantitative basis for im-
proving the quality of open-source Android apps. To this
end, in this paper, we perform an in-depth empirical study
on bugs in the Android Platform project and 24 widely-used
open-source Android apps from diverse categories such as
communication, tools, media and productivity (Section II).
Our analysis has three main thrusts—we chose these thrusts
to provide a good breadth–depth balance for our study.

First, we define several metrics to understand the quality
of bug reports, and analyze the bug-fix process: bug-fix time,
bug categories, bug priority, status and the engagement of
the community—users, committers, developers—during the
bug-fixing process (Section III). One interesting result of
our analysis is visualizing the gap between bugs reported
and bugs closed over time for all these Android-based apps;
the visualization helps us categorize apps into four different
kinds. We also juxtapose changes in this gap over time and
the number of developers contributing to the project.

Second, we compare the life-cycle of a bug on Google
Code with that of a bug on the popular tracker Bugzilla
(Section IV). We show that the lack of certain bug report
attributes on Google Code significantly affects the bug-fix
process, and makes projects hosted there more difficult to
be used for data analysis tasks.

Third, as Android devices carry significant amounts of
security-sensitive information, we conduct an investigation
of the categories of security bugs in these Android-based
apps. In fact, when surveyed, users reported security as the
number one concern regarding Android phones and apps [3],
and user complaints about Android Platform security are very
common.1 We perform an in-depth study of security bugs
in our examined Android apps (Section V). We compare the
quality of security bug reports with non-security bug reports,
and analyze categories of security bugs. We found that, for
Android-based apps, the quality of security bug reports is
higher compared to non-security bugs, but the bug-fix time
for security bugs is also higher compared to non-security
bugs; and that community activity increases when a security
bug is reported. We also present several prevalent categories
of security bugs in Android-based apps.

1Android Platform bug report samples complaining about security
issues: http://code.google.com/p/android/issues/detail?id=11211,
http://code.google.com/p/android/issues/detail?id=10809,http://code.
google.com/p/android/issues/detail?id=8686

http://code.google.com/p/android/issues/detail?id=11211
http://code.google.com/p/android/issues/detail?id=10809
http://code.google.com/p/android/issues/detail?id=8686
http://code.google.com/p/android/issues/detail?id=8686


To the best of our knowledge, this is the first empirical
study that analyzes bug reports and the bug-fixing process
in open-source Android projects, and provides a quantitative
analysis of security bug reports for the Android platform and
open source Android apps.

II. APP OVERVIEW

Selection criteria: We used the Android Platform and 24
popular open source Android-based projects for our study.
In Tab. I we report high-level information for each project.
We collect the data in column 2 (“category”) and column 3
(“number of downloads”) from Google Play—the main app
distribution site [4]. The “number of ratings” (column 4)
and the “number of bug reports” (column 5) are collected
from Google Code—the hosting site for all our examined
projects. Column 6 shows the time span between the first
and last bug reports we considered. We used several criteria
for selecting our apps. First, as can be seen in column 2
of Tab. I, we chose apps from a wide range of categories
to reduce selection bias. Second, apps have to be used by a
large number of users, which we gauged from the number of
downloads and number of ratings. As shown in Tab. I, most
apps have more than 1,000 ratings (column 3) and more
than 100,000 downloads (column 4). Third, we chose apps
with at least 200 bug reports (though 19 of the projects,
have more than 500 bug reports; e.g., GAOSP). While the
bug count might seem low, one should bear in mind the
relative novelty of the platform: Android was first released
in September 2008.

Description: We now proceed to describing the apps
we used in our study; their names are listed in column
1 of Tab. I. Android Platform is a Linux-based software
stack for smartphones, primarily developed by Google and
distributed as an open source project [5]. As of April
2012, more than 200 million Android devices were in use
worldwide [6]. Firefox Mobile (also known as Fennec) is the
Mozilla Firefox Web browser for devices such as mobile
phones and PDAs [7]; since Mozilla’s Bugzilla bug tracker
is a large umbrella for many different Mozilla projects,
in our study we only examined Bugzilla bugs filed under
Firefox for Android. The remaining apps span a wide range
of categories, from communication to personalization, travel
and media. All apps in this study are hosted on Google Code,
except Firefox Mobile which is hosted at Mozilla.

III. ANDROID BUG CHARACTERISTICS

In this section, we analyze the bug reports and the bug-
fixing process of the Android-based apps along several
dimensions. First, we measure the quality of bug reports
using several metrics (Section III-A). Second, we analyze the
distribution of the bug reports based on their current status
(Section III-B). Third, we investigate the activity of the
community in terms of the number of developers involved
in fixing bugs and adding new code (Section III-C); and by

looking at factors like how newly-filed bug reports are han-
dled by the contributors in the project (Section III-E). Fourth,
we study bug-fix time in each app (Section III-F). Last, we
study how bugs are tossed among multiple developers in the
Firefox Mobile project (Section III-F).

A. Bug Report Quality

Prior work has shown that bug report quality critically
affects software quality and maintenance effort [8]. One
primary factor that dominates the quality of bug reports is
how well the bug has been described by the bug reporter
when the report was filed. Empirical studies on desktop
applications such as Mozilla and Apache have shown that
bug reports with certain qualities (clear explanations of the
defect, steps for reproducing the bug, description that clearly
makes a distinction between expected and obtained results)
significantly help developers to understand the problem and
reduce the bug-fix time [9]. Therefore, to measure Android
bug report quality for the projects we considered, we define
five metrics:

• DescriptionLength, which counts the number of
words in the bug description (significant length indi-
cates a high-quality bug report [9]).

• ReproduceSteps, which represents the percentage of
bug reports that have steps to reproduce the bug in the
bug description.

