A Bound on the Sum of Weighted Pairwise Distances of Points Constrained to Balls *

Neal E. Young

September 1994

Abstract

We consider the problem of choosing Euclidean points to maximize the sum of their weighted pairwise distances, when each point is constrained to a ball centered at the origin. We derive a dual minimization problem and show strong duality holds (i.e., the resulting upper bound is tight) when some locally optimal configuration of points is affinely independent. We sketch a polynomial time algorithm for finding a near-optimal set of points.

1 Introduction

We consider the following maximization problem $P(n, w, \ell)$:

$$
\begin{aligned}
& \operatorname{maximize}_{\left\{p_{i}\right\}} \sum_{1 \leq i<j \leq n} w(i, j) d\left(p_{i}, p_{j}\right) \\
& \text { subject to }\left\{\begin{aligned}
& p_{i} \in \mathbb{R}^{n-1}(i=1, \ldots, n) ; \\
&\left\|p_{i}\right\| \leq \ell(i) \\
&(i=1, . ., n) .
\end{aligned}\right.
\end{aligned}
$$

Here each $w(i, j) \geq 0$ and each $\ell(i) \geq 0$ is fixed, $d(p, q)$ denotes the Euclidean distance between points p and q, and $\|p\|$ denotes the Euclidean length (distance from the origin) of point p.

We derive the following dual problem $D(n, w, \ell)$:

$$
\begin{aligned}
& \operatorname{minimize}_{\left\{x_{i}\right\}} \sqrt{\sum_{1 \leq i<j \leq n} \frac{w^{2}(i, j)}{x_{i} x_{j}}} \times \sqrt{\sum_{i=1}^{n} \ell^{2}(i) x_{i}} \times \sqrt{\sum_{i=1}^{n} x_{i}} \\
& \text { subject to }\left\{\begin{array}{lll}
x_{i} & \in \mathbb{R} \quad(i=1, . ., n) ; \\
x_{i} \geq 0 & (i=1, . ., n) .
\end{array}\right.
\end{aligned}
$$

Throughout the paper, $\frac{0}{0}$ is defined to be 0 .
We show that the value of the maximization problem is at most the value of the minimization problem. We use a physical interpretation of the two problems to show that the values are equal

[^0]provided the maximization problem admits a set of points $\left\{p_{i}\right\}$ that is both affinely independent and stationary (i.e., the gradient of the objective function is a nonnegative combination of the gradients of the active constraints, a necessary condition at any local maximizer of $P(n, w, \ell)$).

We sketch how a near-optimal solution to the problem can be found in polynomial time via the ellipsoid method.

2 Related Work

The case $w(i, j)=\ell(i)=1$ (in which the optimal points are given by the vertices of the regular n-simplex, achieving a value of $n \sqrt{\binom{n}{2}}$) was previously considered by [3]. Our Lemma 1 generalizes a bound in that paper.

Specific instances of $P(n, w, \ell)$ were studied to obtain geometric inequalities that were used to analyze approximation algorithms for finding low-degree, low-weight spanning trees in Euclidean spaces [2].

Goemans and Williamson [1] consider related problems with applications to approximating the maximum cut in a graph and to maximizing the number of satisfied clauses in a CNF formula. We modify their approach to solving their problems to obtain a polynomial time algorithm for ours.

3 A Dual Problem

Lemma 1 For any n, w, and ℓ, the value of the maximization problem $P(n, w, \ell)$ is at most the value of the minimization problem $D(n, w, \ell)$.

