
Chapter 19
Randomized Rounding Without Solving the Linear Program

Neal E. Young*

Abstract
We introduce a new technique called oblivious rounding -
a variant of randomized rounding that avoids the bottleneck
of first solving the linear program. Avoiding this bottle-
neck yields more efficient algorithms and brings probabilistic
methods to bear on a new class of problems. We give obliv-
ious rounding algorithms that approximately solve general
packing and covering problems, including a parallel algo-
rithm to find sparse strategies for matrix games.

1 Introduction
Randomized Rounding: Randomized rounding

[18] is a probabilistic method [20, I] for the design of
approximation algorithms. Typically, one formulates
an NP-hard problem as an integer linear program, dis-
regards the integrality constraints, solves the resulting
linear program, and randomly rounds each coordinate
of the solution up or down with probability depending
on the fractional part. One shows that, with non-zero
probability, the rounded solution approximates the op-
timal solution. This yields a randomized algorithm; in
most cases it can be derandomized by the method of
conditional probabilities [17]. The probabilistic analy-
ses are often simple, relying on just a few basic tech-
niques. Yet for many NP-hard problems, randomized
rounding yields the best approximation known by any
polynomial time algorithm [3].

Oblivious Rounding: Derandomized or not, a
main drawback of randomized rounding algorithms has
been that they first solve a linear program to find a solu-
tion to round. We show that this bottleneck can some-
times be avoided as follows: (1) show that randomly
rounding an optimal solution (possibly to smaller-than-
integer units) yields an approximate solution; (2) ap-
ply the method of conditional probabilities, finding pes-
simistic estimators [17] that are essentially independent
of the optimal solution. The method of conditional
probabilities is used not to derandomize per se, but to

*AT&T Bell Labs, rm. 2D-145, 600 Mountain Ave., Mur-
ray Hill, NJ 07974. Part of this research was done while at
School of ORIE, Cornell University, Ithaca NY 14853 and sup-
ported by &a Tardos’ NSF PYI grant DDM-9157199. E-mail:
ney@research.att.com.

achieve the independence.
Generalized Packing and Covering: The re-

sulting algorithms find the approximate solution with-
out first computing the optimal solution. This allows
randomized rounding to give simpler and more efficient
algorithms and makes it applicable for integer and non-
integer linear programming. To demonstrate this, we
give approximation algorithms for general packing and
covering problems corresponding to integer and non-
integer linear programs of small width, including a paral-
lel algorithm for finding sparse, near-optimal strategies
for zero-sum games.

Packing and covering problems have been exten-
sively studied (see $2). For example, Plotkin, Shmoys,
and Tardos [16] approached these problems using
Lagrangian-relaxation techniques directly. Their algo-
rithms and ours share the following features: (1) they
depend similarly on the width, (2) they are Lagrangian-
relaxation algorithms, (3) they allow the packing or cov-
ering set to be given by a (possibly approximate) sub-
routine for optimizing over it, (4) they produce dual
solutions that prove near-optimality, and (5) they can
provide integer solutions comparable to those obtain-
able by randomized rounding. Our approach shows a
strong connection between probabilistic techniques and
Lagrangian relaxation. Our algorithms are also rela-
tively simple, although they are not as effective for some
problems of large width.

Flavor of Oblivious Rounding Algorithms:
For the (integer) set cover problem, oblivious rounding
yields the greedy set cover algorithm [lo, 141. For the
fractional set cover problem, it yields an algorithm that
repeatedly chooses a set whose elements have the largest
net weight, where the weight of an element is initially 1
and is multiplied by 1 - E each time a set containing it
is chosen. To obtain the final cover, each set is assigned
a weight proportional to the number of times it was
chosen (this is similar in spirit to [4] and related works).
For multicommodity flow, it yields algorithms that
repeatedly augment flow along a shortest path, where
the length of an edge is initially 1 and is multiplied by
l+ec/c(e) each time the edge is used (c(e) is the capacity
of the edge and c is the minimum edge capacity).

170

Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 170-178 (1995)

171

Problem Definitions: Let P be a convex set in
lR” and let f be a linear function (not net. homogenous)
from P to Rm. The width of P with respect to f is
w = maxj,Z fj (z) - L, where L = minj,, fj(~).

The generalized packing problem is to compute X* =
minzEP maxj fj (z). The packing problem occurs when
f is non-negative on P. The covering problem is to
compute X’ = max,ep minj fj (a), assuming f is non-
negative. (This is equivalent to the generalized packing
problem with the restriction that f is non-positive.)

Our algorithms assume an optimization oracle for
P and f - given non-negative y E R,, the oracle
returns 2 and f(z), where z minimizes Cj yjfj(z).
(This models, e.g., packing source-sink paths subject to
edge constraints; in this case the oracle would compute
a shortest path for given non-negative edge lengths.)
For covering, the oracle must maximize the sum.