• OutputDetails, which represents the percentage of
bug reports that contain details of expected output and
actual output.

• AdditionalInfo, which represents the percentage of
bug reports containing additional information about
the bug, besides the standard bug report. 2 Examples
of additional information include the version of the
application the problem appears in, a special input that
triggers the bug, etc.

• AllDetails measures the percentage of bugs that have
all three details: ReproduceSteps, OutputDetails,
and AdditionalInfo.

High values of these metrics indicate high-quality bug
reports, i.e., bug reporters are effective in helping bug fixers
understand the bug. In Tab. II, we report the values of all
these metrics for each app. We make several observations:
first, we found that average DescriptionLength varies
significantly, from a low of 93.97 words (WebSMSDroid)
to a high of 327.09 words (Notifier). Second, our analysis
shows that WiFiTether has the highest percentage (80.94%)
of bug reports that contain steps to reproduce the bug
in the bug description (ReproduceSteps). Third, bugs re-
ported for the Android Platform and Firefox Mobile rarely
have steps to reproduce (only 0.159% and 0.017% of the

2For projects hosted on Google Code, this additional information is a
special tag. However, in Bugzilla there is no such label, hence the entry
for Firefox Mobile, which is hosted on Bugzilla, is marked as N/A.



Project Category Number of Number of Number of Time span
downloads ratings bug reports

Android Platform Platform N/A N/A 24,707 11/2007–1/2012
Firefox Mobile Communication 5,000,000–10,000,000 4,510 5,746 10/2009–1/2012
CyanogenMod Personalization 100,000–500,000 2,512 4,709 8/2009–1/2012

K-9 Communication 1,000,000–5,000,000 34,917 4,028 10/2008–1/2012
CSipSimple Communication 100,000–500,000 4,640 1,535 3/2010–1/2012

Android-WiFiTether Communication 1,000,000–5,000,000 21,110 1,387 2/2009–1/2012
ZXing Libraries-Demo 10,000–50,000 77 1,136 11/2007–1/2012

AnkiDroid Flashcards Education 100,000–500,000 1,597 956 7/2009–1/2012
Sipdroid Communication 500,000–1,000,000 8,824 955 4/2009–1/2012

SoftKeyboard Tools 100,000–500,000 7,222 875 5/2009–1/2012
OsmAnd Travel-Local 100,000–500,000 2,003 840 4/2010–1/2012

My Tracks Health-Fitness 1,000,000–5,000,000 53,105 761 5/2010–1/2012
JustPictures Photography 500,000–1,000,000 11,385 720 2/2010–1/2012

WebSMSDroid Communication 100,000–500,000 2,796 645 10/2009–1/2012
CallMeter3G Tools 100,000–500,000 2,171 637 10/2009–1/2012

Android XBMC Remote Media-Video 100,000–500,000 6,875 603 9/2009–1/2012
ConnectBot Communication 1,000,000–5,000,000 23,843 547 10/2008–1/2012

GAOSP Tools 100–500 3 522 2/2010–1/2012
OpenIntents Productivity 1,000,000–5,000,000 15,694 504 12/2007–1/2012

Android Notifier Productivity 100,000–500,000 1,977 465 1/2009–1/2012
TransDroid Tools N/A N/A 374 4/2009–1/2012

Android-ADW Launcher Productivity 1,000,000–5,000,000 73,571 369 10/2010–1/2012
IMSDroid Media-Video 100,000–500,000 1,338 324 6/2010–1/2012
OSMdroid Transportation 5,000–10,000 23 302 2/2009–1/2012

Android SMSPopup Tools 1,000,000–5,000,000 27,744 293 3/2009–1/2012

Table I
ANDROID-BASED APPS USED IN OUR STUDY.

bugs, respectively). Note that the steps to reproduce a bug
are not mandatory but have the potential to increase the
chances of the bug being fixed quickly. Android-WiFiTether
has the highest percentage (74.036%) of bug reports that
contain information about the expected and actual output
(OutputDetails). To summarize, we found that bug reports
of most Android-based apps have high quality: bug reporters
usually provide (1) long textual descriptions of the problem,
(2) steps to reproduce the bug, and (3) explanation of the
difference between expected and the actual outputs.

To verify whether highly-rated apps receive high-quality
bug reports, we checked whether app ratings correlate with
bug quality. That does not seem to be the case: we computed
the correlations between number of ratings (Tab. I) and each
of the metrics in Tab. II and the correlation values were low
(between -0.19 and 0.04).

Comparing bug-fix time for high-quality vs. poor-
quality bug reports: To understand the effects of bug
report quality on bug-fix time, we performed a regres-
sion analysis on the bug report quality metrics. We ob-
served that DescriptionLength is highly correlated with
the remaining metrics: ReproduceSteps, OutputDetails,
AdditionalInfo and AllDetails (Pearson’s correlation co-
efficient 0.637 ≤ r ≤ 0.908 with p-value < 0.01).
Therefore, to understand the effects of bug report qual-
ity on bug fix time, we performed a linear regres-
sion with DescriptionLength as the single indepen-

dent variable. We found a negative correlation (coeffi-
cient −0.874 ≤ r ≤ −0.262 with p-value < 0.01) for
the apps we considered between DescriptionLength and
BugFixT ime. 3 The negative values of the correlation coef-
ficient indicate that DescriptionLength is a good predictor
of bug-report quality and that high-quality bug reports get
fixed faster in our examined apps.

