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Abstract
The center of mass for newly-released applications is shift-
ing from traditional, desktop or server programs, toward web
and cloud computing applications. This shift is favorable to
end-users, but puts additional burden on application develop-
ers and service providers. In particular, the newly emerging
development methodologies, based on dynamic languages
and multi-tier setups, complicate tasks such as verification
and require end-to-end, rather than program-local guaran-
tees. Moreover, service providers need to provide contin-
uous service while accommodating the fast evolution pace
characteristic of web and cloud applications. A promising
approach for providing uninterrupted service while keeping
applications up-to-date is to permit dynamic software up-
dates, i.e., applying dynamic patches to running programs.
In this paper we focus on safe dynamic updates for web and
cloud applications; we point out difficulties associated with
dynamic updates for these applications, present some of our
preliminary results, and lay out directions for future work.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Reliability, availability, and serviceability; D.2.7
[Software Engineering]: Distribution, Maintenance, and
Enhancement—Corrections, Enhancement; F.3.2 [Seman-
tics of Programming Languages]: Program analysis

General Terms Reliability, Verification

Keywords Web applications, cloud computing, dynamic
software updating, online updates, on-the-fly upgrades, end-
to-end properties

1. Introduction
We are currently witnessing a shift in how applications are
developed and deployed. Desktop applications are transi-
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tioning to web applications, and server applications are tran-
sitioning to “solution stacks” and cloud computing. For ex-
ample, office suites are moving from local applications to
web applications such as Google Docs and Microsoft Of-
fice Web Apps. More generally, traditional client-server
applications—where the client is “thin” and provides lit-
tle functionality—are giving way to “thick,” feature-rich
clients. On the server side, developing applications has re-
cently been facilitated by open source frameworks such as
Django, Ruby on Rails, or Google App Engine. Rather than
writing C/C++/Java/SQL code for each tier (front, applica-
tion, database), developers can use one of these frameworks
which allow easy software construction and deployment.

The Cloud Computing paradigm has gained popular-
ity for hosting applications in recent years, as it provides
businesses with pay-as-you-go computation and storage ser-
vices. Data infrastructures and applications associated with
cloud computing and web applications require regular main-
tenance and updates (to provide the newest features or incor-
porate the latest security fixes), while also having to provide
24/7 service. Traditional maintenance and update practices
are ill-suited for these environments, because they are based
on stop-restart (stopping the system, followed by restart to
install updates) or rolling upgrades (where one part of the
infrastructure is updated at a time, rendering it unavailable
to clients). This temporary unavailability can lead to fail-
ures [21], customer dissatisfaction, or even loss of revenue;
as service providers use a pay-per-use model for cloud ser-
vices, unavailability results in loss of business. For example,
in 2009, Google offered to compensate users of Google Apps
Premier Edition customers for periods of unavailability [25]
due to two major Gmail outages [12, 28]; these outages took
place during rolling upgrades. Further anecdotal evidence
from Facebook and Oracle [13] stresses the need for contin-
uous availability. Therefore, on-the-fly updates are becom-
ing a required feature for maintaining client satisfaction in
light of more frequent patches [23] and regular maintenance.

In prior work, we have shown that dynamic updates are
effective for Internet servers (such as FTP servers, SSH
servers, media streaming and web caching servers [18–20]);
in more recent work, we have explored on-the-fly changes



to database schemas. However, web applications and cloud
computing present unprecedented challenges in software up-
dating in general, and dynamic software updating in partic-
ular. Our paper points out how the models underlying these
novel applications complicate updates: the dynamic nature
of the applications makes verification tasks difficult, and
their distributed architecture raises consistency issues. We
discuss these challenges, point out how state-of-the-art solu-
tions fail to completely address them, and present our pre-
liminary results on two fronts: (1) providing end-to-end dy-
namic update mechanisms, and (2) identifying and eliminat-
ing update safety issues due to cross-tier and cloud-wide in-
consistencies.

2. Challenges And State Of The Art
2.1 Dynamic Languages
The advent of Web 2.0 and the concept of Web as a “partic-
ipation platform” gave the users more interactivity than just
retrieving information, by allowing them to run software ap-
plications entirely through a browser. This paradigm led to
the popularity of many dynamic scripting languages, such as
JavaScript, Python, and PHP, and frameworks like Django or
Ruby on Rails, that permit either direct generation or facil-
itate the construction, of multi-tier software. The evidence
for this shift is not merely anecdotal: language popularity
statistics1 show that the number of lines of code written for
new software, in dynamic languages, is comparable to that of
C, C++, and Java. Similarly, the Tiobe index,2 a measure of
language popularity, shows that, as of March 2010, dynamic
languages (e.g., Python, JavaScript, Ruby) are gaining pop-
ularity, whereas C, C++, and Java are losing ground.