Quality of Solutions: Given the oracle, n, m,
w, L, and E > 0, our algorithms return e-approximate
solutions. For generalized packing, E is the additive
error with respect to X*. For packing and covering, the
error is a factor of 1 f e.

Complexity: Table 1 shows the number of itera-
tions required and the complexity per iteration. In that
caption, “explicitly given” means that f(z) = Aa: + b,
where A and b are, respectively, an explicitly given ma-
trix and vector, while P = {Z E IR” : z > 0; c xi = 1).

Granularity: The oracle is called once in each
iteration of the algorithm; the algorithm returns the
average of the solutions returned by the oracle. Thus,
the granularity of the final solution is the granularity
of the solutions returned by the oracle, divided by the
number of iterations. For the abstract problems we
consider, this can provide integer solutions comparable
to those obtainable by other techniques.

Dual Solutions: Our algorithms maintain a dual
solution, represented by a vector y, initially uniform.
In each iteration, each yj is multiplied by a factor
depending on fj() h z w ere 2 is the solution returned
by the oracle (e.g., for packing, yj is multiplied by
1 + cf&c)/u). Th e average over all iterations of the
values of these dual solutions is c-optimal with respect
to the value of the final (primal) solution.

Sparse Strategies for Zero-Sum Games: The
explicitly given general packing problem generalizes the
problem of finding near-optimal strategies for zero-sum
matrix games: P is the set of mixed strategies for one
player, f?(x) is the expected payoff if the player plays
according to 2 and the opponent plays the pure strategy
j, and X* is the value of the game. approximate solution
is a mixed strategy z guaranteeing an expected payoff
within an additive E of optimal.

RANDOMIZED ROUNDING WITHOUT SOLVING THE LINEARPROGRAM

generalized packing:

b(e) := (1 + E) ln(1 + e) - E;
b(--E) > $ > b(e) > &.

Table 1: Number of iterations. Each iteration requires
O(logm) time and O(m) operations (on an EREW-
PRAM), plus one oracle call. For an explicitly given
problem (no oracle), each iteration requires O(lognm)
time and O(nm) operations.

Each iteration chooses the best pure strategy given
that the opponent plays the mixed strategy represented
by y. The final solution returned is a mixed strategy
that plays uniformly from [*I pure strategies, one
for each iteration. (The opponent has m pure strategies;
w is the minimum minus the maximum payoff.) The
existence of such sparse, near-optimal strategies was
shown probabilistically [2, 131; our existence proof of
the approximate solution for generalized packing is a
generalization of the proof in [13].

2 Related Work
Plotkin, Shmoys, and Tardos [16] (generalizing a series
of works on multicommodity flow [19, 11, 121) gave ap-
proximation algorithms for general packing and covering
problems similar to those we consider. For these ab-
stract problems, their results are comparable to those
in this paper, but for many problems their results are
stronger. Most importantly, they give techniques for re-
ducing the effective width of a linear program and tech-
niques for problems (such as concurrent multicommod-
ity flow) when the packing or covering set is a Cartesian
product.

Luby and Nisan [15] give a parallel approximation
algorithm for positive linear programming - the special
cases of linear programming of the form max,{c . x :
Aa: > b; z 2 0) (a packing problem), or the dual
min, { b . y : ATy I c; y 2 0) (a covering problem),
where A, b, and c have non-negative coefficients. Here
A, b, and c are explicitly given.

Previous algorithms applicable to zero-sum games
either required the solution of a linear program [8] or
did not provide sparse strategies [5, 6, 151.

172 YOUNG

3 Introductory Example: Set Cover
To introduce oblivious rounding, we give a simple
example. The set cover problem is the following:
given a family of sets 3 = {Sr , . _ , Sm}, with each
si c {1,2,... , n}, a set cozrer C is a sub-family such
that every element j = 1,. . , n is in some set in C.
The problem is to find a cover C that is not much
larger than C’, a minimum-cardinality cover. We derive
an algorithm that, without knowing C*, emulates a
random experiment that draws sets randomly from C”.
The algorithm finds a cover of size at most []C*] lnnl.

3.1 Existence: Let s = []C*] Inn]. Consider
drawing s sets uniformly at random from C’. What
is the expected number of elements left uncovered? For
any given element II: E X, the probability that it is
not covered in a given round is at most 1 - l/]C*],
because it is in at least one set in C*. Thus the
expected number of elements left uncovered is at most
n(1 - l/]C”])” < nexp(-s/]C*]) 5 1. Thus, with non-
zero probability we obtain a cover C of size s.

