Automating GUI Testing for Android Applications

Cuixiong Hu

lulian Neamtiu

Department of Computer Science and Engineering
University of California, Riverside, CA, USA
{huc,neamtiu}@cs.ucr.edu

ABSTRACT

Users increasingly rely on mobile applications for computa-
tional needs. Google Android is a popular mobile platform,
hence the reliability of Android applications is becoming
increasingly important. Many Android correctness issues,
however, fall outside the scope of traditional verification
techniques, as they are due to the novelty of the platform
and its GUI-oriented application construction paradigm. In
this paper we present an approach for automating the testing
process for Android applications, with a focus on GUI bugs.
We first conduct a bug mining study to understand the na-
ture and frequency of bugs affecting Android applications;
our study finds that GUI bugs are quite numerous. Next, we
present techniques for detecting GUI bugs by automatic gen-
eration of test cases, feeding the application random events,
instrumenting the VM, producing log/trace files and analyz-
ing them post-run. We show how these techniques helped to
re-discover existing bugs and find new bugs, and how they
could be used to prevent certain bug categories. We believe
our study and techniques have the potential to help devel-
opers increase the quality of Android applications.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation— Reliability; D.2.5 [Software Engineering]: Test-
ing and Debugging— Testing tools, Tracing

General Terms
Reliability, Verification

Keywords

Test automation, Mobile applications, Google Android, GUI
testing, Test case generation, Empirical bug studies

1. INTRODUCTION

Smartphones are becoming pervasive, with more than 195
million sold worldwide in the first three quarters of 2010

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AST 11, May 23-24, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0592-1/11/05 ...$10.00.

alone [23, 22, 24]. A major draw of any smartphone is its
ability to run applications, thus users are increasingly rely-
ing on smartphones for computing needs, rather than using
laptops or desktops. This leads to an increasing impetus for
ensuring the reliability of mobile applications. Reliability
is particularly important for sensitive mobile applications
such as online banking, business management, health care,
or military domains.

In this paper we focus on ensuring the reliability of mo-
bile applications running on the Google Android platform.
According to Fall 2010 reports, Android is the second most
popular mobile OS, surpassing BlackBerry and iPhone OS,
and will be tied for number one with Nokia’s Symbian by
2014 [29, 24]; Android is in fact the only mobile OS plat-
form to gain market share since Q4’09 [23, 22, 24]. The
Android ecosystem includes the Android Market, which cur-
rently lists more than 220,000 applications, 12,316 of which
were added in December 2010 alone, and an estimated 2.6
billion downloads [17].

Many tools and techniques exist for automating the test-
ing of mature, well-established applications, such as desktop
or server programs. However, the physical constraints of mo-
bile devices (e.g., low-power CPU, small memory, small dis-
play), as well as developers’ unfamiliarity with mobile plat-
forms (due to their novelty), make mobile applications prone
to new kinds of bugs. For example, an Android application
is structured around activities (GUI windows), broadcast re-
ceivers, services and content providers; this is different from
standard server applications, or from an event-based system
used in a desktop GUI application. The tendency of mobile
applications to have bugs is evidenced by their high defect
density: a study by Maji et al. [27] has found that Android
applications can have defect densities orders of magnitude
higher than the OS.

In this paper we aim to bring novel, Android-specific classes
of bugs to light, and show how to construct an effective test
automation approach for addressing such bugs, especially
GUI bugs, and ensuring the reliability of Android applica-
tions. First, we conduct a bug collection and categorization
on 10 popular open source Android applications (Section 2).
We found that, while bugs related to application logic are
still present, the remaining bugs are Android-specific, i.e.,
due to the activity- and event-based nature of Android ap-
plications. We categorized all confirmed bugs in the bug
database based on our observations. To detect and fix these
categories of bugs, we employ an automated test approach
(Section 4). Our approach uses a combination of techniques.
First, we employ test and event generators to construct test

cases and sequences of events. We then run these test cases
(and feed the events, respectively) to the application. Once
a test case is running, we record detailed information about
the application in the system log file; after each test case run,
we perform a log file analysis to detect potential bugs. To
demonstrate the effectiveness of our approach, in Section 5
we present an evaluation on the open source applications
that form the object of our bug study. We generated test
cases for all projects used in the bug study and compared
bugs we found with bugs reported by users. We detected
most bugs reported, and found new bugs which have never
been reported.

