
Chapter 27

On-Line caching tis Cache

Neal Young*

Abstract
Reconsider the competitiveness ofon-line strategies using
k servers versus the optimal off-line strategy using h S
k servers for the paging, weighted cache, and k-server
problems.

We show that when h < k the competitiveness of the
marking algorithm, arandomized paging strategy, is no more
than 2(ln ~ –lnln ~+~) when & > e, and at most
2 otherwise. We show this is roughly within a factor of two
of optimal.

Intuitively, we say a paging strategy is loosely Comp-
etitive if, for any sequence, at most cache sizes the
fault rate of the pa ing strategy is at most an insignificant

7amount above C(k times the fault rate of the optimal
strategy. We show that LRU, FWF, and FIFO are loosely
C’(k)-competitive provided C(k)/ in k ~ co and that the
marking algorithm is loosely C(k) -competitive provided
C(k) –21nlnk~ co.

We formulate the off-line version of the k-server problem
as a linear program and examine the dual to derive a lower
bound on the performance of the optimal algorithm. We use
this bound to show that for the weighted cache prc~blem the
balance algorithm is --competitive.

1 Introduction

In the most general version of the k-server lproblem,
one is given a directed graph with edge lengths and k
servers. Initially, the servers are positioned on nodes
of the graph. A sequence rl, rz,. . . . r~ of requests
for service at nodes is given and after each request al
server must be moved to the node if a server is not
already present. The goal is to minimize the total length
travelled by the servers. In the standard version of the
problem, the edge weights d(i, j) satisfy d(i, j) = d(j, i),
d(i, i) = O, and d(i, j) < d(i, k) + d(k, j).

A special case of the k-server problem is the
weighted cache problem. In this case the nodes of the
graph have non-negative weights, and the cost to ser-
vice a request to a node with no server is taken to be
the weight of the node.

A special case of the weighted cache problem is the
paging problem. In this case, all of the nodes have
weight one. For this problem, we adopt traditional
terminology: nodes are referred to as pages, servecl

*Computer ScienceDepartment, Princeton University, Prince-
ton, NJ 08544, USA. Research supported by the Hertz
Foundation.

nodes are

Size Varies

said to be in the cache, and a request to an
unserved node is a fault.

If all of the requests of a k-server problem are known
in advance, the optimal allocation of servers may be
found. This is called the off-line version of the problem.
In the on-line version, servers must be moved without
knowledge of requests beyond the next.

Competitive analysis was introduced for on-line
paging and list management algorithms by Sleator and
Tarjan [10]. One strategy is said to be c-competitive
against another if, on any sequence, c times the cost of
the former is within an additive constant (independent
of the sequence) of the latter. The competitiveness of
the one strategy versus the other is the infimum of such
c.

In this paper, the competitiveness of an on-line
strategy will generally refer to the competitiveness using
k servers versus the optimal off-line algorithm with
h s k servers.

For randomized strategies, different extensions of
competitiveness are possible, see[l]; in this paper we
use the oblivious adversary model, in which the cost of
a randomized strategy on a sequence is taken to be the
expected cost over all random choices of the strategy.

1.1 Previous Results. Previous efforts have deter-
mined bounds on the minimum competitiveness of a de-
terministic or randomized strategy for special cases of
the k-server problem.

For any deterministic on-line algorithm, any stan-
dard k-server graph, and any k and h s k, in [6] it is
shown how to construct a sequence of requests so that
the on-line algorithm with k servers pays at least -
times as much as the optimal off-line algorithm with h
servers, For some metric spaces, slightly better lower
bounds can be shown; for example, when h = 2 a lower
bound of 2 can be shown for any k and any determin-
istic on-line k-server algorithm for servicing requests on
the line [8].

For the paging problem known bounds are as fol-
lows. For deterministic algorithms, matching upper and
lower bounds of& were established by [10]. For the
randomized case with h = k, an upper bound of 2Hk
and a lower bound of Hk were established by [4]. (Hk,

241

Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250 (1991)

242 YOUNG

the kth Harmonic Number, equals l+++. . .+* s In k.) mal off-line algorithm. The goal of this technique, which
This upper bound was lowered to Hk by [7]. we call the dual bounding technique, is, by establishing

For the weighted cache problem fewer results have a good lower bound on the off-line algorithm, to derive
been obtained. In [3], a simple “memory less”, random- a competitive on-line algorithm. The lower bounds in
ized , --competitive strategy, and a matching lower [10] and [4] are special cases of our bound.
bound for memoryless randomized strategies, are given. We apply the bound to derive the greedy strategy,
In [2] the balance algorithm, a deterministic k-server which for the weighted cache problem turns out to be a
algorithm which moves the server which haa incurred variant of the balance algorithm, and to show that the
the least net cost, is shown to be k-competitive when greedy strategy and consequently the balance algorithm
h = k. Currently no randomized algorithm is known to are --competitive for the weighted cache problem.
have lower competitiveness than ~. In [5] a lower Amotz Bar-Noy and Baruch Schieber [8] have inde-
bound above Ifk is given on the competitiveness (with pendently shown a deterministic weighted cache algo-
h = k) of any randomized strategy for a three node k- rithm to be ~-competitive.
server problem which is easily translated into a weighted In the full paper we also have a small section de-
cache problem. scribing the application of the dual bounding technique