3.2 Construction: The method of conditional
probabilities naively applied to the above proof yields
an algorithm that depends on C*. We outline this next.
Our ultimate goal is not derandomization per se, but an
algorithm that does not require knowledge of C’.

Consider an algorithm that chooses the sets sequen-
tially, making each choice deterministically to do “as
well” as the corresponding random choice would. Specif-
ically, the algorithm chooses each set to minimize the
expected number of elements that would remain uncov-
ered if the remaining sets were chosen randomly from
C’. Letting C denote the collection of sets chosen so
far, this expected number is

(3.1) a(c) = c (L3~l”:)‘-‘c’

j@JC

(We use xt to denote 1 if Si E C* and 0 otherwise; we
use UC to denote the union of sets in C.) G is called
a pessimistic estimator [17], because (a) it is an upper
bound on the conditional probability of failure (in this
case, by hlarkov’s inequality), (b) it is initially less than
1, and (c) each choice can be made without increasing
it. (The latter property follows in this case because Q,
is an expected value conditioned on the choices made so
far.) These three properties imply the invariant that if
the remaining s -]C] se t s were to be chosen randomly
from C*, the probability of failure would be less than
one. Consequently, when]C] = s, C is a cover.

Achieving Obliviousness: Because an uncovered
element that occurs in several sets in C* contributes less
to a, the above algorithm depends on the number of
times each element is covered by C*. This is counter-
intuitive, in that the only aspect of C* used in the
proof was Csi9j z$/]C*] < 1 - l/]C*]. Replacing each
corresponding term in Q, yields

(3.2) 5(C) = c (1 - &)-.
j@Jc

& is a pessimistic estimator. More importantly, among
collections of sets of the same size, (a is uniformly pro-
portional to the number of uncovered elements in the
set. Thus, the algorithm that uses 6 instead of @
does not depend on C*, it simply chooses each set
to minimize the number of elements remaining uncov-
ered. Nonetheless, it is guaranteed to keep up with the
random experiment, finding a cover within]]C*[Inn]
steps. This is the greedy set cover algorithm, origi-
nally analyzed non-probabilistically by Johnson [lo] and
Lovasz [141.

Versus fractional cover: If the cover C* is a
fractional cover, the analyses of both algorithms carry
over directly to show a Inn performance guarantee.

What enables oblivious rounding? We call
such algorithms oblivious rounding algorithms. What
kinds of randomized rounding schemes admit them?
The key property is that the proof bounds the probabil-
ity of failure by the expected value of a sum of products
and bounds the terms corresponding across products
uniformly. To illustrate, here is the explicit proof that
min; &(C U ($1) < 6(C) :

%C) = &II (l- &q)‘lC
2 j~c(~&)+&)‘“‘-’

s-‘Cl-I = c- i I:, j~(uc)us, l- Ii*1 = (->
= c Z&(C u {S,})

i Ic*l
2 mZin &(C U {Si}).

The first inequality is obtained-by “undoing” one step
of the substitution that yielded Q from @. The standard
argument then applies. We use this principle for each
of our analyses.,

RANDOMIZED ROUNDING WITHOUT SOLVING THE LINEAR PROGRAM 173

4 Algorithm for Generalized Packing z > 0. 0
Fix an instance (P, f, L, w, E) of the generalized packing The proof of Lemma (4.1) bounds the probability of
problem. We consider randomly rounding an optimal failure by a sum of probabilities, each of which is
solution to obtain an e-approximate solution; we then bounded by an expected value (4.3) in Hoeffding’s proof.
derive the algorithm that finds such a solution. Thus (when L = 0 and w = l), the proof bounds the

probability of failure by the expected value of
4.1 Existence: Let X* and Z* be an optimal

solution. Let S be a multiset obtained by repeatedly 1+ ctfj(4
choosing random elements of P, where each random TzFs (1++*+”
element is chosen from a distribution over P with n-
dimensional mean z*. Let z be the average of the points the expectation of which is less than m/exp(2]S]e2).
in S. The conditional expectation of the sum given T c S is

LEMMA 4.1. The probability that zz is not an E-
approximate solution is less than m/ exp [Q$] .