B. Bug Status

As shown in prior empirical analysis on desktop and
server applications, bugs have a life-cycle, consisting of
changes in bug status, from when a bug is reported to
when it is closed [2]. For example, a typical life-cycle
of applications using Bugzilla is shown in Fig. 3(a); we
will later compare this with the bug life-cycle of Android
apps. In this section, we study the distribution of bugs
statuses in each app. A high percentage of new bugs in
an application is considered a negative indicator of the
application’s maintenance process [10]. Anecdotal evidence
suggests that in addition to affecting software quality, in-
effective triaging or poor management of new bugs affect
the contributor community, sometimes leading to expert
contributors resigning from the community [11]. Therefore,
to assess the quality of the triaging process, we also measure
how often new bugs are marked fixed, closed, or duplicate.

3BugFixT ime = MonthClosed − MonthReported; the Google
Code bug tracker only records the month and year the bug was closed, not
the day.



(a) K-9 (b) SMSPopup (c) WiFiTether (d) XBMC Remote

(e) AnkiDroid (f) CallMeter3G (g) ConnectBot (h) CSipSimple

(i) My Tracks (j) OpenIntents (k) OsmAnd (l) OSMDroid

(m) Sipdroid (n) SoftKeyboard (o) WebSMSDroid (p) ZXing

(q) Android Platform (r) Firefox Mobile (s) ADW Launcher (t) CyanogenMod

(u) GAOSP (v) Notifier

Jan10 Jan11 Jan12
0

200

400

600

800

Time

N
u
m

b
e
r 

o
f 
B

u
g
s

(w) JustPictures (x) TransDroid (y) IMSDroid

Figure 1. Top graphs show the number of developers involved in bugfixing only, bugfixing and adding new features, or adding new features only. Bottom
graphs show bugs reported (top curve, in light color) vs. bugs closed (bottom curve, in black). Section III-C explains the lack of developer data for Notifier,
JustPictures, TransDroid, and IMSDroid.



Descr- Repr- Output Addit- All
iption oduce Details ional Details

Project Length Steps Info
(words) (%) (%) (%) (%)

Platform 188.37 0.16 0.11 0.04 0.03
ADW Launcher 116.50 31.71 28.99 13.55 10.03
Notifier 327.09 49.46 47.08 9.29 8.86
SMSPopup 128.32 58.36 57.34 31.06 28.67
WiFiTether 153.39 80.94 74.04 46.51 44.36
XBMC Remote 157.69 60.86 58.38 23.38 21.56
AnkiDroid 136.26 32.43 26.05 12.76 11.30
CallMeter3G 95.99 42.02 40.28 15.32 13.90
ConnectBot 169.52 53.38 49.36 25.78 24.50
CSipSimple 152.97 62.92 57.75 38.72 36.49
CyanogenMod 281.16 74.55 0.19 10.04 0.02
Firefox Mobile 323.91 0.02 0.12 N/A 0
GAOSP 153.62 53.46 48.85 11.35 11.35
IMSDroid 201.43 69.44 66.98 31.17 30.56
JustPictures 114.05 36.39 33.33 0 0
K-9 209.78 62.90 49.38 31.73 30.01
My Tracks 157.23 38.13 33.11 9.76 8.97
OpenIntents 165.11 51.59 47.81 25.30 24.10
OsmAnd 140.05 37.88 30.88 9.53 8.81
OSMDroid 161.10 31.56 28.57 14.95 14.29
Sipdroid 200.28 50.37 48.27 28.65 26.23
SoftKeyboard 118.30 42.73 39.98 27.49 26.69
TransDroid 106.75 29.49 0.54 0.27 0.27
WebSMSDroid 93.97 51.47 45.89 19.85 18.92
ZXing 175.38 46.49 43.42 24.05 22.34

Table II
BUG DESCRIPTION METRICS.

In Tab. III we report bug status in the projects we considered.
Bug status can span several categories: Fixed, Duplicate,
Spam, Unreproducible, and Declined/WontF ix are self-
explanatory; New refers to issues which have not been
confirmed as bugs, or have been confirmed as bugs but
have not been triaged yet. The category Others refers to
bugs kinds such as “need-details,” “next release,” “future
release,” “obsolete,” “cannotreproduce,” “started,” or bugs
without any status.

We report several observations from our analyses: first, a
high percentage of bugs are New in both Android-WiFiTether
(70.55%) and the Android Platform (64.98%). Second, OSM-
Droid and OsmAnd have highest percentage of bugs Fixed
(51.82% and 51.39% respectively). Third, Android Platform
surprisingly has only 4.97% of the reported bugs fixed
and released—we explain why later in this section. Fourth,
GAOSP has the highest-percentage of Spam (or invalid)
bugs reported (57.16%) while CSipSimple has the highest
percentage of Others bugs (40.55%), the majority of which
do not have any status. Fifth, for Firefox Mobile alone, we
found that 0.011% of the bugs were re-opened—the built-in
bug tracker for Google Code does not support the Reopened
bug status as Bugzilla does. In Section IV we explain in
detail the negative implications of the absence of this status,
where bugs cannot be differentiated between statuses New
and Reopened, because Reopened bugs are marked New

after they have been reopened.

C. The Bug Reported–Bug Closed Gap

In addition to considering just the absolute percentage of
new bugs for a project, we also study the gap between bugs
reported and closed over time, which we name RCGap. In
Fig. 1, we show the cumulative number of bugs reported
and closed 4 over time for the apps. An inspection of the
RCGap values reveals four distinct app categories: (1) apps
for which RCGap increases significantly over time (Android
Platform, Android-SMSPopup, Sipdroid, Android-WiFiTether,
Android XBMC Remote, connect-bot, JustPictures, OpenIn-
tents), (2) apps for which RCGap increases at a slower-rate
(AnkiDroid Flashcards, CallMeter3G, CSipSimple, IMSDroid,
K-9, SoftKeyboard, TransDroid, WebSMSDroid, OSMDroid),
(3) apps for which RCGap is constant over time (My
Tracks), and (4) apps for which RCGap is close to zero
(Firefox Mobile, CyanogenMod, GAOSP, ZXing, OsmAnd).
Next, we investigate how developer activity affects this
RCGap in these projects; for example, we study if increase
or decrease in the number of active contributors affect the
RCGap over time.