Proof: Fix any n, w, and ℓ. Fix any set of points $\left\{p_{i}\right\}$ and values $\left\{x_{i}\right\}$ meeting the constraints of $P(n, w, \ell)$ and $D(n, w, \ell)$, respectively. Let $A(i, j)=\frac{w(i, j)}{\sqrt{x_{i} x_{j}}}$ and $B(i, j)=\sqrt{x_{i} x_{j}} d\left(p_{i}, p_{j}\right)$ for $1 \leq i<j \leq n$. Then, by the Cauchy-Schwartz inequality $A \cdot B \leq\|A\| \times\|B\|$ (where A and B are interpreted as $\binom{n}{2}$-dimensional vectors, and \cdot denotes the dot product):

$$
\begin{equation*}
\sum_{i<j} w(i, j) d\left(p_{i}, p_{j}\right) \leq \sqrt{\sum_{i<j} \frac{w^{2}(i, j)}{x_{i} x_{j}}} \times \sqrt{\sum_{i<j} x_{i} x_{j} d^{2}\left(p_{i}, p_{j}\right)} . \tag{1}
\end{equation*}
$$

It remains only to show

$$
\sum_{i<j} x_{i} x_{j} d^{2}\left(p_{i}, p_{j}\right) \leq\left(\sum_{i} x_{i}\right) \times\left(\sum_{i} \ell^{2}(i) x_{i}\right) .
$$

Expanding the left-hand side,

$$
\begin{aligned}
& \sum_{i<j} x_{i} x_{j} d^{2}\left(p_{i}, p_{j}\right) \\
& \quad=\frac{1}{2} \sum_{i, j} x_{i} x_{j}\left(p_{i}-p_{j}\right) \cdot\left(p_{i}-p_{j}\right) \\
& \quad=\frac{1}{2} \sum_{i, j} x_{i} x_{j}\left(p_{i} \cdot p_{i}-2 p_{i} \cdot p_{j}+p_{j} \cdot p_{j}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq \sum_{i, j} x_{i} x_{j}\left(\ell^{2}(i)-p_{i} \cdot p_{j}\right) \tag{2}\\
& =\left(\sum_{i} x_{i}\right) \times\left(\sum_{i} x_{i} \ell^{2}(i)\right)-\left(\sum_{i} x_{i} p_{i}\right) \cdot\left(\sum_{i} x_{i} p_{i}\right) \\
& =\left(\sum_{i} x_{i}\right) \times\left(\sum_{i} x_{i} \ell^{2}(i)\right)-\left\|\sum_{i} x_{i} p_{i}\right\|^{2} \\
& \leq\left(\sum_{i} x_{i}\right) \times\left(\sum_{i} x_{i} \ell^{2}(i)\right) . \tag{3}
\end{align*}
$$

Lemma 2 Fix any n, w, and ℓ. Suppose the maximization problem $P(n, w, \ell)$ admits a set of points $\left\{p_{i}\right\}$ that is both stationary and affinely independent. Then the values of the two problems are equal. Further, there exists $\left\{x_{i}\right\}$ such that

$$
\begin{equation*}
x_{i} p_{i}=\sum_{j} w(i, j) \frac{p_{i}-p_{j}}{d\left(p_{i}, p_{j}\right)} \tag{4}
\end{equation*}
$$

(where $x_{i}=0$ in case $\left\|p_{i}\right\|<\ell_{i}$, and $w(i, j)=w(j, i)$ and $w(i, i)=0$), and $\left\{p_{i}\right\}$ and $\left\{x_{i}\right\}$ are global optima for the two problems.

Proof: Fix any n, w, and ℓ. Consider the objective function $\Phi\left(\left\{p_{i}\right\}\right)=\sum_{i j} w(i, j) d\left(p_{i}, p_{j}\right)$ of $P(n, w, \ell)$. That $\left\{p_{i}\right\}$ is stationary means that the gradient of Φ is a nonnegative combination of the gradients of the constraints of $P(n, w, \ell)$ active at $\left\{p_{i}\right\}$. By elementary calculus, the gradient of Φ consists of a vector f_{i} for each point p_{i}, with each f_{i} equal to the right-hand side of (4). The only constraint on p_{i} is $\left\|p_{i}\right\| \leq \ell(i)$, whose gradient (again by elementary calculus) is a nonnegative multiple of p_{i}. Thus, for each i, there exists an $x_{i} \geq 0$ such that (4) holds. Note that if $\left\|p_{i}\right\|<\ell(i)$, then the constraint is not active, so that f_{i} must be the zero vector. In this case we take $x_{i}=0$.