ED
1+cfjw 1 + of3 (x*)1 s-‘T’

Proof. Without loss of generality, assume L = 0 and
f(x)--L j sET (1 + Cy)X*+t I[(1 + ckp’f~ 1

w = 1. Otherwise take f(x) + - and c + E/W.
The convexity of P ensuresWthat 3: E P. For where s is the desired size of S. To obtain the

each j, fj(%) = C ,esfj(~c)/]S], which is the average pessimistic estimator for the algorithm, replace each
of /S] independent random variables in [0, l]. Since fj(z*) by the uPPer bound A*:
E[fj(s)] = f.j(~*) 5 X*, by Hoeffding’s bound [7],
Pr[f,(g) > X* + C] is less than l/exp(2]S]?). Since
j ranges from 1 to m, the result follows. 0 ED j

1+ “fM] . [(&+;;l;e] -IT’
,&T (1+ a)

4.2 Construction: As in the set cover example, When s is large enough that m/exp(2]S]e2) 2 1, this
our algorithm mimics the random experiment. Each quantity is a pessimistic estimator: (a) it is an upper
round it adds an element to S to minimize a pessimistic bound on the conditional probability of failure, (b) it
estimator. This pessimistic estimator is implicit in the is initially less than 1, and (c) some z can always be
existence proof. To find it, we need the inequalities that added to S without increasing it. Properties (a) and
prove (a simplified version of) Hoeffding’s bound: (b) follow from the choice of s and the inequalities in

LEMMA 4.2. ([7]) Let X = xxi/s be the awer- the proof of Hoeffding’s lemma. Property (c) follows
age of s independent random variables in [0, 11, with from the derivation, as explained for the set cover ex-
E(X,) I pi and Cp~i = p. Then Pr[X > ,LL + SE] < ample. Among multisets of a given size, this pessimistic
l/ exp(2se2). estimator is uniformly proportional to

Proof. Let (1~ = e4’ - 1.

Pr [TX; L ~+SE 1 t-

= PI

c n 1+ dj(4.
j XET

-D
(1 + cY)x,

i (1 + cK)pL”+c > l I
[I-I

1+axi
i (1+ cY)p;+c 1

Thus, to augment a given multiset T, the algorithm
adds the element z minimizing Cj yj fj (CC), where yj = IIzcT l-tafj(x). Th is, accounting for the normalization
L = 0 and w = 1, is the algorithm in Figure 1. (4.3) L E

5 Packing and Covering Algorithms
We derive the packing algorithm analogously. Fix an
instance (P,f,w, E) of the packing problem. Let X*,
z*, S and z be as for Lemma 4.1. Note that, for this
problem, an e-approximate solution is an II: E P with
f(x) L (1 + E)X*.

i
5.1 Existence:

The second step follows from (1 + a)’ 5 1 + IYZ for
0 5 z 5 1 and Markov’s inequality. The last step uses

LEMMA 5.1. The probability that Z is not an E-

1 + CYZ < (1 + c~y)~+‘/e~~’ for E > 0, (Y = e4’ - 1, and approximate solution is less than m/ exp [IW~P-]~

174 YOUNG

FIND-GENERALIZED-PACKING(P,~, L,w,E)
1. E+-~;cY-~*~-~;S+-{}; st$
2. yj . + 1 (j = 1,. ,m)
3. repeat
4. choose 5 E P to minimize Cj y.j fj (z)
5. S+Su{x}
6. Yj +-- Y.i 4 1+&+] (j= l,...,m)
7. until ISI > s
8. return & CzES z

FIND-PACKING-GIVEN-S (P, f, E, W, S)
1. s-0
2. yj + 1 (j = 1, . . .) m)
3. repeat
4. choose z E P to minimize Cj y.j fj (z)
5. s+slJ{x}
6. yj+yj.[l+,y] (j=l,...,m)
7. until ISI > s do
8. return h CzES 5

Figure 1: Algorithm for generalized packing Figure 2: Algorithm for packing, given s. To obtain
covering algorithm, negate E and change “minimize” to
“maximize”.

Proof. Without loss of generality, assume w = 1.
Otherwise take f(lc) + f(~)/w and X* c X*/w.

The convexity of P ensures that 5 E P. For each
corresponding to (5.4). The expectation given T G S is

j7 f&4 = c zESfj(~)/]S], which is the average of s- tT’
IS] independent random variables in [O,l], each with

1+ cfj(X) 1 + Efj (z*)
’

expectation fj(2*) 5 X*. By Raghavan’s bound [17], Gin ii
2ET (1 + +++* . (1 + +++* I[1

Pr[fj(Z) > (1+6)X*] is less than l/exp[lS]b(e)x*]. Since
j ranges from 1 to m, the result follows. ’

where s is the desired size of S. When s is large enough
that m/exp[]S]b(E)X*] 5 1, replacing fj(Z*) by X* gives

5.2 Construction: Here is Raghavan’s proof:
LEMMA 5.2. ([17]) Let X = CX;/s be the uv-

erage of independent random variables in [0, I] with
E(Xi) I pi and Cp~i = p > 0. Then Pr[X 2
Cl+ 4~1 < VwlW4.

Proof.