In summary, our work tackles the challenges of verifying
mobile applications and makes two contributions:

1. A bug study and categorization of Android-specific
bugs that shows an important number of Android bugs
manifest themselves in a unique way that is different
from traditional, e.g., desktop/server application bugs.

2. An effective approach for detecting Android GUT bugs,
based on a combination of test case and event genera-
tion with runtime monitoring and log file analysis.

2. ANDROID BUGS: A STUDY

To identify the most frequent Android bug categories, we
performed an empirical study (bug collection and categoriza-
tion) on 10 popular applications in the Android Market—the
official repository for Android applications. In selecting the
applications for our study, we used several criteria: applica-
tions had to be popular, have a long lifetime, have a detailed
bug history and have the source code available. The 10 ap-
plications that form the target of our bug study are available
for free in Android Market, have high download counts, and
cover most of application categories, which ensures we get a
broad range of representative bugs.

The time frame of our analysis, for each application, is
shown in columns 2 and 3 in Table 1. As Android OS has
only been available for 2.5 years (since August 2008), these
applications have had a relatively long lifespan, which has
given developers and users a chance to detect and report
issues; hence it allows us to observe a wide range of bugs.

We now provide a brief description of each application.
Opensudoku [8] is a popular Sudoku game which allows users
to download and create their own puzzle in the game; the
aim of Opensudoku was to create a framework which can be
used for any kind of game, and provide as much functional-
ity and flexibility as possible. Skylightl [10] is a Java mobile
projects framework and collection of Android mobile appli-
cations and demos. CMIS [2] is a browser, which enables
the user to browse and search CMIS (Content Management
Interoperability Services) repositories. Delicious [3] (our ab-
breviation for Android delicious bookmarks) allows users to
save bookmarks to the Delicious social bookmarking service
from the Android web browser. ConnectBot [4] is a Secure
Shell client, which allows Android users to securely connect
to remote servers. DealDroid [5] is a small application for
Android devices that continuously watches for new deals on
deal sites; it runs in the background and produces Android
notifications when new items become available. Rokon [9]
is a 2D game engine, intended as a flexible game creation
framework with several demo games embedded. Andoku [1]
is Sudoku-type puzzle game. MonolithAndroid [7] (recently

renamed to Robotic Space Rock) is an OpenGL-based 3D
game. GuessTheNumber [6] is a number guessing game.

The results of the study are presented in Table 1. The first
column contains the application name, the second column
shows the first release we analyzed, and the third column
shows the last release we analyzed; source code was col-
lected from Google Code [13] for each application. The rest
of the columns (4-11) show the bug counts for each applica-
tion, categorized by bug type; the bug reports were retrieved
from Google Code [13]. The grey-background columns (4-6)
are the bugs we focus on in this paper. We now provide a
description of each bug type.

Activities are the main GUI components of an Android
application; an activity error (column 4) usually occurs due
to incorrect implementations of the activity protocol, as ex-
plained in detail in Section 4.4.1. FEwvent errors (column 5)
occur when the application performs a wrong action as a re-
sult of receiving an event (details in Section 4.4.2). Dynamic
type errors (column 6) arise from runtime type exceptions
(details in Section 4.4.3). Unhandled exceptions (column
7) are exceptions the user code does not catch and lead to
an application crash. API errors (column 8) are caused by
incompatibilities between the API version assumed by the
application and the API version provided by the system.
I/0 errors (column 9) stem from I/O interaction, e.g., file
or card access errors. Concurrency errors (column 10) oc-
cur due to the interaction of multiple processes or threads.
Bugs categorized as other (column 11) are due to errors in
the program logic.

The bug categories are non-overlapping, i.e., a bug listed
in the table cannot belong to more than one category. The
only exception to this rule was a bug in ConnectBot 1.46,
which can be categorized as both a type error and an API er-
ror (we have categorized it as a type error). As we can see in
Table 1, many errors are program logic related errors, some
of which can be found using standard techniques such as
static analysis or model checking. However, these techniques
cannot always be applied directly to mobile applications—
their structure and libraries differ substantially from stan-
dard applications; also, building or extracting a model for
each application could be time-consuming. Therefore, we
prefer an automated approach that can detect a variety of
bugs, without any per-application effort. We illustrate our
approach by showing how it can be used to detect activity,
event, and type errors. In the remainder of the paper we
present the tools and techniques we used to find such errors,
and illustrate how our techniques have re-discovered some
known issues, as well as found new bugs.