Many other special cases and generalizations of to the list management problem.
the k-server problem have been studied; for a more
extensive bibliography, see [1]. 2 Randomized On-Line Paging

In this section, we consider the competitiveness of ran-
1.2 Our Results. We give three results in three domized paging strategies. We extend the arguments
sections. The sections may be read in any order. of Fiat et al. to show that when h < k the compet-

In section 2, we generalize the argument of [4] to itiveness of the marking algorithm is no more than
show that, when h < k, the competitiveness of the 2(ln & – ln in ~ + $) when & ~ e, and at most
marking algorithm, a randomized paging strategY, is 2 otherwise. We modify the lower bound of [10] on the
no more than 2(ln ~ – lnln~+~) when ~ ze competitiveness of any deterministic strategy to show
and at most 2 otherwise. We also show that this that this is roughly within a factor of two of optimal.
is roughly within a factor of two of optimal: any
randomized paging strategy has competitiveness at leSSt 2.1 The Marking Algorithm. The marking algo-
ln & –lnln~– & when & ~ e. rithm of [4], with a cache of size k, partitions the input

In the full paper we briefly discuss a generalization sequence into k-ph~es — subsequences of requests ex-
of the marking algorithm, called the (h, k)-marking tendingaslongas possible while containing requests to
algorithm, that is within a factor of two of optionally at most k distinct pages. Within a phase, when a page
competitive, and a corresponding generalization of the must be removed from the cache, the marking algorithm
lower bound of [4] to the case h < k.

In section 3, we give a relaxed model for compet-
chooses a page uniformly at random from those not yet
requested during the phase and swaps that page out.

itive analysis of paging strategies. The model is in- In [4], the following argument is given showing that
tended to incorporate the assumptions that input se- the marking algorithmwith a cache of size k is 2H~-
quences are not strongly dependent on cache size and competitive when h = k. In a phase, we classify the
competitiveness is only important when the fault rate requests into new requests, which are requests to pages
is significant. Specifically, a paging strategY is looselY not requested previously in this phase or the previous]
C(k) -competitive if for any c, as n ~ m, for any se- o~d requests, which are requests to pages not requested
quence requesting at least n distinct pages, the number yet in this phme but requested in the previous, and
of cache sizes k 6 {1, n} such that the fault rate of repeated requests, which are requests to pages which
the paging strategy exceeds l/nc PIUS C(k) times the have been requested this phase.
optimal is o(n). Suppose there are m new requests and k – m old

We show that LRU, FWF, and FIFO are loosely
C’(k) -competitive provided C(k)/ In k a cm. We

requests. At any point in the phase all pages requested
in the previous phase but not yet in this phase are

show that the marking algorithm, a randomized paging equally likelY to be in the cache. Before the ith old
strategy, is loosely C(k) -competitive provided C(k) – request, at most rn + i – 1 pages have been requested
21nlnk~ co. this phase, so that at least k–m–(i–1) of the k–(i–1)

In section 4, we consider the off-line k-server prob-
lem as an integer linear program.

pages requested in the previous phase but not yet in this
By considering the ph=e remain in the cache. Thus the probability that

dual, we establish a lower bound on the cost of the opti- the page requested at the ith old request will cause a

ON-LINE CACHING AS CACHE SIZE VARIES 243

‘au*t‘sat‘ost*“ In addition, each of the m new

requests causes a fault, so the expected cost during the
phase is bounded by

k-m

m+~k - ;-1) = m+ m(llk – Hm).
i=l

Within any two consecutive phases, the off-line
strategy with a cache of size h = k makes at least m
faults. This gives a lower bound of ~ times the number
of phases on the cost of the off-line algorithm. (Here
%7 is taken to be the average number of new requests
per phase.) As a consequence, the marking algorithm is
shown to be 2Hk-competitive.

We extend this result in the following theorem.
THEOREM 2.1. The competitiveness of the marking

algorithm with a cache of size k versus any a!gow”thm,
with a cache of size h < k is no more than

(k
2 ln— – in in

k–h
~+;

)

when & ~ e, and no more than 2 otherwise.

Proof. As a first step at extending the above analy-
sis due to [4] to the case h < k, note that any algorithm,
with a cache of size h must make at least k -+ m – h
faults in any two consecutive phases with the second
phase having m new requests. This is because k + m
distinct pages are requested during the two phases, and
at most h are in the cache at the start of the first of
the two phases. Consequently, if the average number
of new pages per phase is iii, the number of faults to
the optimal algorithm with a cache of size h is at least
?. The competitiveness of the marking algorithm

is thus bounded by two times

(2.1)
fi + ~(Hk – H=)

k+7ii-h “

It remains only to bound (2.1). We omit the
argument in this abstract, noting only that we consider
the continuous upper bound ~(~) = -(in ~ + 1)
and use analytic techniques. ❑

2.2 A Lower Bound on the Competitiveness.
Next we generalize the lower bound of Sleator and
Tarjan[lO] on the competitiveness of any deterministic
strategy to show that any randomized paging strategy
has competitiveness at least roughly half that of the
marking algorithm.