I-I 1-t e E(X,) =
i (1 + E)u+4Pt

The last line equals 1/ exp[b(t)p]. The second step uses
(1 + a)” 5 1+ CYZ for 0 2 2 5 1 and Markov’s inequality.
The last uses E(X;) I p; and 1 + z I e*, which is strict
if .z # 0. 0

Thus (assuming w = l), the proof of Lemma 5.1 bomlds
the probability of failure by the expectation of

a pessimistic estimator. Among multisets T of the same
size, the pessimistic estimator is proportional to

c n 1 + Efj(X).
j XET

Thus, to augment a given multiset T, the algorithm
adds the element x minimizing Cj yjfj(z), where yj =
I-I zET l+efj(x). Th’ is, accounting for the normalization
to the case w = 1, gives the algorithm in Figure 2.
This algorithm assumes s is given. We remove this
requirement in Section 6.

5.3 Covering Algorithm. The covering algo-
rithm is described in Figure 2. Its derivation is analo-
gous to that of the packing algorithm. Fix an instance
(P, f, w, E) of the approximate covering problem. Let
x*, x*, S and rC be as for Lemma 4.1. Note that for
this problem, X’ = minj fj(x*) and an +approximate
solution z E P satisfies f(Z) 2 (1 - E)X*.

LEhlhlA 5.3. The probability that 2 is not an E-
approximate solution is less than m/ exp[]S[b(e)X*/w].

We omit the proof, which is essentially the same as for
packing, except it is based on the following variant of
Raghavan’s bound:

L~hfnlx 5.4. ([17]) Let X = xxi/s be the au-
erage of independent random variables in [0, l] with
E(X,) 2 pi and CpL1 = IL > 0. Then Pr[X 5
(1 - E)P] < l/exp[b(--E)jL).
We omit the derivation of the algorithm, noting only
that the proof of Lemma 5.3 implicitly bounds the

RANDOMIZED R.OUNDING WITHOUT SOLVING THE LINEAR PROGRAM 175

probability of failure by the expectation of

6 Dual Solutions

Our aIgorithms implicitly find good approximate solu-
tions to the underlying dual linear programs. The ar-
gument that the algorithm “keeps up” with the random
rounding of an unknown optimal solution implicitly uses
a dual solution to bound the optimal at each iteration.
The value of the solution generated by the algorithm
thus converges not only to the value of the optimum,
but also to the average of the values of these dual solu-
tions. The basic principle in each case is similar to that
for set cover, which we give first for illustration.

6.1 Set Cover Dual: The dual problem is to
assign non-negative weights to the elements so that the
net weight assigned to the elements in any set is at most
one. The value of the dual solution is the net weight
assigned.

At the start of a given iteration, suppose r elements
remain uncovered, and let d denote the largest number
in any set in 3. Then assigning each uncovered element
a weight of I/d yields a dual solution of value ZI = r/d.

During the course of the algorithm, let ii denote the
harmonic mean of the dual solutions corresponding to
the iterations so far.

LEMMA 6.1. The set cover algorithm maintains the
invariant that the number of elements not covered by the
current partial cover C is less than n/ exp(lCl/ti>.

The proof is essentially the same as the proof that 6
is a pessimistic estimator, except the values of the dual
solutions take the place of IC*l.

Proof. In an iteration where the dual solution has
value r/d, the number of uncovered elements decreases
from T to r - d = ~(1 - l/,u) < re-‘lv. By induction
on the iterations, the algorithm maintains the invariant
that the number of uncovered elements is less than
nlexp(Cellw) h w ere me is the value of the dual
solution corresponding to the Cth iteration and e ranges
over the iterations so far. Note that ti = ICI/C &. 0

Before the last iteration at least one element is left,
so at that point n/ exp((k - 1)/a) > 1. Thus,

COROLLARY 6.1. The harmonic mean of the values
of the dual solutions over the first h- - 1 iterations is
larger than e, where k: is the size of the final cover.

The maximum value is at least the arithmetic mean,
which is at least the harmouic mean, so at least one of
these simple dual solutions has value above 2.

6.2 Generalized Packing Dual: The vector
y maintained by the generalized packing algorithm
represents a dual solution. At the start of a given
iteration, the value of the dual solution associated with
y is

(6.5)
minzEP Cj Yjfj(z)

Cj%

(Since 1~ 2 0: a simple argument shows this is a lower
bound on X’ = min,ep maxj f,(x).)

Notation: During the course of the algorithm, let
Z denote the current solution CzES~/(SI represented
by S. Let 1 denote maxj fj(?). Let v denote the average
of the values of the dual solutions for the previous
iteratious. Let W(IF, y) denote Cj yjfj(~c)/ Cj yj.