While these dynamic languages and frameworks based on
them enable rapid construction of complex web applications,
they introduce two main hurdles to safe dynamic updates:

1. Since these new languages are dynamic, the lack of static
checking and the lack of mature analysis and verifica-
tion tools makes them more prone to error. Moreover, as
applications increase in size, they become increasingly
difficult to maintain.

2. Multi-tier applications require end-to-end verification
and property enforcement (e.g., security), as opposed to
local guarantees associated with monolithic applications.

Our current and future efforts tackle these issues by lever-
aging emerging verification tools for dynamic languages and
formal ways of ensuring end-to-end properties [9, 15]. Pre-
liminary results, by us and other researchers suggest that
(1) designing or incorporating static checking into dynamic
scripting languages are effective verification mechanisms [5,
14, 22, 24, 27], and (2) formally modeling the semantics of

1 http://www.langpop.com/
2 http://www.tiobe.com/index.php/content/paperinfo/tpci/
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each tier in multi-tier applications and checking cross-tier
consistency helps guarantee end-to-end properties for the
whole application [8, 10, 11, 17].

2.2 Cloud Computing
Cloud Computing is evolving as a powerful paradigm for
hosting Internet-scale applications in large computing in-
frastructures. In particular, IT services are migrating from
enterprise-scale computing infrastructures (i.e., in-house
networked cluster of servers) to cloud computing infras-
tructures (i.e., pay-for-service large data-centers with thou-
sands to tens of thousands of machines). The pay-per-use
model, zero up-front investment, and perception of unlim-
ited resources/infinite scalability, are major features attract-
ing a large group of users [2, 3]. On the flip side, applica-
tions based on cloud computing must provide continuous
availability—paying clients can not tolerate downtime asso-
ciated with system reboot to perform updates—hence fast,
on-the-fly, updates are a necessity. Therefore, traditional
maintenance and updates practices based on stop/restart
or rolling upgrades become ill-suited in this environment.
In particular, rolling upgrades, despite their prevalence, are
problematic because the upgrade is not an atomic operation
and it risks introducing inconsistencies in the application
stack, as illustrated in Section 2.4.

2.3 Update Mechanisms
Prior work by us and others [18–20] has shown that on-
the-fly software update mechanisms are practical for stan-
dalone applications. Extending these mechanisms to web
and cloud applications is not trivial, due to several factors.
In particular, dynamic typing and dynamic linking (in con-
trast to statically-typed and linked C/C++/Java applications)
increase flexibility, but decrease the testing and verification
capacity. Similarly, dynamically generated code (in contrast
to the manually-written code characteristic of C/C++/Java
applications), open the way for cross-tier inconsistencies and
update failures.

2.4 Update Safety
Prior to Web 2.0, the thin client model was prevalent: most
of the computation took place on the server, and the client
was relegated to HTML rendering. Therefore, in that model,
verifying the application logic, reasoning about consistency
issues, and enforcing safety properties for server programs
alone was sufficient. In Web 2.0, the application model is
based on thick clients supported by feature-rich browsers;
computation is offloaded to the client, which communi-
cates with the server more sparsely. In cloud computing with
multi-tenant architectures, a single application instance par-
titions its data and configuration to provide different, custom
interfaces to different client organizations. Thus, in these
novel models, delineating data associated with one connec-
tion or one client is difficult— the multi-tier or multi-tenant
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Figure 1. Inconsistencies due to long-running clients and
server-side updates.

setup transforms the need for local property checking into
the need for end-to-end property checking.

For example, many web applications include plugins
or even embedded sub-applications that personalize larger,
container applications according to user needs—in Gmail,
an email message which includes keywords for appoint-
ments automatically gives the user the option to add the mes-
sage to the calendar. Though convenient, plugins and embed-
ded applications raise security issues which can undermine
the security of the entire container application. Therefore,
guaranteeing application security requires the consideration
of all components and across all tiers, i.e., end-to-end con-
sistency.