THEOREM 2.2. The competitiveness (versus an
oblivious adversary) of any randomized paging algom”thm

with a cache of size k versus any algorithm with a cache
of size h < k is at least

ln—–
k~h lnlnA-Lk–h k–h

when & ~ e.

Note that for —k~h ~ e the analysis of the marking
algorithm shows that its competitiveness is at most 2.

Proof. We give an (oblivious) adversary argument,
in which the adversary knows the probability distribu-
t ion of pages in the cache at any point.

We generate a sequence of requests in segments.
During each segment, we first request k–h+m pages not
previously requested. These, together with the h pages
in the cache of the optimal strategy before the beginning
of the first request of the segment, yield k + m pages,
called candidate pages. Next we generate h — 1 requests,
rl, rz, ..., rh - 1, each to the candidate node least likely
to be in the cache of the on-line strategy. Once a request
to a page ri has been made, we interrupt the remaining
request sequence as necessary with repeated requests to
~i to keep it in the cache with probability at least 1 – c.

This generates k – h + m requests to new pages
followed by at least h – 1 requests to at most h – 1
candidate pages. The optimal strategy can keep the
h – 1 candidate pages requested in the latter part of the
segment in its cache, and use the remaining space to
service the requests in the former part of the segment,
thus incurring a cost of at most k – h + m.

Before request ri is made, the expected number of
pages rl, . . . , ri _ 1 in the cache of the on-line strategy is
at least (1 – c)(i – 1), so the expected number of the
k + m – i + 1 remaining candidate pages in the cache
is at most k – (1 — c)(i – 1), the expected number not
in the cache is at least m – e(i – 1), and the probability
of a fault is at least =. It follows that the
expected number of faults can be made arbitrarily close
to k – h + m + m(H~+m – Hk+m_~+l), and a lower
bound on the competitiveness is given by

(Note that the above analysis assumes a bounded
number of repeated requests to the r-i. Since each
such request costs the on-line algorithm at least c,
if necessary we can end the request sequence after
enough repeated requests have occurred for the on-line
algorithm to incur cost sufficient to obtain the same
bound.)

It remains only to prove that (2.2) is at least
ln~ –lnln~ – ~ when ~ > e. We omit this
part of the proof in this abstract, remarking only that

244 YOUNG

the bound is proven by taking m = [(k – h)(ln & –
I)+lj. •1

3 Competitiveness and Fault Rate

In this section, we restrict our attention to competitive-
ness when h = k, unless otherwise stated.

The marking algorithm has substantially lower com-
petitiveness than any deterministic algorithm. Is it
possible that some randomized algorithm might im-
prove over deterministic strategies in practice? A typ-
ical graph of competitiveness vs. cache size for a real
sequence appears in figure 1. This sequence, traced
by Dick Sites of Digital Equipment Corporation [9],
consists of 692,057 requests to 642 distinct pages, and
was generated by two X-windows network processes, a
“make” (program compilation), and a disk copy run-
ning concurrently. The requests include data reads and
writes and instruction fetches. For the purposes of this
paper the page size was taken to be 1024 bytes.

This graph shows competitiveness of LRU of less
than two and one half, independent of the cache size.
There is little room for improvement over LRU.

Motivated by these results, we ask if there is any
sense in which we can effectively show constant com-
petitiveness (independent of cache size) for any on-line
paging strategy. We relax the standard model of com-
petitiveness for paging by considering a range of cache
sizes for a given sequence and allowing violations of the
competitive ratio at a vanishing fraction of the cache
sizes and when the fault rate is insignificant, Specifi-
cally, a paging strategy is loosely C(k)-competitive if for
any c, as n * 00, for any sequence requesting at least n
distinct pages, the number of cache sizes k c {1, n}
such that the fault rate of the paging strategy exceeds
l/n’ plus C(k) times the optimal is o(n). (The con-
stants in the o(n) may depend on c.)

In this section we show that LRU, FWF, and FIFO
are loosely C(k) -competitive provided C(k)/ in k ~ m.
We also show that the marking algorithm is loosely
C(k) -competitive provided C(k) – 2 in in k ~ m. The
argument we use is somewhat indirect; first we show
that under the assumption that competitiveness is high
for many cache sizes on a sequence, fault rate decreases
rapidly as the cache size is increased. The results of this
argument will be used to show loose competitiveness.

In general, we will be assuming some fixed sequence,
and our notation will not reflect this dependence explic-
itly. For instance, for a paging strategy X, Xfi will de-
note the (expected) number of faults made by X on the
sequence. We will take the (standard) competitiveness
of X with a cache of size k on a sequence to be the ratio
~ for k less than the number of distinct requests inOPT~ ~

the sequence, and 1 otherwise. The stable fault mte —
the fault rate not counting the up to k faults to fill the
cache initially — is Xfi – k divided by the number of
requests.