3. ANDROID OVERVIEW

We now proceed to presenting an overview of the Android
platform and the components of an Android application. As
shown in Figure 1, the Android platform is composed of 4
layers: Applications at the top, an Application Framework
layer that provides services to applications, e.g., controlling
activities or providing data access, a Library/VM layer, and,
at the bottom, the Linux kernel.

Applications run at the very top of the platform. Services
for applications, e.g., the Activity Manager, which controls
activities for each application, or Content Providers which
load the content provider defined by each application while
restricting data accessibility across applications are located
in the Application Framework layer. The Library/VM layer

Application First Last Bug category

analyzed analyzed | Actwity Event Type Unhandled API 1/O Concur- Other

release release exception rency
Skylightl Aug. 2009 July 2010 3 2 0 1 0 0 0 4
CMIS Jan. 2010 Apr. 2010 0 0 0 2 0 0 0 6
Delicious Feb. 2009 June 2010 0 0 0 0 1 0 0 4
ConnectBot Aug. 2008 July 2010 2 8 2 5 1 3 1 57
DealDroid Mar. 2009 May 2009 1 1 0 0 0 0 0 8
Rokon Sep. 2009 July 2010 0 6 2 3 0 4 0 14
Andoku July 2009 July 2010 0 0 0 0 0 0 0 1
Opensudoku Apr. 2009 July 2010 1 1 0 0 0 0 0 5
GuessTheNumber Feb. 2009 Nov. 2009 1 1 0 0 0 0 0 0
MonolithAndroid ~ Dec. 2008 Jan. 2010 0 2 0 0 2 0 0 3
Total 8 21 4 11 4 7 1 102

Table 1: Android applications: study time frame, bug categories and bug counts.

Applications

Application Framework

Android Runtime

Static Library Core Library

Dalvik VM

Linux Kernel

Figure 1: Architecture of Android platform.

contains static libraries and the Android runtime environ-
ment. Static libraries provide common system and applica-
tion libraries for applications. The Android runtime environ-
ment is composed of core runtime libraries and the Dalvik
virtual machine (VM)—an optimized Android-specific Java
virtual machine. Finally, the Linux kernel completes the
OS and the software stack. Each Android application runs
with a unique user ID, in its own copy of the Dalvik virtual
machine, which ensures separation between applications and
provides protection.

Our work covers the top three layers in Figure 1. To test
programs running in the Application layer, we use system
services from the Application Framework layer and instru-
mentation tools in the Dalvik VM.

Android applications can be composed of four component
categories: Activity, Broadcast Receiver, Content Provider
and Service. Activities are focused windows in which the
user interaction takes place; only one activity can be active
at a time. Each activity is a class in the source code and
should perform according to events generated by users and
system. Services run in the background, e.g., an email client
may check for new mails while users are running another

application. A Content Provider manages data for a cer-
tain application and controls the accessibility of the data;
for example, an email client may make email addresses in
its database accessible to other applications. Broadcast Re-
cetvers listen and react to broadcast announcements. For
example, an email client may receive a notification that the
battery is low and, as a result, proceed to saving email drafts.
Though we believe our approach is general enough to facil-
itate bug detection for all component classes, in this paper
we focus on GUI bugs related to activities and GUI events.

4. APPROACH

Our dynamic analysis approach combines several tech-
niques, from automatic test case and event generation tools
to log file analysis. In Figure 2 we provide an overview.
Starting from an application’s source code, we first use JU-
nit [15], a Java test case generation tool, to generate test
cases. Since most applications in the Android Market are
GUI-based, for each test case, we may need to add some
events (simulating user interaction) to make the application
move from one state to another. Therefore, we use Mon-
key [16], an automatic event generation tool, to produce
events in both random and deterministic ways and feed these
events to the application. Once a test case is running, we
record detailed information about the application in the sys-
tem log file; after each test case run, we perform a log file
analysis to detect potential bugs.