LER~~IA 6.2. The generalized packing algorithm
maintains the invariant

Proof. WLOG, assume L = 0 and w = 1. We show
that Cj yj is at least the left-hand side and at most the
right-hand side. The first part follows from the same
sequence of inequalities that was used in $4.2 to derive
the (numerator of the) pessimistic estimator:

(1 + ,)lSlX < X(1 + o)lW*) -

= c H(l +,)fJ@)
j z:ES

L Cfl l+cYfj(Z).

J XES

Since yj = IjLcES 1 + ofj(~), the first part follows.
For the second part, we first note the role of the

dual solution in each iteration: given the current IC
and y, the iteration increases the quantity Cj yj by a
factor of 1 + av(z, y). (This follows from inspection
of the algorithm and the definition of v(~,y).) Next
we apply the sequence of inequalities that bounded
the pessimistic estimator below 1 in $4.2: By the
last inequality in Hoeffding’s bound (Lemma 4.2), 1 +
a!?J(rc, y) <_ (1 + cp~y)+~ / exp(2e2). Let ve denote the
value of v(~,y) at the Jth iteration (for 1 5 C < ISI).
By induction on the iterations

c ?j3 5 m(l+ cu)~~(“‘+c)/exp(21Sl~2).
Since lS[V = Ce ve, this gives the result. q

COROLLARY 6.2. After I+1 iterution,s of the
generalized packing algorithm, X 5 v + E. That is, the
primal and average dual values differ by at most E.

176

FIND-PACKING(P, f, E, W)
1. St {}; yj t 1 (j= l,...,m)
2. repeat
3. choose II: E P to minimize ‘u = & yjfj(~)
4. StSu{x}
5. yjCyjj[l+E+] (j=l,...,m)
6. V + ma@, v/ Cj yj>
7. p++KJ ;, 1v.i + fj(4l/lsl (j = 13. . .T m>
8.
9. until X 5 (lf+“t,V
10. return CtES z/JSJ

Figure 3: Algorithm for packing. To obtain covering
algorithm, negate E’S and change each “max” to “min”,
“minimize” to “maximize”, and “5” to “2”.

6.3 Packing Dual: The packing and covering
algorithms also generate implicit dual solutions whose
average values converge to the primal value. Let 1 and
V be defined as for the generalized packing dual.

LEMMA 6.3. The packing algorithm
invariant that

(1 + ,)lSlU~ < me’lSI”l~*

maintains the

We omit this and subsequent proofs in this section, since
they are similar to that of Lemma 6.2.

COROLLARY 6.3. Afier [cl~J~$ml iterations of
the packing algorithm, 5 5 (1 + E)‘U. That is, the primal
and average dual values differ by at mosi a factor of
1 + E.

Our final packing algorithm detects convergence by
comparing the primal value to the best dual value so
far. The algorithm is shown in Figure 3. The algorithm
maintains f(z) (in the variable F) instead of 3:.

6.4 Covering Dual:
LEMMA 6.4. The covering algorithm maintains the

invariant that

COROLLARY 6.4. After [ej iterations of the
covering algorithm, x 2 (1 - e)V, that is, the primal and
average dual values d@er by at most a factor of 1 - E.
The algorithm is described in Figure 3.

YOUNG

7 Using an Approximate Oracle
If the subroutine for computing minzEP Cj yj fj (z) re-
turns only an approximate minimizer 5, our algorithms
still work well. The degree of approximation (absolute
and/or relative) of the subroutine carries over into the
performance guarantee of the algorithm. For covering,
it can also affect the convergence rate (and therefore the
granularity).

We model the error by assuming that, given y, the
oracle returns an x such that

(7.6) ~v(x,Y) I (l+h)~y(~,?/) +62

j

where ~(2, y) = Cj yjj’j(z)/ Cj yj, Si] 2 0 denotes the
relative error and &J > 0 denotes the absolute error. We
call this a &,&J-approximate oracle. (For covering,
the notion of approximation is defined analogously.)

In each iteration, y still represents a dual solution.
Since z is only an approximate minimizer, the value of
the dual solution is no longer ~(2, y), but it is at least
42,Y)-&

lC61 . Still using V to denote the average of the
values of the dual solutions for the previous iterations,
define V to be the average of the corresponding U(Z, y)‘s.
Lemmas 6.2, 6.3, and 6.4 go through directly provided
‘%” is substituted for “P. From the (modified) lemmas,
by the same reasoning that gives the corollaries to those
lemmas, together with the fact that G 2 (1 + ~!&)a + Sz,
we get the following propositions.

PROPOSITION 7.1. Suppose the generalized packing
algorithm uses a (61, &)-approximate oracle. After

2lIlm 1 21 2E iterations, X I. V + E < (1 + &)G + ~52 + E.