3.1 High competitiveness and low fault rate.
In order to obtain a link between competitiveness and
stable fault rate, we use the notion of a phase, central
to the marking algorithm and the analysis of the flush-
when-full paging strategy. FWF, with a cache of size k,
implicitly partitions the input sequence into k-phases —
subsequences of requests extending as long as possible
while containing requests to at most k distinct pages.
F WF flushes it cache at times corresponding to phase
boundaries.

Within a phase, FWF makes k faults. On the other
hand, one can show (e.g. [4]) that any algorithm with a
cache of size k makes at least one fault for every phase.
It follows that FWF is k-competitive when h = k. More
generally, as is also shown in [4], if there are m new
requests — requests to pages not requested previously
in this phase or the previous phase — in a phase other
than the first, then any strategy with a cache of size k
makes at least m faults in this phase and the previous.
This is because at the beginning of the previous phase,
the strategy has at most k of the k + m pages which will
be requested in the two phases in its cache. It follows
that if the average number of new pages per phase is ~,
the optimal strategy makes at least ~ faults per phase.
It follows that the competitiveness of FWF is bounded
by &k

m“
LRU and FIFO also have at most k faults per

phase, and a similar argument applies to them. In
[4], it is shown that in a phase with m new pages, the
marking algorithm has an expected number of faults
bounded by m(lifk – Efm + 1) ~ m(lnk – Inm + 1),
so that the competitiveness of the marking algorithm
is at most 2(ln k — In?’ii + 1). (Note the use of the
bound II. ‘~b < in ~, which follows from an integration
argument.)

In each of these cases, high competitiveness is
obtained only for small fi, and fault rate is roughly
correlated with the number of phases. Next we make
precise the following argument. Competitiveness is high
only when the number of new pages per phase is small.
When the number of new pages is small, a small increase
in the cache size will result in a large decrease in the
number of phases. Thus if competitiveness is high
for many cache sizes for a given sequence, then the
number of phases is decreasing rapidly as the cache size
increases. This in turn ensures a rapid decrease in the
page fault rat e.

Given a sequence (implicit in the context of the

ON-LINE CACHING AS CACHE SIZE VARIES

Competitiveness

8--

6--

/

4“- ,.,//

~:~~
2‘~a~k~

lru

opt

o 100 2i&---- 300 400 Cache500

245

Size

Figure 1: Typical Competitiveness vs. Cache Size

notation),
● pk denotes the number of k-phases other than

the first in the sequence. That is, we break our
sequence into k-phases as described above, and P~
ia the number of such phases, minus 1.

. %k denotes the average number of new pages per
k-phase other than the first. That is, we sum the
number of new pages in the phase over all k-phases
with new pages, and divide by l’k.

● Xk, for any paging strategy X, denotes the (ex-
pected) number of faults made by X with a cache
of size k on the sequence. Thus xk /X1 is i%n upper
bound on the fault rate of X with a CaChe of size
k (in fact it is exactly the fault rate for a sequence
with no immediately repeated requests).
The next lemma is the key to the argument. The

lemma states that if the average number of new pages
per phase is small for a given cache size, then increasing
the cache size by a small amount decreases the number
of phases substantially.

LEMMA 3.1. Fiz a sequence. For any cache size k,

Pk+ L2?ii,] < ;Pk .

Proof. Let ao,..., apk denote the k-phase parti-
tioning of the sequence. “-

At least half (and thus at least [Pk/21) of the Pk
k-phases al, ap~ have a number of new pages not

exceeding 277ik (and thus not exceeding 12fik~). Denote
these by ail, . . . ,ai[P~,,l.

If we modify the k-phase partitioning by joining
every other such phase with the phase immediately
preceding, i.e. we join aij - 1 and aij for odd j, we obtain
a coarser partitioning of the sequence into at most
pk – (Pk/4] pieces. In the coarser partitioning, pieces
resulting from a join reference at most k+ lfik] distinct
pages, while the other pieces continue to reference at
most k distinct pages.

If we now consider the k+ [277i~j -phase partitioning,
we find that each k + 12fikj -phase contains the final
request of at least one of the pieces in the coarser
partition. This is because if a k + L2=k] -phase begins
at or after the beginning of a subsequence of requests
to at most k + 12Hik] distinct pages, it will continue at
least through the end of the subsequence.

Thus pkf Lzmk] s ~pk . •1

It is worth noting that we have a construction for
sequences for which * > $ for all k, and for which
the number of new pages per k-phase is no more than
3a(k). The construction holds for any integer valued a
such that a(k + a(k)) s 2~(k) and 1 S a(k) S k.

pages inductively
Having established this lemma, the rest of the

argument is straightforward. First, we argue that if, for

246 YOUNG

some fixed sequence, over a range of cache sizes there are
many cache sizes with a small average number of new
pages per phase, then the number of phases is decreasing
rapidly over the range.