D. Developer Contribution and RCGap

Data collection: To understand how developer partic-
ipation in these projects affects bug-fixing, we count the
number of developers who commit code to the source code
repository. We collect developer IDs from commit logs and
parse log messages to identify if the commit was due to a
bug fix (based on bug fix ID), otherwise we consider the
commit to be adding new code. 5

We report the numbers as stacked bars in Fig. 1 at six-
month intervals. 6 The stacked bars indicate: the number
of developers adding new features only (bottom bar); the
number of developers who are contributing with both fixes
and new code (middle bar); the number of developers who
only fix bugs (top bar); of course the entire stack indicates
the total number of developers contributing to that project
in that six-month span.

Analysis: For some apps (K-9Mail, Transdroid) we
found that bugs were reported even before the first commit in
the source code logs. For most apps, we found that the ma-
jority of developers contribute both bug fixes and new code.
For apps like WifiTether, CallMeter3G, CSipSimple, K-9Mail,
OSMDroid, SipDroid, SoftKeyboard and WebSMSDroid, we
found that the value of RCGap increases with the decrease

4Closing a bug does not always mean fixing it; it can also refer to marking
the bug as duplicate, invalid, or future release. Therefore, the number of
bug reports closed is not an indicator of bug-fix time.

5We discuss potential threats to validity related to our technique to
distinguish between types of commits in Section VI.

6We omit developer graphs for four apps. For JustPictures, we did not
have access to their code repository. In the case of Notifier and Transdroid,
we could not obtain log information for the entire life time of the app. For
ImsDroid we did not not have access to the trunk and the logs of the files
in branch tags showed commits from a single developer.



in number of committers, indicating lower activity over time.
The reverse, however, is not true in the remaining apps:
an increase in developer participation does not necessarily
lead to a decrease in the RCGap. For instance, in apps
like SMSPopup, XBMC Remote, and OpenIntents, we see
that RCGap increases even with increasing numbers of
developers who contribute to the project. For three apps—
OsmAnd, Firefox Mobile and ZXing—we observed the ex-
pected decrease in RCGap when the number of developers
increases.

RCGap in Android Platform: We found that, for An-
droid Platform, although the number of developers increases
significantly over time, the RCGap increases as well. We
investigated the reason behind this ever-increasing gap. We
found that Android Platform maintains a private bug database
which is not hosted on Google Code. The bug database in
Google Code gets a large number of bug reports from users
who are different from Android Platform code developers
or bug fixers. These bugs are triaged only periodically and
most bugs reported in the public database do not go through
a typical bug life-cycle process [12]. This unsystematic
bug triaging (and consequently the unsystematic bug-fixing
process) contributes to the increasing RCGap observed in
Android Platform.

In summary, the majority of bug reports have status New
and over time the gap between bugs reported and bugs closed
increases. This increasing gap can be attributed partly to
decreasing developer participation and partly to ineffective
triaging.

E. Comment Activity

We measure how responsive and involved a community
is by analyzing the bug report comments using two metrics:
FirstComment, which measures the time it took the first
comment to be added to a bug report, and TotalComments,
which measures the total number of comments on a bug
report. We found that the app communities are very respon-
sive, as the median FirstComment time, in days, is 0,
and in most cases the average FirstComment is under
a day. We found the TotalComments distribution to be
skewed, i.e., the median number of comments associated
with a bug ranges from 2 to 3, though some bugs receive a
disproportionately high number of comments, which shifts
the average number of comments’ range to 3.52–9.02. We
can conclude that the contributor community of the Android-
based projects we consider in our study is highly active;
users report bugs which are in most cases investigated by
at least one contributor and in most cases by more than
three contributors. High activity in a project is a metric for
effective communication between users and developers in
that project and indicates early bug identification.

New Fixed Dupl- Decl- Spam Oth-
Project icate ined ers

(%) (%) (%) (%) (%) (%)
Platform 64.98 4.97 4.47 11.55 0.66 13.38
ADWLauncher 56.10 7.05 8.67 2.17 11.65 14.36
Notifier 40.82 6.70 21.17 3.24 10.15 17.93
SMSPopup 38.57 16.72 15.36 12.29 9.90 7.17
WifiTether 70.55 5.42 5.56 5.49 7.79 5.19
XBMC Remote 8.62 31.68 11.61 5.14 16.58 26.37
AnkiDroid 10.25 46.76 6.70 1.36 3.24 31.70
CallMeter3G 5.21 22.12 23.07 5.21 36.02 8.37
ConnectBot 46.44 18.28 8.59 4.57 10.79 11.34
CSipSimple 13.21 20.08 14.59 3.92 7.65 40.55
CyanogenMod 6.53 18.63 14.21 4.11 24.16 32.37
Firefox Mobile 29.89 49.11 15.14 0.87 3.79 20.13
GAOSP 1.73 0.19 8.85 4.23 57.12 27.89
IMSDroid 3.41 36.73 5.86 4.94 19.14 29.94
JustPictures 37.78 35.28 7.22 9.44 1.94 8.33
K-9 24.05 22.75 22.30 3.65 9.46 17.79
My Tracks 20.84 25.46 16.10 5.67 4.09 27.84
OpenIntents 41.83 19.92 9.36 4.98 11.75 12.15
OsmAnd 2.29 51.39 7.12 17.37 9.77 12.06
OSMDroid 18.94 51.83 6.65 2.99 5.98 13.62
Sipdroid 30.01 30.85 16.58 0.94 18.78 2.83
SoftKeyboard 21.76 26.12 13.17 2.75 13.17 23.02
TransDroid 10.46 41.02 12.87 9.38 16.35 9.92
WebSMSDroid 9.77 39.38 16.43 4.81 20.47 9.15
ZXing 1.26 35.23 8.11 16.04 13.15 26.22

Table III
BUG STATUS.