Programming models and frameworks such as Links [10],
Swift [8], and Google Web Toolkit 3 address this problem
by allowing developers to write a single application, and
letting the compiler generate separate code for each tier
while preserving consistency. However, even when using
this model, updates are problematic, e.g., due to long-lived
clients or rolling upgrades, as illustrated by the following
examples.

Unsafe updates due to long-lived clients. Long-lived
clients whose sessions last longer than the interval between
server-side upgrades can lead to inconsistent updates, as
illustrated in Figure 1. In this scenario, the client-side ap-
plication starts its communication with the server at version
1. At some point, the server-side application undergoes an
update from version 1 to version 2. Any post-update com-
munication is potentially unsafe, as the client-side part of
the application is now out of sync (i.e., still at version 1).
Adding versioning to client-server messages addresses this
problem, but anecdotal evidence suggests that, in practice,
versioning is too complicated and unpopular with service
providers [13]. As a consequence, service providers prefer
the simplicity of non-versioning approaches (at the expense
of safety), or permit addition-only updates which alleviate
safety concerns. However, even in the presence of version-
ing, updating thick-client applications is problematic, due to

3 http://code.google.com/webtoolkit/

Figure 2. Multiple application versions as a result of rolling
upgrades in the cloud.

client-stored persistent data; one such example is Gears,4 a
framework used in popular web applications such as Google
Docs and Gmail. Gears provides caching, storage and paral-
lel execution functionality by extending the client’s browser.
Schema updates, e.g., as a result of a new application ver-
sion, can lead to the database schema assumed by the web
application and the database schema assumed by local stor-
age to differ, which is potentially problematic.

Unsafe updates due to server-side rolling upgrades. Up-
date safety is further threatened in cloud computing appli-
cations. Rolling upgrades allow service providers to sus-
tain service yet perform upgrades by partitioning the server-
side applications into “update domains.” We illustrate rolling
upgrades in a cloud computing environment in Figure 2:
business logic applications run on top of virtualized hard-
ware, and communicate with clients (via a load balancer)
and cloud storage. Prior to applying an update from version
1 to version 2, cloud service providers partition the appli-
cations into two update domains, UD1 and UD2. Systems
in update domain UD1 will continue serving clients at ver-
sion 1, while systems in update domain UD2 wait for client
requests to complete, shut down and restart at version 2.
The result (Figure 2) is that the UD1 partition runs applica-
tion version 1, while the remaining applications run version
2. This situation is problematic when application instances
communicate with other instances (e.g., when an instance
from UD1 requests a field deleted in version 2 from an ap-
plication instance in UD2) or with the storage system (e.g.,
when an application instance-assumed data schema differs
from the schema assumed by the storage services). Note that
Microsoft Azure [6, 7] employs rolling upgrades and allows
different application versions to run in parallel; rolling up-
grades at Google have led to Gmail outages [12, 28].

3. Preliminary Results and Future Work
We now proceed to presenting our current work and pre-
liminary results on update mechanisms, i.e., extending our
local dynamic update mechanisms to all links in an end-to-

4 http://gears.google.com/
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end chain, and update safety, i.e., ensuring a uniform seman-
tics across tiers and across cloud-side applications. Together,
these two results lead to safe, end-to-end dynamic updates.

3.1 Update Mechanisms
Preliminary results. In prior work, we have demonstrated
a practical approach for performing on-the-fly updates to
popular server programs written in C (memcached, FTP and
SSH servers, routers, media streaming servers, online gam-
ing servers [18–20]); other researchers have shown similar
results for dynamic updates to Java applications [26]. All
these updates could be applied while sustaining service to
clients. These solutions have proved appropriate for server
applications without persistent state, but inadequate for ap-
plications that use databases—as applications evolve, so do
the schemas at which they store data, so we must support on-
the-fly schema changes as well. Therefore, in more recent
work we have started to explore the feasibility of dynamic
updates to persistent data, via on-the-fly schema evolution.
Initial results on SQLite-based systems5 using actual schema
changes from Mozilla show that database applications can
enjoy safe schema updates with little performance cost.