LEMMA 3.2. Given M, and any sequence such that
the number of cache sizes k in the range L, L + 1,..., U
with ?7& ~ M iS ~,

Proof. From the N values of k we can choose at
least q = (Al values kl, k2, kq such that ki+l–ki z
12LlJ~127i~i] fori=l,2,...,l -l.

By the previous lemma and the monotonicity of pk,
we have pk,+~ ~ $Pki for i = 1, ..., q — 1. Consequently

‘U<pkqs(:)q-’p’~(:)*-lP’
•1

A deterministic paging strategy with cache size k is
conservative if, for any k and any sequence of requests,
during any contiguous subsequence of requests to only
k distinct pages, the strategy makes at most k faults. A
strategy is monotone if increasing the cache size cannot
increase the page fault rate. The reader may verify that
FWF, LRU, and FIFO are conservative and monotone.

The basic bounds which we will be using in the next
proofs are (for a conservative, monotone paging strategy
X and a given sequence)

Xk–k < 2k
(3.3) —

opTk – =’

(3.4)
MARKk – k

OPTk
< 2(lnk–lnfik + 1).

THEOREM 3.1. Let X be any conservative, mono-
tone paging strategy. Let ~ be any function such that

P(k) and ~ aw non-decreasing. Fix any sequence of

requests, and let xk denote the number of faults by X
with a cache of size k on the sequence.

If there are N cache sizes k in a range 1, U with
~ z P(k), then

N 4 in ~Jj~ + lnU+ln$
—<—
U–ln$ p(u) “

previous lemma and the inequalities XV ~ UPU + U
and Xl ~ PI + 1 give

‘“~u‘pus(:)*-lP’<(Y(U)-l(X+
Taking logarithms and rewriting gives the result. ❑

Next we give the corresponding result for the mark-
ing algorithm.

THEOREM 3.2. Let /3 be any function with ~(k) and
& non-decreasing. Fix any sequence of requests,
and let h!lARKk denote the expected number of faults
by the marking algorithm with a cache of size k on the
sequence.

If there are N cache sizes k in a range 1, ..,, U with
‘~~$,-k ~ ~(k), then

MARK,-1 +lnu+ln~
2 ln MARKU–U~<—

U–ln~ e~~(u)-l

Proof The bound (3.4) implies that each cache size
k with ‘&~&-k at least /3(k) has ~k ~ ke l_~~(k).

The rest of the proof is as for the previous theorem.

•1

3.2 Loose Competitiveness. We have established
that for any conservative, monotone paging strategy,
and for the marking algorithm, the fraction of cache
sizes in a range exceeding a bound is bounded by
roughly the logarithm of one over the fault rate divided
by a term which grows with the bound. This implies
that for any sequence either the fault rate drops off
rapidly or competitiveness is low at most cache sizes.
We use this in the next two corollaries to put upper
bounds on the loose competitiveness of these paging
strategies.

COROLLARY 3.1. Let X be any conservative,
monotone paging strategy, and C(k) any function such

that ~ -t co and C’(k) and & are non-decreasing.

Then X is loosely C(k) -competitive.

Proof. Fix c, n, and a sequence with R requests
to at least n distinct pages. We must show that the
number of cache sizes k G {1, n} such that

(3.5)

Proof The bound (3.3) implies that for every k
is o(n).

The idea is that if the fault rate doesn’t decreaaewith ~ at least ~(k), we have %k < —.– p!:) to l/nc with a cache size of o(n), then theorem 3.1
Thus taking M = &, we have N cache sizes k in applies to show that the number of cache sizes with

‘k < Al, so the high competitiveness is small.the range 1, . . . , U such that ~k ~ ~ _

ON-LINE CACHING AS CACHE SIZE VARIES 247

We assume without loss of generality that Xn/R ~
I/nc; otherwise we can choose a smaller n and get a
larger fraction of cache sizes violating (3.5).

A technical consideration is that in our definition of
loose competitiveness we are concerned with Xk rather
than Xk – k. Thus we must exclude the (vanishing)
fraction of cache sizes for which Xk nears k. Thus
we consider the range of cache sizes 1, ..,, U, where

)1u=[n(l–* .

The number of violations of (3.5) with U < k <71
is o(n), since n – U is o(n). For k ~ U

so ~ < ~C(k) and for k also violating (3.5)

Xk-k
— > C(k) –
OPTk –

& ~ C(k) – & ~ ;C(k).

(Note the use of OPT, > n - k.)
Thus we can use theorem 3.1 to bound the number

N of violations with k s U.

N+
in ~j~~ + lnU

< Uo(l)
c(u)/2

in $ +ln(l+*)+ln U
< O(l)u

c(u) —
lnnC+21nn

s O(l)u c(u)

= o(l)u-
C(u)
inn

S o(l)n~.

This last step follows from & < ~. Since &j

is O(1), the final expression is o(n). cl

Similarly for the marking algorithm:
COROLLARY 3.2. Let C(k) be any function such

that C(k) – 21nln k - co and C(k) and ~~ are
non-decreasing. Then the marking algorithm is loosely
C(k) -competitive.