F. Bug-fix time

We measured the bug-fix time of each closed bug as
BugFixT ime = MonthClosed − MonthReported. We
present the results in Tab. IV. We found that the average
time taken to fix a bug for most apps is in the range of 0–1.5
months. We found that AnkiDroid Flashcards and Firefox
Mobile have the highest average bug-fix times (3.3 and 4.7
months, respectively).

Bug tossing: Assigning a bug to a potential developer,
also known as bug triaging, is a labor-intensive, time-
consuming and fault-prone process if done manually. More-
over, bugs frequently get re-assigned to multiple developers
before they are resolved, a process known as bug toss-
ing [10]. Prior work has shown that bug-fix time increases
with the increase in the tossing length of the bug, i.e., the
number of times the bug has been re-assigned [10], [13].
In this section we study how often bugs are tossed in the
Firefox Mobile project; note that bug toss information is not
available in Google Code’s bug tracker. In Fig. 2 we present
the distribution of bug tossing lengths in Firefox Mobile.
Similar to our prior results on studying tossing on desktop
applications [13], we found that only a very low percentage
of bugs (11%) are fixed by the first assigned developer,
i.e., 0 tosses; for about 75% of the bugs, resolution takes
2–13 tosses, while 17% of the bugs require more than 13
tosses. We believe Google Code would benefit greatly from



Figure 2. Distribution of number of bug tosses in Firefox Mobile.

Project BugFixTime (months)
median average

Platform 0 2.43
ADW Launcher 0 0.60
Notifier 0 0.31
SMSPopup 1 1.66
WifiTether 0 1.37
XBMC Remote 1 1.56
AnkiDroid 2 3.30
CallMeter3G 0 1.02
ConnectBot 1 1.58
CSipSimple 0 1.34
CyanogenMod 0 1.12
Firefox Mobile 0 4.79
GAOSP 0 0.74
IMSDroid 0 1.46
JustPictures 0 1.19
K-9 0 2.21
My Tracks 0 1.78
OpenIntents 1 1.58
OsmAnd 0 1.17
OSMDroid 1 2.08
Sipdroid 0 1.62
SoftKeyboard 0 1.9
TransDroid 0 1.2
WebSMSDroid 0 0.99
ZXing 0 0.66

Table IV
BUG-FIX TIME.

adopting automatic, machine learning-based, bug triaging
and toss reduction techniques [13].

IV. ANDROID BUG LIFE-CYCLE

Prior work has shown that most desktop application bugs
go through several stages before being finally closed [2],
[10], as illustrated in Fig. 3(a). The Android-based apps we
examined use the Google Code project hosting site, which
has a built-in bug tracker, with the exception of Firefox
Mobile, which uses Bugzilla. 7 We now turn to comparing the
bug life-cycle of applications hosted on Bugzilla (Fig. 3(a))
with the bug life-cycle of Android apps hosted on Google
Code (Fig. 3(b)).8 We found two major differences between
the life-cycles. First, when a bug is reported in Bugzilla,
unless the bug has been investigated by a developer or person

7Bugzilla is used by large software projects, both open-source (Firefox,
Eclipse, Apache, etc.) and commercial (Facebook, Nokia, NASA, etc.) [14].

8Diagram constructed from official Google Code documentation,http://
source.android.com/source/life-of-a-bug.html

Unconfirmed* New* Assigned*

Resolved*Verified*Closed*

Reopened*
(a) Applications hosted on Bugzilla.

Assigned*

Released*

New*

Need*Info* Invalid*
Irreproducible*

(b) Android apps hosted on Google Code.

Figure 3. Comparison of bug life-cycles.

in charge of that module, the bug status is Unconfirmed.
On the other hand, as soon as a bug is reported in Android-
based apps, the bug has the status New. This shows that
in the Android projects hosted on Google Code there is no
difference between a real bug (which has not been assigned
or investigated yet) and an unconfirmed bug. Second, in
Google Code projects there is no patch verification stage
before the bug is closed and released; this is in contrast
Bugzilla-based projects (e.g., Mozilla or Eclipse), where bug
patches are reviewed and tested by super-reviewers in the
verification stage and closed when the new bug-fix code is
released. Therefore, in Android-based apps, as long as the
bug is in the Assigned stage it is not possible to infer the
progress of the bug resolution process from bug status alone.
Third, there is no status Reopened for Android-based apps.
For example, consider bug 4784 from the Android Platform. 9

This bug is a duplicate of Bug 3006 and the bug description
of 4784 says that the bug “that was closed is still active,
for the Motorola Droid running Android OS 2.” This shows
that bug 3006 was closed, but later re-opened after bug 4784
was filed. However, bug 4784 is not marked explicitly as
Duplicate, and the history of bug 3006 does not indicate
that it has been re-opened. As a result, developers must read
through the bug report comments to track changes in bug
status. Therefore, we believe that incorporating bug-tracker
and change-history locating techniques from Bugzilla into
Google Code would improve the bug-fixing process [2].