PROPOSITION 7.2. Suppose the packing aZgorithm
uses a (61, &)-approximate oracle. After [

(l+e wlnm
A* b(c) 1

iterations, J 5 (1+ e)V < (1 + e)(l + Si)V + (1+ c)&.
For covering, E 2 (1 - Si)V - 6,.
PROPOSITION 7.3. Suppose the covering algorithm

uses a (61, &)-approximate oracle. After

1
wlnm

[(l - 61)X’ - &]b(-6) 1
iterations, J 2 (1 - e)ZI 2 (1 - e)(l - Sr)3 - (1 - E)&.

These results hold for the algorithms without mod-
ification. In particular, V in the packing algorithm in
Figure 3 equals the best ~(5, y) seen so far, which is at
least 6, so is guaranteed to be within a 1 + E factor of x
within the required number of rounds.

RANDOMIZED ROUNDING WITHOUT SOLVING THE LINEAR PROGRAM 177

8 Integer Packing and Covering
The packing and covering algorithms in Figure 3, as
they stand, do not allow explicit control over the gran-
ularity of the final solution. Because the number of
iterations can be less than the upper bound, the algo-
rithms only guarantee a lower bound on the granularity.
Of course, the lower bound is the difficult part, so it is
not surprising that exact control over the granularity
can be obtained. In this section, we discuss briefly how
to modify those algorithms to find, e.g., an integer so-
lution.

For simplicity, we consider a particular case of
integer packing. Fix an instance of the packing problem
(P, f, w, E). Let X* and X* be an optimal solution. In
addition, let V c P be the extreme points on the
boundary of P (if P is a polytope, V is its vertex set).
We assume that the oracle returns only elements of V.
The integer packing problem is to compute a maximum
cardinality multiset S & V such that CIES fj(~) 5 1.

Note that for any such S, ISI I 11/X*], because
f(Z) 5 l/]S], where Z = CzES z/]S]. An e-approzimate
integer solution is a set S such that ISI > [l/X*] and
C&S fj(X> I l-i- E*

Let S be a multiset obtained by repeatedly choosing
random elements of V, where each random element is
chosen from a distribution on V with mean x*. (Such
distributions exist because P is the convex closure of
v.1

LEMMA 8.1. When ISI 2 l/X*,

Pr [(W C fj(x) L 1 + 61 < m/exp[b(~)/w].
XGS

The proof is essentially the same as that of Lemma 5.1,
except l/IS] replaces X’.

A corollary to the lemma is that, provided
m/ exp[b(e)/w] 5 1, there exists an e-approximate inte-
ger solution. The corresponding algorithm is the same
as the basic packing algorithm, except the termination
condition is different. The algorithm terminates when
adding another element would cause xlFES fj (x) > 1 +E
for some j. Because the algorithm keeps up with
the random process, the resulting set has size at least
P/W

Complexity and Performance Guarantee:
The algorithm is given in Figure 4. Note that 11/X*] 5
ISI I 1(1+ f)/X*J, so the number of iterations in
this case is at most (1 + e)/X*. For the condition
m/exp[b(e)/w] < 1, it suffices that, for instance, E >
2 max(w In m, &XGi).

Covering: The same techniques apply for integer
covering. For covering, define an c-approximate integer
solution to be a set S such that (S(2 [l/X*1 and
CzES fj(X) 2 1 - c- (Many variations are possible.)

FIND-INTEGER-PACKING (P, f, E, w)
assumption: m/exp[b(e)/w] 5 1.

l- St 0; Yj +l,FjtO (j=l,...,m)
2. repeat
3. choose II: E P to minimize Cj yj fj (z)
4. Fj+Fj+fj(z) (j=l,...,m)
5. if maxj Fj > 1+ E return S
6. StSU{x}
7. Yj ‘J/j- [l+E@] (j=l,...,m)

Figure 4: Algorithm for integer packing. To obtain
covering algorithm, negate E’S and change ‘lmax” to
“min” , “minimize” to “maximize”, and “>” to “<“.

Let S be a random multiset as above.
LEMMA 8.2. When ISI 2 l/X*,

Pr [CM C fj(x) 5 1 - e] < m/exp[b(--E)/w]. XES
The resulting algorithm is described in Figure 4. The
number of iterations in this case is at most [l/X*].
For the condition m/exp[b(-e)/w] < 1, it suffices that
o~!zJiGi

9 Conclusion
Partial derandomization: The point of oblivious

rounding is not derandomization per se, but to achieve
independence from the unknown aspects of the optimal
solution. For some random rounding schemes, some of
the parameters of the random process are known; these
can be left in the algorithm. For instance, in concur-
rent multicommodity flow, the relative amount of flow
of each commodity is known. A natural randomized
rounding scheme is to choose a commodity with prob-
ability proportional to its (known) demand, and then
to choose a flow path among paths for that commodity
with probability proportional to its (unknown) weight in
the optimal flow. Applying oblivious rounding to only
the second random choice, gives a randomized algorithm
in the style of [16].