Proof. Fix c, n, and a sequence with R requests to
at least n distinct pages. Again we must show that the
number of cache sizes k 6 {1,..., n} such that

(3.6) ‘A~k > C(k)% + ;

is o(n).

We have to be a bit more careful about avoiding
the fraction of cache sizes near n, because we want to
preserve the constant 2 in the statement of the corollary.

As in the previous proof we assume without loss of
generality that MARI{n /R ~ l/nc.

Let a(k) = (C(k) – 21nln k)/2, so a(k) -+ co.

H)1Let U= nl– - . The number of viola-

tions of (3.6) occuring with k > U is o(n), since n – U
is o(n).

For k ~ U we have *-*~*<a(n), so
for k also violating (3.6)

k
— > C(k) – ~(n).‘AoR:$k– k ~ C(k) – opTk _

We apply theorem 3.2 to bound the number N of
violations with k ~ U:

1

N < O(l)U ‘n Ml!i:u:h + ln u
~,(c(u)–a(?a))-l

in MA:KLJ + ln(l + MAR: U-U)+ln U
< O(l)u

e?i(c(u)-a(n))
inn

s Owe;(c(u)-a(n))

< 0(l)ne*(2’nlnn-c(nJ+a(n)J.

This last step follows since ~ < ~.~~c(n) The

final expression is o(n) since 2 in in n – C(n) + cr(n) =
–2a(n) + a(n) = –a(n). ❑

(It is worth noting that the previously mentioned
construction can be applied to construct a sequence
such that the competitiveness of FWF for cache sizes
in the range [rz/2], n is at least (dlog n)/6, while
the fault rate with a cache of size n is bounded below
by l/(4n2d+l). Thus FWF is not loosely O(log k)-
competitive, and for FWF the first corollary is tight.)

4 A K-Server Dual Bound

It was observed in [2] that the off-line version of the
k-server problem can be formulated as a minimum-
cost maximum flow problem. In this section we first
formulate the problem directly as a linear program and
derive the dual program. (The derivation of the dual
program may be skipped on first reading.) We then
give a direct interpretation of the dual and a direct proof
that the cost of any feasible solution to the dual gives a
lower bound to the cost of the off-line algorithm.

We develop some general terminology for deriving
feasible solutions to the dual. We show that a sequential
greedy method of generating a solution yields a lower
bound which we use to derive a deterministic on-line

248 YOUNG

k-server strategy called the greedy strategy, which we
show is optimally competitive for the weighted cache
problem. Finally, we show that for the weighted cache
problem, the balance algorithm and the greedy strategy
correspond on sequences with no requests to served
nodes, so that the balance algorithm is also ~.~+l -
competitive.

4.1 A K-Server Linear Program. We are given a
directed n vertex graph, with edge lengths d(i, j), and
a sequence of requests ?’1, rz, rN.

We do not assume d(i, j) = d(j, i) or that the
edge lengths satisfy the triangle inequality. Rather,
we give a lower bound which will apply to any lazy
allocation of servers. (An allocation of servers is lazy
if a server is moved to a node only when the node is
requested.) It is well known that for a weighted cache
or standard k-server problem (i.e. a k-server problem
on an undirected graph with edge weights satisfying the
triangle inequality), any allocation can be converted to
a lazy allocation without increasing the cost, so that
for these problems the lower bound will apply to any
allocation of servers.

For simplicity, we assume that d(i, i) = O and
d(i, j) ~ O, although the method extends to the general
case.

Given an optimal lazy off-line solution using h
servers, let Xi,t denote the amount of server on node
i at time t. Then

(4.7) XX,,, = ~ (Vt) 9

(4.8) z X.,,, = 1 (Vt),

(4.9) Xi,,_l – Xi)t z O (W > l,i # rt),

xi,, 2 0 (Vt, i).

Furthermore, the cost of the allocation is

~(xi,t-I - Xi,t)d(i,rt).
t>l,i

It is not hard to reformulate the above linear program
as a rein-cost max-flow problem, aa in [2], and thus show
that there are always opt imal integer solutions.

4.2 Derivation of a K-Server Lower Bound. To
obtain a lower bound for this cost, we consider the above
set of constraints and cost aa a linear program (the
prima~, and formulate the dual linear program. The
cost of any feasible point in the dual serves aa a lower
bound to the cost of the optimal primal solution, and
thus to the cost of the optimal off-line server allocation.

In particular, given any allocation of the Xi,t sat-
isfying the above constraints, we consider the following

sequence of bounds:

~ (xi,,., -
t>l,i

X~,t)d(i, rt)

(4.10)
()

~ E–s’ Exit + ~ RtXr,,t
t i t

+ ~ ~i,t (X+l – xi,t)
t>l,i#r~

t t
(4.11) =x Rt – hSt .

t

The expression (4. 11) is the dual cost. The St, Rt,
and Xli,t are the dual variables.

Bound (4. 10) will hold provided the coefficient of
each variable Xi,t in the cost is greater than or equal
to the coefficient of the variable in the bound (since
Xi,t z O). Considering this for each Xi,t yields the dual
constraints (4. 12).