4.1 Test Case Generation

JUnit is a testing framework for Java applications, in-
tegrated in the Android development environment. JU-
nit can generate several classes of test cases based on the
application source code. Since activities are the main en-
try points and control flow drivers in Android applications,
our test case generation is based on activities. We first
identify all activities in an application and then use the
Activity Testing class in JUnit to generate test cases for
each activity. Activity Testing is shipped with the Android
SDK, works in conjunction with JUnit and provides three
features:

e [nitial condition testing tests whether the activity is
created properly.

Monkey

>/

4 Application

¢ Junit TN
A 4 N N
events| || ==——{ Test 1)F=5{ [togfie1)
vll| Gul
Fuents || F———| Test2 = [Log e
v Conditi)
Events % .
State .
Events | eneeemeny/ N J=>| [LogfileN |
_ N T\)

Log file
Analysis

Figure 2: Overview of our approach.

e GUI testing tests whether the activity performs ac-
cording to the GUI specification.

e State management testing tests whether the applica-
tion can properly enter and exit a state.

We used all three features for identifying activity bugs.
For more effective GUI tests, we used an event generation
tool, explained next.

4.2 Automatic Event Generation

Automatic event generation is a powerful technique for
verifying GUT applications. GUI bugs are revealed by event
sequences that fall outside the set of permissible events as-
sociated with the current state of the GUI application. To
help generate GUI events, we use the Monkey event gen-
erator, which comes with the Android SDK. Monkey can
generate random or deterministic event sequences and feed
these events to an application. To discover a wide range of
issues, in our work we use random sequences: we generate
these sequences using Monkey, and feed the sequences to the
application under test.

4.3 Trace Generation

Once the test cases are generated, we run them on the ap-
plication through the Dalvik VM. To monitor the execution
of test cases, we configure the VM to log the details of each
test case into a trace file. Our traces capture three kinds of
events: GUI events, method calls, and exceptions. We also
monitor the VM operation to detect application bugs that
cause the VM to shut down prematurely.

4.4 Log File Analysis and Bug Detection

Once test cases are generated for a certain application,
we run the application on these test cases and log the per-
formance of each test case so that we can detect errors.
With the log file at hand, we use patterns to identify po-
tential bugs. Each class of errors (activity, event or type)

has an associated “pattern,” as explained next. These pat-

terns can indicate proper operation, or they can indicate
a bug. Apart from automatic bug detection, log files are
also useful in debugging—since the log file contains method
and event traces, leading to the bug, developers can use our
framework to reconstruct the method sequence that lead to
a bug.

4.4.1 Detecting Activity Bugs

Activities are window containers derived from an Activ-
ity superclass; their implementations consist of responding
to events generated by users and the system. Activity bugs
stem from incorrect implementation of the Activity class,
e.g., one activity might be created or destroyed in the wrong
way so that it will make the application crash. In general,
activity bugs occur either because developers are not suffi-
ciently familiar with the activity- and event-based applica-
tion model in Android, or because the implementation fails
to obey the activity state machine. In practice, almost every
application we analyzed has activity bugs because it is hard
to check whether each base function of the base class has
been properly implemented.

An activity has a life cycle described by a state machine,
hence violations of this state machine lead to activity bugs.
A simplified version of the state machine is shown in Fig-
ure 3; the full state machine can be found on the Android
developer website [12]. Each activity can be in one of five
states: Active, Pause, Stop, Restore or Destroy. If an activ-
ity occupies the screen’s foreground, it is running, hence in
the Active state. If another non-full screen or transparent
activity overlaps the current activity, the current activity
will be moved into the Pause state. An activity is in state
Stop once it is fully covered by another activity. Activities
in states Stop or Pause can be killed by system if memory
is needed elsewhere. If the activity is killed and the user has
restarted it again after some time, that activity will be in

Quit

@&
RN
Start ‘

Figure 3: Simplified state machine of an Android
activity.

A Sorry!

The application ConnectBot

(process org.connectbot) has
stopped unexpectedly. Please
try again.

Force close

Figure 4: Screenshot of ConnectBot activity failure.

state Restore and then Active. Once an activity needs to be
killed, it will be in the Destroy state.