Future work. Our existing techniques place us part way
there in offering dynamic update mechanisms to multi-tier
applications, i.e., we can perform updates to the database
tier and the application tier (as long as the application tier is
written in C or Java). We are, however, missing update mech-
anisms for dynamic languages (e.g., PHP, Python, or Ruby),
so one of the next steps is to add on-the-fly update support
to dynamic languages, inspired by existing support in lan-
guages such as Erlang [4]. We are also planning to inves-
tigate dynamic updates to client code—these are necessary
in the presence of thick clients as indicated in Section 1—
hence completing the end-to-end dynamic update chain. To
guarantee update safety, update mechanisms to links in the
end-to-end chain will need to preserve cross-tier and cloud-
wide consistency, aspects we will focus on next.

3.2 Update Safety
Preliminary results. In Section 2.4 we discussed the chal-
lenges of maintaining cross-tier consistency in an applica-
tion in the absence of evolution. In prior work [17], we stud-
ied cross-tier consistency issues that occur at the applica-
tion/database boundary when the database or the applica-
tion, or both, evolve. We have shown that, as a result of soft-
ware evolution (i.e., a new version of the application), the
application tier and the database tier could make different
assumptions about the database schema. This could poten-
tially lead to runtime errors, data loss, and loss of data in-
tegrity. Our study on several years of evolution in two popu-
lar open source programs, Mozilla and Monotone, has found
that, for certain versions, the application can be out of sync
with the database because they assume different schemas. In

5 SQLite is a popular, server-less, zero-config SQL engine [16].

Figure 3. Cloud-wide dynamic updates to applications.

that work we manually compared the application-assumed
and database-assumed schemas, and showed how they can
differ as a result of new releases. Motivated by these initial
findings, we plan to (1) extend the work to a wider range
of cross-tier consistency issues, and (2) make the approach
more scalable, by leveraging existing tools for automatic
model extraction and cross-tier verification.

Future work: cross-tier safety. The first step is to use
an automatic approach for extracting the application model
(e.g., types, or the state machine that describes application
logic, or the database schema) assumed by each tier, from
the JavaScript client to Python or Ruby code on the server,
to the server-side database. The second step will be to verify
and guarantee the safety of manual and automatically gener-
ated code, by leveraging several existing static analysis and
profiling tools for dynamic languages, including Ruby [14],
JavaScript [22, 27], and Python [5, 24]. The third step is to
take local properties for each tier (e.g., security guarantees),
and check and enforce those properties for the client-server
chain as a whole, effectively providing end-to-end guaran-
tees.

Future work: cloud-wide application update safety. For
implementing safe, cloud-wide updates without relying on
rolling upgrades, we plan to use a combination of static and
dynamic techniques, similar to the approaches employed by
us and other researchers in the context of multi-threaded [18]
and distributed [1] updates. We illustrate the high-level prin-
ciple in Figure 3. To allow safe updates to all application
instances 1..N at once, and obviate the need for rolling up-
grades, we need to apply the update at a moment where the
update contents (“patch”) does not conflict with the current
state of any application instance. Therefore, each application
instance is augmented with an update agent whose role is to
communicate with an update server. Note that the agents
and server do not exist in current cloud setups and will need
to be added. The job of an update agent is to communicate
the local update restrictions of each instance to the update
server, and to install the patch when it receives the “go” sig-
nal from the server. The update server centralizes update re-



strictions, finds a moment when applying an update is safe
across-the-board (i.e., the update does not violate the update
restrictions of any application instance), and sends update
agents the “go” signal.

We plan to use contextual effects [20] and relaxed syn-
chronization [18]—a combination of static and dynamic
approaches—to compute dynamic update restrictions for
each application instance; the update server will check these
restrictions against update contents to detect safe system
states in which an update can be applied on-the-fly for all
application instances. Our preliminary experience with us-
ing relaxed synchronization for applying dynamic updates
to multi-threaded programs with large numbers of threads
gives us confidence that the approach can be translated to a
cloud setup to achieve cloud-wide, safe dynamic updates.

4. Conclusions
As Web 2.0 and cloud services are gaining popularity, the
computing paradigm is shifting from large monolithic ap-
plications to thick clients, solution-stack based servers, and
cloud-based computation and storage services. These novel
applications depend on continuous server availability, which
puts pressure on service providers to keep their services run-
ning 24/7 and employ on-the-fly updates. Our paper points
out that the models underlying these novel applications com-
plicate on-the-fly updates: the dynamic nature of the applica-
tions makes verification tasks difficult, and their distributed
architecture opens the way for update-induced inconsisten-
cies. To address these issues, we present our preliminary re-
sults and intended future work on dynamic update mecha-
nisms and dynamic update safety for web and cloud applica-
tions.
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