Bound (4.10) will in turn be bounded by (4.11)
(given (4.7), (4.8), and (4.9)) provided each Uli,t is non-
negative. This gives the dual constraints (4. 13).

This yields the following: the cost of the optimal
off-line allocation of h servers servicing the sequence of
requests is bounded below by Et Rt – hSt provided

(4.12) [t< IV] d(i, r,+,) - [t> 1]d(i,rt)
z [i=rt]Rt– St

+ [t < ~,i # rt+l]’JJi,t+l
– [t > l,i+ rt]W~,t (Vt, i),

(4.13) vi,, 2 0 (Vt > l,i# ?’t).

(For a boolean expression b, [b] denotes 1 if b is true
and O otherwise.) We can add these constraints so that
the Vi,t telescope, and the bounds (4.12) are slightly
simplified. (For details see the full paper.)

This yields:
(Vi, t,t’:i= rtort=l, ~s, t~ s<t’, r$=~=i)

[t’ < iV]CZ(i, rtJ+I) > [r, = i] R, – S* – . . . – S,,

4.3 A K-Server Lower Bound. We are now in
a position to give a direct interpretation of the dual
constraints and lower bound. We give the bound as a
theorem, and we give an alternate, more intuitive proof
than the derivation.

THEOREM 4.1. Given requests rl, rN to nodes
in a directed graph with edge costs d(i, j) such that
d(i, j) > 0 and d(i, i) = O, the cost of lazily servicing

ON-LINE CACHING AS CACHE SIZE VARIES 249

the requests with h servers is at least

N

E Rt – hSt ,
t= 1

provided that the St and Rt meet the dual constraints:
(Vt, t’:l~t< t’<N, @:t~s<t’, r8+~=:rt)

{
d(r,, rt,+~) (t’ < N)

Rt– St–’... –St, S ~ (t’ := N)

Proof. We maintain a potential for each node as
requests for service are received. Initially, all potentials
are zero. At each t from 1 to N, we do the :following.
We raise the potential of the requested node rt to Rt,
then decrease the potential of every node by St. Thus at
time t’the potential of node i is Rt – St – S~+l –. . .–S,:,
if i was last requested at time t, and is —S1 –- ..- — S,!,
if i was not previously requested.

The dual constraints are satisfied if and only if for
each time t and node i, the potential of i does nck
exceed the distance from the node i to the node rt+ 1
next requested (or zero if the current request is the last).

Suppose we have some lazy allocation of h servers
satisfying the requests. When the allocation moves a
server from a node i at time t to a node ri+,l at time
t+ 1, or when the allocation leaves a server oIn i = rt+.l
from time t to t + 1, or when t equals N, we charge to
the allocation the potential of the node i at time t.

The dual constraints ensure that a lazy allocation
is charged no more than it pays to move servers.
Consideration shows that the charge to the allocaticm
can be viewed as, at each time t,crediting the allocaticm
by Rt and then debiting the allocation by St for each
node with a server. This shows that the amount charged
is Et Rt – hSt. 13

Although this proof is sufficient for the theorem, that
the bound is a linear programming dual bound is also
important. For instance, that a linear program and its
dual have equal cost optimal solutions, together with
the fact that the original primal program always has
an optimal integer solution, imply that with the riglht
choice of Rt and St the above bound can be made tight.

4.4 The Greedy Lower Bound. Given any solu-
tion satisfying the dual constraints for a fixed sequence,
we can modify it as follows. Let ti,a function of t and
i, denote max{s s t : r~ = i}. If ti is defined, and we
raise St and Rt i by some amount A, we increase the
potential (see the proof of theorem 4.1) on i at times
tithrough t– 1 by A, and leave other potentials of i

unchanged. For large enough A ~ O, the potential at
some time s between tiand t— 1 inclusive will meet its
upper bound d(i, r~+l). This value of A is called the
slack of i at time t. If the slack is non-zero, we say the
node is pending.

If we raise St, and Rt, for each node i pending at
time t,by A, with A not exceeding the minimum slack
of the pending nodes, the weights continue to satisfy the
dual constraints. We call this a pivot at time t by A.
As a consequence of such a pivot, we add A times the
number of pending nodes minus hA to the lower bound.

This suggests the following bound. Start by setting
all dual variables to zero, so that the dual constraints
are satisfied. Consider the requests sequentially. When
a request rt comes in at time t, if k+ 1 nodes are pending,
pivot fully (taking A to be the minimum slack of the
pending nodes), so that following the pivot k or fewer
nodes are pending at time t.

Each pivot raises one St and k + 1 Rti by A and
raises the lower bound by (k— h+ l)A. As a consequence
we maintain that the lower bound Et Rt — hSt equals
(k– h+ 1) ~t St, and we have the equality ~t R, – St =
k ~t &. In order to obtain a &-competitive on-line
algorithm, then, we need an on-line algorithm whose
cost is bounded within a constant of ~t Rt – St.