To ensure a correct state sequence, e.g., Start— Active—
Pause— Restore— Active— Destroy, the corresponding user-
defined activity methods should be called in a valid order as
specified by the state machine, in this case: onCreate()—
onPause()— onResume()— onDestroy(). We use the state
machine as a specification and match method calls from log
file entries against it. Violations of the state machine are
then flagged as potential bugs.

For example, in ConnectBot release 256 we found a new ac-
tivity bug, indicated by the log file entries shown in Figure 5
(a). The bug in Figure 5(a) manifests itself as an onCreate()
on line 1 without a subsequent onPause() preceding line 3,
which is a violation of the state machine specification. The
bug corresponds to a situation where the user sets up a de-
fault shell host beforehand and then starts the application,
which crashes the application. Figure 4 is a screen shot of
the application crash when the scenario described above un-
folds.

Program Activity Event Type

bugs bugs errors
Old New Old New Old New
Skylightl 3 0 2 3 0 0
CMIS 0 0 0 0 0 0
Delicious 0 0 0 0 0 0
ConnectBot 2 2 6 2 2 0
DealDroid 1 0 0 0 0 0
Rokon 0 0 6 0 2 0
Andoku 0 1 0 0 0 0
Opensudoku 1 0 1 1 0 0
GuessTheNumber 1 0 1 0 0 0
MonolithAndroid 0 0 2 0 0 0
Total 8 3 18 6 4 0

Table 2: Results: old (re-discovered) bugs and new
(not previously reported) bugs.

4.4.2 Detecting Event Bugs

Android applications should be prepared to receive events,
and react to events, in any state of an activity. If developers
fail to provide proper implementations of event handlers as-
sociated with certain states, the application can either enter
an incorrect state or crash outright. Figure 5(b) is a log file
example extracted from ConnectBot release 80, which shows
how the application crashes when Monkey feeds it with an
unhandled event (HOME button click).

4.4.3 Detecting Type Errors

Detecting type errors is quite simple: once the type error
has been triggered, a ClassCastException entry will appear in
the log file. A type error in ConnectBot release 236 is shown
in Figure 5(c).

S. RESULTS

Our verification techniques turned out to be effective in
practice. In Table 2 we report the number of bugs we found
using our approach. For each class of bugs we were able
to re-discover bugs already reported (the Old columns) as
well as new bugs that have not been reported yet (the New
columns). For assurance, we took each event sequence our
approach has found automatically and played it manually,
through GUI interaction, to make sure the bug can actually
be reproduced in practice. We have reported the new bugs to
the developers; two of the bugs have been confirmed, while
others are in the process of confirmation.

5.1 Activity Bugs

We were able to detect all 8 activity errors that have al-
ready been reported (Table 1), as well as 3 new activity
errors in Andoku and Connectbot.

5.2 Event Bugs

Our technique has detected 24 event errors (18 existing
bugs and 6 new bugs). However, Table 1 contains 21 event
errors; the three errors we could not detect could not be
reproduced by other users either, so we suspect they might
be spurious bug reports.

| (a) Activity bug in ConnectBot release 256|

QG W~

| (b) Event bug in ConnectBot release 80|

E/AndroidRuntime(190): at org.connectbot. SettingsActivity .onCreate(SettingsActivity .java:29)
E/AndroidRuntime(190): at android.app.Activity Thread . performLaunchActivity(Activity Thread . java:2364)
I /ActivityManager(52): Process org.connectbot (pid 190) has died.

D/AndroidRuntime(211): Shutting down VM W /dalvikvm(211):

threadid=3: thread exiting with uncaught exception (group=0x4001aa28)

E/AndroidRuntime(211): Uncaught handler: thread main exiting due to uncaught exception

1 |/Starting activity : Intent{action=android.intent . category . HOME}

3 D/:Shutting down VM

| (c¢) Type error in ConnectBot release 236|

63): /data/app/vmdI57744.tmp W/PackageParser(63):

R [N AW~

D/AndroidRuntime: Shutting down VM

D/PackageParser(63): Scanning package: /data/app/vmdI57744.tmp W /Resources(
63): Converting to int: TypedValue{t=0x3/d=0x11 "Donut” a=1} W/PackageParser(

java.lang.NumberFormatException: unable to parse 'Donut’ as integer

W /PackageParser(63): at android.os.HandlerThread.run(HandlerThread.java:60)
E/AndroidRuntime(1555):java.lang.RuntimeException:java.lang . ClassCastException: java.lang.Long;

Figure 5: Bug manifestation: examples of log file entries for each bug category.