Mixed bounds: Each of the random analyses
in this paper employed a single type of probabilistic
bound, This is not a limitation of the technique.
Oblivous rounding can be applied to analyses using, e.g.,
sums of probabilities bounded by Raghavan’s bounds,
Hoeffding’s bound, and Markov’s inequality. This is
relatively straightforward, if technically more tedious.

More general functions: Chernoff-type bounds
exist for more general classes of functions than linear
functions (e.g., Azuma’s inequality [l]). A natural
question is whether oblivious rounding can be applied
to such bounds to optimize more general functions.

178 YOUNG

References

[l] Noga Alon and Joel H. Spencer. The Probabilistic
Method. John Wiley and Sons, New York, 1992.

[2] Ingo Althijfer. On sparse approximations to random-
ized strategies and convex combinations. Linear Alge-
bra and its Applications, 199, March 1994.

[3] Dimitris Bertsimas and Rakesh Vohra. Linear pro-
gramming relaxations, approximation algorithms and
randomization; a unified view of covering problems.
Draft, January 1994.

[4] H. Brijnnimann and Michael T. Goodrich. Almost
optimal set covers in bounded VC-dimension. In
Proc. of the 10th Annual Symposium on Computational
Geometry, 1994.

[5] M. D. Grigoriadis and L. G. Kachiyan. Approximate
Solution of Matrix Games in Parallel, pages 129-136.
Elsevier Science Publishers B.V., 1992. Also available
as TR-91-73 from DIMACS.

[S] M. D. Grigoriadis and L. G. Kachiyan. A sublinear-
time randomized approximation algorithm for ma-
trix games. Technical Report LCSR-TR-222, Rut-
gers University Computer Science Department, New
Brunswick, NJ, April 1994.

[7] Wassily Hoeffding. Probability inequalities for sums
of bounded random variables. American Statistical
Journal, pages 13-30, March 1963.

[8] Thomas Hofmeister and Hanno Lefmann. Computing
sparse approximations deterministically. Unpublished
manuscript, Dort-
mund, Germany. hofmeist,lefmann@ls2.informatik,uni-
dortmund.de, 1994.

[9] Joseph J&J& Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company, Inc., 1992.

[lo] David S. Johnson. Approximation algorithms for
combinatorial problems. Journal of Computer and
System Sciences, 9:256-278, 1974.

[ll] P. Klein, S. Plotkin, C. Stein, and E. Tardos. Faster
approximation algorithms for the unit capacity con-
current flow problem with applications to routing and
finding sparse cuts. SIAM Journal on Computing,
23(3):466-487, June 1994.

[12] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tar-
dos, and S. Tragoudas. Fast approximation algorithms
for multicommodity flow problems. In Proc. of the 23rd
Ann. ACM Symp. on Theory of Computing, pages lOl-
111, 1991.

[13] Richard J. Lipton and Neal E. Young. Simple strate-
gies for large zero-sum games with applications to com-
plexity theory. In Proc. of the 26th Ann. ACM Symp.
on Theory of Computing, 1994. To appear.

[14] L&.szl6 Lov&z. On the ratio of optimal integral and
fractional covers. Discrete Mathematics, 13:383-390,
1975.

[15] Michael Luby and Noam Nisan. A parallel approxi-
mation algorithm for positive linear programming. In
Proc. of the 25th Ann. ACM Symp. on Theory of Com-
puting, pages 448457, 1993.

[16] Serge Plotkin, David Shmoys, and Eva Tardos. Fast
approximation algorithms for fractional packing and
covering problems. In Proc. of the 32nd IEEE Annual
Symp. on Foundation of Computer Science, pages 495-
504, 1991.

[17] Prabhakar Raghavan. Probabilistic construction of de-
terministic algorithms approximating packing integer
programs. Journal of Computer and System Sciences,
37(2):13O-143, October 1988.

[18] Prabhakar Raghavan and C. Thompson. Randomized
rounding: A technique for provably good algorithms
and algorithmic proofs. Combinatorics, 7~365-374,
1987.

[19] F. Shahroki and D. W. Matula. The maximum concur-
rent flow problem. Journal of the ACM, 37:318-334,
1990.

[20] Joel H. Spencer. Ten Lectures on the Probabilistic
Method. Society for Industrial and Applied Mathemat-
ics, 3600 University City Science Center, Philadelphia,
PA 19104-2688. 1987.