V. FOCUS: SECURITY BUGS

Android apps have access to a wealth of security-sensitive
data such as user’s location, list of contacts, microphone or
camera. To better understand security issues, we performed
an investigation of security bugs in the top-4 apps, ranked

9The report for bug BUGID in app APP is available at
http://code.google.com/p/APP/issues/detail?id=BUGID.

http://source.android.com/source/life-of-a-bug.html
http://source.android.com/source/life-of-a-bug.html
http://code.google.com/p/APP/issues/detail?id=BUGID


by the number of security bug reports, among the apps we
considered; we limit our analysis to only 4 apps because
they had a significant number of security bugs (over 100
security bugs each). First, we show how we identify secu-
rity bug reports. Second, we categorize the security bugs
into different classes, e.g., licensing issues, or certification
problems. Third, we perform an analysis to understand if
the bug-fixing process for security bugs and the quality of
security bug reports are significantly different than for non-
security bugs.

A. Identifying Security Bug Reports

On Google Code, bug reports do not have specific
security-based tags or labels. Therefore, we used the tech-
nique proposed by Gegick et al. [15] for identifying security
bug reports. 10 We performed the following steps:

• Stop Word Removal: the first step is to remove common
stop words from the bug reports.

• Identifying potential security bug reports: next, we
identify bug reports which contains words like “se-
curity,” “vulnerability,” “attack,” “crash,” “buffer over-
flow,” and “buffer overrun”.

• Tf-idf: finally, we apply term-frequency invert doc-
ument frequency—a common technique used in text
mining to understand the significance of a word in
a document and across multiple-documents [16]—to
the potential security bug reports to further narrow the
security bug report list.

After we have identified security bug reports in the
Android-based apps, we focus on the top-4 apps, ranked
by the number of security bug reports in the app. Our
analysis includes 980 bugs from Android Platform, 251 bugs
from CyanogenMod, 121 bugs from K-9 and 113 bugs
from Firefox Mobile. We also considered the 2,357 security
bugs from Mozilla’s Bugzilla database which are labeled as
Component:Security.

B. Security Bug Categorization

To understand the different categories security bugs be-
long to, and how categories vary across apps, we studied
the frequent terms occurring in security bug reports in the
four focus apps. We report the term frequency using pie-
charts in Fig. 4.

We supplement this quantitative analysis with a qualitative
analysis based on manual inspection of the bug reports. We
found that security bugs span a variety of categories: per-
mission issues, licensing–authorization–certification issues,
injection attacks, password problems (e.g., Android Platform
bug 10809), or phone locking issues (e.g., Android Platform
bug 6615).

A significant number of security bugs in Android-based
apps stem from events leading to permission breach; such

10Note that the technique proposed by Gegick et al. [15] has some threats
to validity, as discussed in Section VI.

breaches are problematic as evidence suggests that Android
users are often unaware of various security and privacy
issues that are associated with using their phone [17]. There-
fore, we performed a closer examination of permission-
based security bugs and found that they fall into two main
sub-categories: permission abuse and confidentiality issues.

Abuse of permissions. We found that most permission-
based security bugs in Android-based apps are manifested
when apps abuse permissions, i.e., access data they should
not have received permission to access in the first place.
For example, consider Fennec bug 650509. When a user
uses Fennec (i.e., Firefox for Android), the user’s search
or other data associated solely with the Fennec app can
be used by other apps on Android. Similarly, in bug 4213
for K-9, we find that the user can be tracked via the
poster attribute of the HTML5 video tag in the email
app even before the user allows the images/video to be
loaded. Another instance is bug 24104 from Android Platform
which shows that in addition to reading sensitive data, like
the geographical location of the user or the call history, apps
can also modify phone settings even when the user thinks
the app does not have the permission to so. In this case,
the permission description is misleading, resulting in a false
sense of security for the user; the report for bug 10412 in the
Android Platform indicates that the camera app automatically
adds geotags to photos taken using the phone camera, which
reveals the user’s location history.

Confidentiality issues. We found several bugs that lead
to confidentiality breaches in the Android Platform, e.g., bugs
9392 and 18565. These bugs allow the app to accidentally
send text messages to either a random contact in the user’s
contacts list or to someone whose number does not even
exist in the contact list. Apart from breaching confidentiality,
bugs like this are also hard to notice right away because
the app confirms that the text message was delivered to
the recipient the user intended. Another similar bug is the
Android phone screen displaying the contents of a text
message in the notification area even when the phone is
locked (Android Platform bug 26699). This is problematic as
potentially confidential messages are displayed even when
the phone is locked. Another potential breach of confiden-
tiality stems from apps not having provisions for the user to
delete the data they store; for example, if the user wants to
delete all data about places he has visited or movies he has
rated, the Android backup app does not have provisions for
the user to delete specific portions from an existing backup
(bug 14581).

C. Comparing Security Bugs with Non-Security Bugs

In this section, we compare security bugs with non-
security bugs in the Android-based apps using the various
bug-report quality and bug-fix process based metrics intro-
duced in Section III. We observed several trends:



(a) Android Platform (b) CyanogenMod (c) K-9 (d) Firefox Mobile

Figure 4. Term frequency in security bug reports.

Project DescriptionLength (words) ReproduceSteps (%) OutputDetails (%) AdditionalInfo (%) AllDetails (%)
Security Others Security Others Security Others Security Others Security Others

Android Platform 204.6 136.05 0.23 0.16 0.12 0.12 0.12 0.04 0.12 0.03
CyanogenMod 1135.79 307.97 80.08 74.08 0.4 0.19 6.78 10.23 0 0.02
Firefox Mobile 94.40 154.5 0.89 2.49 6.20 6.34 2.49 6.34 0 0
K-9 395.23 154.58 67.77 62.72 53.72 49.22 40.50 31.41 38.02 29.72

Table VI
BUG DESCRIPTION METRICS FOR SECURITY VS. OTHER BUGS.

BugFixTime (months)
Project Security Others

median average median average
Android Platform 1 3.34 0 2.39
CyanogenMod 2 3.91 0 0.98
Firefox Mobile 0 4.89 0 4.78
K-9 1 3.55 0 2.15

Table V
BUG-FIX TIME OF SECURITY VS. OTHER BUGS.