5.3 Type Errors

We successfully detected all type errors in Table 1, but we
could not find any new ones—we suspect that, since type
errors are critical and cause the applications to crash imme-
diately, they are more likely to be observed, reported and
fixed quickly.

6. FUTURE WORK

The last column of Table 1 shows bugs that do not fall
into the activity/event/type categories. Some examples in-
clude unhandled exceptions, API errors, I/O errors, or con-
currency errors. We plan to pursue a two-prong approach
for detecting these classes of bugs. First, we will model the
correct invocation of certain I/O and concurrency primitives
as state machines [21], which will allow us to compare ap-
plication logs with the model and find I/O and concurrency
errors. Second, we plan to graft our model-based verification
onto Java static analysis tools, e.g., WALA [11], to permit
pattern and state-machine violations at compile-time, rather
than via automated testing.

7. RELATED WORK

Android verification. Most of the prior work on verifica-
tion of mobile applications has focused on security. Enck,
Ongtang, and McDaniel’s [20] describe Kirin, a logic-based
tool for Android that ensures permissions needed by a cer-
tain Android application are met by global safety invari-
ants. These invariants ensure that data flow of each appli-
cation can be passed safely among applications. Ongtang,
McLaughlin, Enck and McDaniel [28] have proposed a sim-
ilar tool called Saint, which enforces OS-level data flow se-
curity. Enck, McDaniel, Jung and Chun [19] provide a real-
time data flow monitor called TaintDroid, which can check

data misuse during runtime for an Android application. In
their work they tested 30 popular applications and found
several cases of information leak, e.g., leaking user contacts
information. Chaudhuri [18] presented a formal study of An-
droid security. Their work introduced a core typed system
for describing Android applications, and reasoning about
their data flow security properties. Any violation of rules
described in the core typed system and operational seman-
tics may result in security concerns of applications. These
approaches are deployed at the OS level and focus on secu-
rity, whereas we focus on providing developers with a toolset
for detecting GUI errors.

GUI testing. Kervinen et al. [26] present a formal model
and architecture for testing concurrently running applica-
tions. The behavior of the system under test is specified
as a labeled transition system. Their specification model is
more rigorous and powerful than ours, as our model is se-
quential, rather than concurrent. They used their system to
test mobile applications running on the Symbian platform
and found 6 bugs in those applications.

GUITAR [14] is a GUI testing framework for Java and Mi-
crosoft Windows applications. Hackner and Memon [25] de-
scribe the architecture and overview of the GUITAR tool—
the components of GUITAR and their functionality. It is un-
clear to us whether GUITAR can be applied directly to An-
droid, because of Android’s application development model.

Yuan and Memon [30] generate event-sequence based test
cases for GUI applications. They proposed a model-based
approach for testing GUI-based applications. Their tech-
nique can generate test cases automatically using a struc-
tural event generation graph. Their approaches target Java
desktop applications, which are quite different from the An-
droid mobile environment.

Android bug studies. Maji et al. [27] performed a failure
characterization study on two mobile platforms, Android
and Symbian. They collected data on bugs in the OS, mid-
dleware/library, and development tools/core applications for
these two platforms. They found that defect density tends
to be lowest in the OS, higher in the middleware, and highest
in development tools/core applications. They also computed
the cyclomatic complexity for the two code bases and found
the values to be comparable across all layers. They stud-
ied the code fixes and found that many of the fixes required
just a few lines of code. Our study is centered around a
complementary set of applications (third-party, non-core),
since this is the type of applications prevalent on the An-
droid Market. Their study is focused on bug location (which
subsystem contains the bug) as well as the fix (what source
code change was made to fix the bug), whereas our bug cat-
egorization looks at the semantic nature of the bug (e.g.,
activity, event, type error, concurrency, etc.). Our approach
is oriented on dynamic, rather than static verification. We
do not study fixes and source code, but rather provide an
automatic testing framework that can be used to discover
activity bugs, event bugs and type errors.