4.5 The Greedy Strategy. Recalling the proof
of theorem 4.1, note that when the off-line allocation
moves a server, we charge it the potential of the node
the server moves from. Suppose we have an assignment
of the Rt and the St which gives a tight lower bound. In
that case, the off-line allocation moves a server from a
node only when the potential on the node equals the cost
of moving the server. Thus if the potential on a node at
a time t reaches its upper bound, that is an indication
that the off-line allocation might move its server from
the node at time t.

With respect to the greedy bound, when a node
ceases to penal as the result of a pivot at time t,this
suggests that at the time s ~ t where the potential of
the node now meets its upper bound as the result of the
pivot, the off-line allocation may have moved a server
from that node. These considerations give us the greedy
strategy, a deterministic on-line k-server strategy.

The strategy is simply to keep the pending nodes
served as the greedy bound is calculated on-line. When
a node rt is requested, following a possible pivot, at time
t,k or fewer nodes will be pending, so we can move a
server from a non-pending node to a pending node if
necessary.

When a node i is requested at time t, it is subse-
quently pending at times t,t + 1, t + 2, etc. until at
some point either it is again requested, or it ceases to

250 YOUNG

penal as a result of a pivot. If i is requested again
while pending, the algorithm incurs no cost. If i is
requested after it ceases to penal, & has been raised
enough so that at some time t + j z t the potential
of i meets its upper bound. This means that for some
rt+j+l # i, & – St – . . . – St+j = d(i, rt+j+l). Thus
Rt – St > d(i~t+j+l).

For the weighted cache problem this is sufficient, for
d(i, rt+j+l) = w(i) equals the cost incurred in moving
from i. Thus for this problem, the cost incurred by
the greedy strategy in moving from requested nodes is
bounded by ~t Rt – St. The remaining cost incurred
by the algorithm is at most k maxi w(i). As discussed
previously, this implies that for the weighted cache
problem the greedy strategy is --competitive.

Note that for the standard k-server problem deter-
ministic on-line --competitive algorithms are not
generally possible. For instance, on the 5 node cycle
graph, if the next request to a 2-server algorithm is
always to the node adj scent to the previous request
and furthest from the other server, it is possible to
show that the algorithm can not be simultaneously 1-
competitive versus the optimal algorithm with 1 server
and 2-competitive versus the optimal algorithm with 2
servers.

4.6 The Balance Algorithm. We can describe the
greedy strategy for the weighted cache problem directly
as follows. Maintain a value for each server. (The
value of a server will correspond to the slack at the
served node.) When a node is requested that is not
served, subtract the minimum server value from all
server values. Move a zero-valued server and set its
value to the weight of the node to which it moves. When
a node is requested that is served, reset the value of the
server to the weight of the node.

If we modify the above strategy by ignoring requests
to served nodes, we obtain the balance algorithm. As
the balance algorithm does not change state when a
served node is requested, for the competitive analysis of
the balance algorithm it suffices to consider sequences
of requests which only request unserved nodes. On such
sequences, the balance algorithm corresponds to the
above strategy. It follows that the balance algorithm
is ~-competitive for the weighted cache problem.

References

291-300, 1990.
[3] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir.

Random walks on weighted graphs, and applications
to on-line algorithms. In Pwc. 2.2nd ACM SYWW. on
Theory of Computing, pages 359-368, 1990.

[4] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D.
Sleator, and N. E. Young. Competitive paging algo-
rithms. Technical Report CM U-CS-88-196, Computer
Science Department, Carnegie Mellon University, 1988.
(To appear in Ngorithrnica).

[5] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and
S. Owicki. Competitive randomized algorithms for
non-uniform problems. In Proc. Ist ACM-SIAM Symp.
on Discrete Algorithms, pages 301–309, 1990.

[6] M, S. Manasse, L. A. McGeoch, and D. D. Sleator.
Competitive algorithms for on-line problems. In Proc.
20th ACM Symp. ova Theory of Computing, pages 322-
333, 1988.

[7] L. A. McGeoch and D. D. Sleator. A strongly com-
petitive randomized paging algorithm. Technical Re-
port CMU-CS-89-122, Computer Science Department,
Carnegie Mellon University, 1989. (To appear in Algo-
rithmic).

[8] Baruch Schieber. Personal communication. 1990.
[9] R. L. Sites and A. AgarwaL Multiprocessor cache

analysis using ATUM. In Proc, 15th IEEE Int. Symp.
on Computer Architecture, pages 186–195, 1988.

[10] D. D. Sleator and R. E. Tarjan. Amortized efficiency of
list update and paging rules. Comm. ACM, 28(2):202-
208, February 1985.

[1] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and
A. Wigderson. On the power of randomization in on-
line algorithms. In Proc. .2.2nd ACM SYrnp. on Theory
of Computing, pages 379-386, 1990.

[2] M. Chrobak, H. Karloff, T. Payne, and S. Vish-
wan at han. New results on server problems. In Proc.
Ist A CM-SIAM Syrnp. on Discrete Algorithms, pages