Bug-fix time: In Tab. V we report the bug-fix times
of the security and non-security bugs for both Google
Code-based apps and the Bugzilla-based Mozilla project. In
Google Code-based apps, the median time to fix a security
bug is similar to the bug-fix time of non-security bugs,
which indicates that security bugs are not treated with
higher urgency. However, the median bug-fix time of Mozilla
security bugs is much lower compared with the non-security
bugs, indicating that security bugs in Mozilla are given
higher urgency compared to other bugs.

Bug-Report Quality: We compare the four bug-
report quality metrics, namely DescriptionLength,
ReproduceSteps, OutputDetails, and AdditionalInfo
and report the results in Tab. VI. We observe that the
DescriptionLength of security bugs is significantly higher
compared to non-security bugs for both Google Code and
Bugzilla. However, for the remaining report quality metrics
(ReproduceSteps, OutputDetails, and AdditionalInfo),
we find that the values for security bugs are slightly
higher compared to non-security bugs. To summarize,
the higher values of bug-report quality metrics indicate
that security-bug reports have higher quality compared to

Project FirstComment (days) TotalComments
Security Others Security Others

Android Platform 0.82 0.68 33.01 4.66
CyanogenMod 0.05 0.04 26.78 8.02
Firefox Mobile 3.73 2.92 13.29 8.08
K-9 0.33 0.53 11.38 5.28

Table VII
COMMENT TIME AND NUMBER OF COMMENTS FOR SECURITY VS.

OTHER BUGS.

non-security bug reports.
Community Activity: In Tab. VII we report the values

for metrics FirstComment and TotalComments which
we defined in Section III. We observe that the time until the
first comment is lower for security bugs for most apps in
contrast to non-security bugs. Similarly, we find that number
of TotalComments is significantly higher for security
bugs, compared to non-security bugs.

To conclude, we found that the quality of both bug reports
and the bug-fix process is higher for security bugs compared
than for non-security bugs.

VI. THREATS TO VALIDITY

We now present possible threats to the validity of our
study.

External Validity. We chose 25 popular open source
Android projects for our study, with projects spanning
multiple categories to reduce selection bias. However, many
popular apps on Google Play [4] do not have publicly-
available bug reports. Hence, we cannot claim that our
findings generalize to all Android software projects. We
found that the Android Platform maintains a private bug



database which is not hosted on Google Code [12]. We did
not consider the bug reports from the private database in
our study, which might affect our results. Additionally, the
security bug study (Section V) was performed on an smaller
number of apps (4), which further reduce the generality of
security bug conclusions.

Internal Validity. In our study we collected bug reports
from Bugzilla for Firefox Mobile. For computing bug-fix
time, we used the bugs marked as “closed”. Our results
might be affected if any of those bugs are will be reopened
in the future.

Construct Validity. Construct validity relies on the as-
sumption that our metrics actually capture the intended
characteristic, e.g., bug fix time accurately models process
quality, bug description metrics accurately model bug-report
quality. We intentionally used multiple metrics in each of
our analyses to mitigate this threat. Gegick et al.’s approach
for identifying security bug reports is based on text-mining
heuristics and in the original version the authors report up to
78% prediction accuracy [15]. Since we use their algorithm,
we inherit potential inaccuracies in identifying security bug
reports which in turn could affect our results. Some apps we
considered were developed and maintained by a very small
number of developers (10 or less); results from analyses
of these apps have lower statistical significance levels. We
used commit log messages to determine if a commit is
related to a bug-fix; if the log message accidentally omits
this information, we might run into the risk of missing bugs
and that might affect our developer counts in Fig. 1.

Content Validity. Highly-critical security bug reports are
sometimes purposefully removed from the bug databases by
project managers, to reduce the risk of further aggravation
of the security issue [18]. As a consequence, we run the risk
of missing such security bug reports in our study.

VII. RELATED WORK

Android bugs: Maji et al. [19] performed a failure
characterization study on the Android and Symbian mobile
platforms. They collected data on bugs in the OS, mid-
dleware/library, and development tools/core applications for
these two platforms. Their study was focused on the relation
between bugs and code, e.g., bug location (which subsystem
contains the bug), fixes (what source code change was made
to fix the bug), defect density, and code complexity. We
also study bugs in the Android Platform, though with a
different, process-oriented goal: bug life-cycle and fix-times,
bug reports, etc. In addition to the platform, we collect
data on 24 popular apps. As part of our own prior work
on automating Android GUI testing [20] we conducted a
small-scale bug counting study (10 Android apps with the
time frame generally being less than an year) to identify the
most prevalent bug categories, e.g., GUI bugs, unhandled
exception, I/O or concurrency bugs. In contrast, the scope
of the current work is broader (platform and 24 popular

apps), the time frame is longer (3–4 years), and the focus is
different.

Empirical bug studies: Bettenburg et al. [9] conducted
an empirical study based on a survey of developers and
users of Apache, Eclipse, and Mozilla to understand what
makes a good bug report. Their study suggested that steps
to reproduce, stack traces, and test cases are helpful in-
formation to developers. Using these results, they built a
tool named Cuezilla that could measure the quality of new
bug reports and recommends which elements should be
added to improve the quality. Zaman et al. [21] conducted
an empirical study to understand the difference between
security and performance bugs in Firefox. They compared
bug-fix times of security and performance bugs and found
that security bugs are fixed faster than performance bugs. We
performed an additional analysis on bug report quality for
security vs. non-security bugs and showed that security bug
reports are superior to non-security bugs. They also found
that a high percentage of security bugs are re-opened in the
future; lack of bug reopening information prevents us from
investigating this on our examined projects.