We will show that each inequality in Lemma 1 is tight for these $\left\{p_{i}\right\}$ and $\left\{x_{i}\right\}$. Inequality (3) is tight because, by (4), $\sum_{i} x_{i} p_{i}$ is the zero vector. Inequality (2) is tight because $\left\|p_{i}\right\|<\ell(i)$ only if $x_{i}=0$.

Inequality (11) is tight provided the vector A (in the proof of Lemma (1) is a scalar multiple of B. Assume $\left\{p_{i}\right\}$ is affinely independent. Then, considering $\left\{x_{i}\right\}$ and $\left\{p_{i}\right\}$ fixed and $\{w(i, j)\}$ as the set of unknowns (i.e., reversing their roles), (4) uniquely determines each $w(i, j)$. Since

$$
\begin{equation*}
w(i, j)=\frac{x_{i} x_{j} d\left(p_{i}, p_{j}\right)}{\sum_{k} x_{k}}(1 \leq i<j \leq n) \tag{5}
\end{equation*}
$$

is consistent with (4) (check this by substitution for $w(i, j)$ in (4)), it follows that (5) necessarily holds. Thus, A is a scalar multiple of B and Inequality (11) is tight.

A physical model for the quantities involved is as follows. Consider a physical system of n points $\left\{p_{i}\right\}$. Each point p_{i} is constrained to a ball of radius $\ell(i)$ centered at the origin. For each pair of points $\left(p_{i}, p_{j}\right), p_{i}$ repels p_{j} (and vice versa) with a force of magnitude $w(i, j)$.

Under this interpretation, each vector f_{i} in the proof corresponds to the force on p_{i}, and x_{i} is the magnitude of this force, divided by $\left\|p_{i}\right\|$.

4 Solving $P(n, w, \ell)$ in Polynomial Time

If the instance of $P(n, w, \ell)$ is small or has a high degree of symmetry, the dual problem $D(n, w, \ell)$ might yield a function that can be minimized directly by symbolic methods. In general, it is possible to solve $P(n, w, \ell)$ (to any given degree of precision) in polynomial time using semi-definite programming, following the approach in 1 .

Those authors consider a related problem $G W(w, n)$:

$$
\begin{aligned}
& \operatorname{maximize}_{\left\{p_{i}\right\}} \sum_{1 \leq i<j \leq n} w(i, j) d^{2}\left(p_{i}, p_{j}\right) \\
& \text { subject to }\left\{\begin{aligned}
p_{i} \in \mathbb{R}^{n} & (i=1, \ldots, n) ; \\
\left\|p_{i}\right\|=1 & (i=1, . ., n) .
\end{aligned}\right.
\end{aligned}
$$

The authors show how to solve this problem in polynomial time by formulating it as a semi-definite program, and how to round a (near-)optimal set of points $\left\{p_{i}\right\}$ to obtain an approximate solution to a corresponding max-cut problem. This approach yielded the first polynomial-time approximation algorithm achieving a performance guarantee better than two for the max-cut problem.

We briefly sketch their aproach for solving $G W(w, n)$ and how it can be modified to solve $P(w, n, \ell)$. The connection between sets of points and positive semi-definite matrices is the following: an $n \times n$ symmetric matrix Y is positive semi-definite if and only if there exists a set of n points $\left\{p_{i}\right\}$ in \mathbb{R}^{n} such that $Y_{i j}=p_{i} \cdot p_{j}$. Thus, $G W(w, n)$ is equivalent to following:

$$
\begin{aligned}
& \operatorname{maximize}_{\{Y\}} \sum_{i j} w(i, j)\left(2-2 Y_{i j}\right) \\
& \text { subject to }\left\{\begin{array}{rll}
Y & \text { is } & \text { an } n \times n \text { symmetric, positive semi-definite matrix; } \\
Y_{i i} & =1
\end{array} \quad(i=1, . ., n) .\right.
\end{aligned}
$$