8. CONCLUSIONS

The number of mobile applications and mobile applica-
tion users are growing rapidly, which creates an impetus for
researchers and developers to come up with effective verifica-
tion techniques to ensure the reliability of these applications.
Towards this goal, we perform a bug study to understand the
nature and possible remedies for bugs in mobile applications,
and construct an automated testing framework for Android
applications. Our framework combines automatic event and
test case generation with runtime monitoring and log file
analysis. Our techniques have proved effective for activity,
event, and type errors: we have been able to re-discover ex-
isting bugs while finding some new bugs. We believe our
framework can be easily extended to find a broader range of
bugs in Android applications.

9. REFERENCES

[1] andoku. http://code.google.com/p/andoku/.
[2] android-cmis-browser.
http://code.google.com/p/android-cmis-browser/.
[3] android-delicious-bookmarks. http://code.google.
com/p/android-delicious-bookmarks/.
[4] connectbot.
http://code.google.com/p/connectbot/.
[5] dealdroid. http://code.google.com/p/dealdroid/.
[6] guessthenumber.
http://code.google.com/p/guessthenumber/.
[7] monolithandroid.
http://code.google.com/p/monolithandroid/.
[8] opensudoku-android.
http://code.google.com/p/opensudoku-android/.
[9] rokon. http://code.google.com/p/rokon/.
[10] skylightl. http://code.google.com/p/skylightl/.
[11] T. J. Watson Libraries for Analysis (WALA). http://
wala.sourceforge.net/wiki/index.php/Main_Page.
[12] Android activity lifecycle, May 2010.
http://developer.android.com/reference/
android/app/Activity.html#ActivityLifecycle.

[13] Google code, April 2010. http://code.google.com/.

[14] Guitar — a gui testing framework, August 2010.
http://guitar.sourceforge.net/index.shtml.

[15] JUnit, May 2010. http://www.junit.org/.

[16] Monkey UI/Application Exerciser, May 2010.
http://developer.android.com/guide/developing/
tools/monkey.html.

[17] Androlib. Number of New Applications in Android
Market by month, September 2010.
http://www.androlib.com/appstats.aspx.

[18] A. Chaudhuri. Language-based security on android. In
PLAS 09, pages 1-7.

[19] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. 2010.

[20] W. Enck, M. Ongtang, and P. McDaniel.
Understanding Android security. IEEE Security and
Privacy, 7(1):50 =57, Jan.-Feb. 2009.

[21] D. Engler and K. Ashcraft. Racerx: effective, static
detection of race conditions and deadlocks. SOSP,
pages 237-252, 2003.

[22] Gartner Corporation. Gartner Says Worldwide Mobile
Device Sales Grew 13.8 Percent in Second Quarter of
2010, But Competition Drove Prices Down, August
2010.
http://www.gartner.com/it/page.jsp?id=1421013.

[23] Gartner Corporation. Gartner Says Worldwide Mobile
Phone Sales Grew 17 Per Cent in First Quarter 2010,
May 2010.
http://www.gartner.com/it/page.jsp?7id=1372013.

[24] Gartner Corporation. Gartner Says Worldwide Mobile
Phone Sales Grew 35 Percent in Third Quarter 2010;
Smartphone Sales Increased 96 Percent, November
2010.
http://www.gartner.com/it/page.jsp?7id=1466313.

[25] D. R. Hackner and A. M. Memon. Test case generator
for guitar. In ICSE Companion ’08, pages 959-960.

[26] A. Kervinen, M. Maunumaa, T. Piikkénen, and
M. Katara. Model-based testing through a gui. In
Formal Approaches to Software Testing, volume 3997,
pages 16-31. 2006.

[27] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi.
Characterizing failures in mobile oses: A case study
with android and symbian. In Software Reliability
Engineering (ISSRE), 2010 IEEE 21st International
Symposium on, pages 249-258.

[28] M. Ongtang, S. Mclaughlin, W. Enck, and
P. Mcdaniel. Semantically rich application-centric
security in android. In ACSAC’09: Annual Computer
Security Applications Conference, 2009.

[29] M. Swift. Android operating system is expected to
surge past rivals. Los Angeles Times, Sep 11 2010.

[30] X. Yuan and A. M. Memon. Generating event
sequence-based test cases using gui runtime state
feedback. IEEE Trans. on Software Engineering,
36:81-95, 2010.