VIII. CONCLUSIONS

In this paper we performed a set of empirical analyses to
understand the bug-fixing process in the Android platform
and Android-based apps. We found that, although the apps
we considered were started recently, their bug reports are
of high quality. We also found that the quality of security
bug reports is higher compared to non-security bugs, though
security bugs are fixed slower compared to other bugs.
We also found that Google Code’s bug tracker, which is
used by most open-source Android apps, offers less bug
management support—e.g., for bug triaging— compared to
other widely-used trackers such as Bugzilla or Jira; this lack
of information limits empirical analyses and might hinder
the bug-fixing process on Google Code-based projects.

ACKNOWLEDGEMENTS

We thank Lorenzo Gomez, Steve Suh, Xuetao Wei, and
the anonymous reviewers for their feedback. This work was
supported in part by the National Science Foundation awards
CNS-1064646 and CCF-1149632.

REFERENCES

[1] Nielsen, “Smartphones Account for Half of all Mo-
bile Phones, Dominate New Phone Purchases in the
US,” March 29, 2012, http://blog.nielsen.com/nielsenwire/
category/online mobile/.

[2] A. Zeller, Why programs fail: a guide to systematic debug-
ging. Morgan Kaufmann, 2006.

[3] K. Falkner, “The big (small) survey on Android Security
and Gender,” April 2012, http://blog.spamfighter.com/general/
the-big-small-survey-on-android-security-and-gender-infographic.
html.

http://blog.nielsen.com/nielsenwire/category/online_mobile/
http://blog.nielsen.com/nielsenwire/category/online_mobile/
http://blog.spamfighter.com/general/the-big-small-survey-on-android-security-and-gender-infographic.html
http://blog.spamfighter.com/general/the-big-small-survey-on-android-security-and-gender-infographic.html
http://blog.spamfighter.com/general/the-big-small-survey-on-android-security-and-gender-infographic.html


[4] “Google play,” April 2012, https://play.google.com/.

[5] “Android platform,” January 2012, http://code.google.com/p/
android/.

[6] H. Dediu, “When will android reach one billion users?”
February 2012, http://www.asymco.com/2012/02/29/
when-will-android-reach-one-billion-users/.

[7] “Firefox for android,” January 2012, http://www.mozilla.org/
en-US/mobile/.

[8] P. Hooimeijer and W. Weimer, “Modeling bug report quality,”
in ASE ’07: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering,
2007, pp. 34–43.

[9] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann, “What makes a good bug report?” in
Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of software engineering, ser. SIGSOFT
’08/FSE-16, 2008, pp. 308–318.

[10] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” in Proceedings of the the 7th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering, ser. ESEC/FSE ’09, 2009, pp. 111–120.

[11] “Clarifications on Ending Contributions to Mozilla,”
August 2011, http://tylerdowner.wordpress.com/2011/08/27/
some-clarification-and-musings/.

[12] “Bug Triaging in Android,” February 2012, http://source.
android.com/source/life-of-a-bug.html.

[13] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental
learning and multi-feature tossing graphs to improve bug
triaging,” in ICSM, 2010, pp. 1–10.

[14] “Bugzilla Users,” April 2012, http://www.bugzilla.org/
installation-list.

[15] M. Gegick, P. Rotella, and T. Xie, “Identifying security
bug reports via text mining: An industrial case study,” in
Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, may 2010, pp. 11 –20.

[16] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[17] “Survey of Android Users,” April 2012,
http://www.retrevo.com/content/blog/2011/08/
iphones-backups-and-toilets-connection.

[18] “Android security bugs wiki,” January 2012, https://developer.
android.com/resources/faq/security.html.

[19] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi, “Char-
acterizing failures in mobile oses: A case study with android
and symbian,” in Software Reliability Engineering (ISSRE),
2010 IEEE 21st International Symposium on, nov. 2010, pp.
249 –258.

[20] C. Hu and I. Neamtiu, “Automating gui testing for android
applications,” in Proceedings of the 6th International Work-
shop on Automation of Software Test, ser. AST ’11, 2011, pp.
77–83.

[21] S. Zaman, B. Adams, and A. E. Hassan, “Security versus
performance bugs: a case study on firefox,” in Proceedings of
the 8th Working Conference on Mining Software Repositories,
ser. MSR ’11, 2011, pp. 93–102.

https://play.google.com/
http://code.google.com/p/android/
http://code.google.com/p/android/
http://www.asymco.com/2012/02/29/when-will-android-reach-one-billion-users/
http://www.asymco.com/2012/02/29/when-will-android-reach-one-billion-users/
http://www.mozilla.org/en-US/mobile/
http://www.mozilla.org/en-US/mobile/
http://tylerdowner.wordpress.com/2011/08/27/some-clarification-and-musings/
http://tylerdowner.wordpress.com/2011/08/27/some-clarification-and-musings/
http://source.android.com/source/life-of-a-bug.html
http://source.android.com/source/life-of-a-bug.html
http://www.bugzilla.org/installation-list
http://www.bugzilla.org/installation-list
http://www.retrevo.com/content/blog/2011/08/iphones-backups-and-toilets-connection 
http://www.retrevo.com/content/blog/2011/08/iphones-backups-and-toilets-connection 
https://developer.android.com/resources/faq/security.html
https://developer.android.com/resources/faq/security.html

	Introduction
	App Overview
	Android Bug Characteristics
	Bug Report Quality
	Bug Status
	The Bug Reported–Bug Closed Gap
	Developer Contribution and RCGap
	Comment Activity
	Bug-fix time

	Android Bug Life-cycle
	Focus: Security Bugs
	Identifying Security Bug Reports
	Security Bug Categorization
	Comparing Security Bugs with Non-Security Bugs

	Threats to Validity
	Related Work
	Conclusions
	References