The space of $n \times n$ symmetric, positive semi-definite matrices admits a polynomial time separation oracle because a symmetric matrix Y is positive semi-definite if and only if $x^{T} Y x \geq 0$ for each $x \in \mathbb{R}^{n}$, and in fact it suffices to check each eigenvector x of Y. Thus, combining the constraint that Y is positive semi-definite with arbitrary linear inequalities on the elements of Y yields a convex space with a polynomial time separation oracle. Approximate feasibility of such a problem is testable in polynomial time via the ellipsoid method. Thus, $G W(n)$ can be solved to near-optimality in polynomial time.

A similar approach can be used to solve $P(n, w, \ell)$ in polynomial time. In particular, $P(n, w, \ell)$ corresponds to the following semi-definite program:

$$
\begin{aligned}
& \operatorname{maximize}_{\{Y\}} \sum_{i j} w(i, j) \sqrt{Y_{i i}+Y_{j j}-2 Y_{i j}} \\
& \text { subject to }\left\{\begin{array}{rl}
Y & \text { is an } n \times n \text { symmetric, positive semi-definite matrix; } \\
Y_{i i} & \leq \ell(i)
\end{array}(i=1, \ldots, n) .\right.
\end{aligned}
$$

Since $\sum_{i j} w(i, j) \sqrt{Y_{i i}+Y_{j j}-2 Y_{i j}}$ is a concave function in $\left\{Y_{i j}\right\}$ whose gradient can be computed in polynomial time, the above program also admits a separation oracle sufficient to solve it to near-optimality in polynomial time using the ellipsoid method.

5 Open Problems

It would be interesting to obtain a more efficient algorithm for solving $P(w, n, \ell)$ than is obtained by reducing to the ellipsoid method. Especially interesting would be a primal-dual algorithm along the lines of traditional "combinatorial" algorithms for solving or approximating linear programs. It is not clear how to achieve such algorithms in the semi-definite setting.

Similarly, the only known method for achieving a better factor than two for the max-cut problem is by reduction to semi-definite programming. Goemans and Williamson leave open the problem of finding a more efficient algorithm that beats a factor of two. A more efficient algorithm for $P(n, w, \ell)$ (with each $\ell(i)=1$) would solve this, because applying their randomized rounding technique to $P(n, w, \ell)$ also yields an approximation algorithm for max-cut with performance guarantee better than two.

On the other hand, consider the generalization of $G W(n, w)$ in which the objective function is replaced by $\sum_{i j} w(i, j) d^{2+\epsilon}\left(p_{i}, p_{j}\right)$ for some $\epsilon \geq 0$. For $\epsilon>0$, applying Goemans and Williamson's approach to this program rather than $G W(n, w)$ would provide a better approximation to max-cut. Is the generalization solvable in polynomial time for some $\epsilon>0$?

6 Acknowledgements

Thanks to Michael Todd for helpful discussions and comments on an earlier draft of this paper.

References

[1] Michel Goemans and David Williamson. .878-approximation algorithms for MAX CUT and MAX 2SAT. In Proc. of the 26th Ann. ACM Symp. on Theory of Computing, 1994.
[2] Samir Khuller, Balaji Raghavachari, and Neal Young. Low-degree spanning trees of small weight. In Proc. of the 26th Ann. ACM Symp. on Theory of Computing, 1994.
[3] J. N. Lillington. Some extremal properties of convex sets. Math. Proc. Cambridge Philosophical Society, 77:515-524, 1975.

[^0]: *Technical Report \#1103, School of Operations Research and Industrial Engineering, College of Engineering, Cornell University, Ithaca NY. This research was partially supported by Éva Tardos' NSF PYI grant.

