
COMPETITIVE PAGING AND DUAL-GUIDED ON-LINEWEIGHTED CACHING AND MATCHING ALGORITHMSNeal YoungA DISSERTATIONPRESENTED TO THE FACULTYOF PRINCETON UNIVERSITYIN CANDIDACY FOR THE DEGREEOF DOCTOR OF PHILOSOPHYRECOMMENDED FOR ACCEPTANCEBY THE DEPARTMENT OFCOMPUTER SCIENCE, PRINCETON UNIVERSITYOctober, 1991

c
 Copyright by Neal Young 1991All Rights Reserved
ii

AbstractThis thesis presents research done by the author on competitive analysis of on-line problems.An on-line problem is a problem that is given and solved one piece at a time. An on-linestrategy for solving such a problem must give the solution to each piece knowing only thecurrent piece and preceding pieces, in ignorance of the pieces to be given in the future.We consider on-line strategies that are competitive (guaranteeing solutions whose costsare within a constant factor of optimal) for several combinatorial optimization problems:paging, weighted caching, the k-server problem, and weighted matching.We introduce variations on the standard model of competitive analysis for paging: al-lowing randomization, allowing resource-bounded lookahead, and loose competitiveness, inwhich performance over a range of fast memory sizes is considered and noncompetitivenessis allowed provided the fault rate is insigni�cant. Each variation leads to substantiallybetter competitive ratios.We present a general technique for competitive analysis of linear optimization problems:competitive analyses are obtained by using linear programming duality to obtain bounds onthe optimal cost. The technique is implicit in previous work on paging, weighted caching,and weighted matching. We generalize the implicit previous use of the technique, obtainingthe greedy dual algorithm for weighted caching. The strategy generalizes the least-recently-used and �rst-in-�rst-out algorithms for paging and the balance algorithm for weightedcaching. The analysis strengthens a previous analysis of the balance algorithm for weightedcaching.We explore the linear programming dual of the k-server problem, showing that thek-server problem is a special case of on-line minimum-weight matching, revealing closerelationships between on-line weighted caching and assignment algorithms, and showinghow duality can yield potential function analyses.iii

AcknowledgementsThanks to Lori Ferguson, Rick and Claire Kenyon, and Anthony Tomasic for their friend-ship.This research was supported by the Hertz Foundation, by Princeton University, byDigital Equipment Corporation's Systems Research Center in Palo Alto, by NSF GrantsDCR-86-05962 and CCR-89-20505, and by the ONR Grant N00014-87-K-0467.

iv

ContentsAbstract iiiAcknowledgements iv1 Introduction 11.1 On-Line Problems and Competitive Analysis : : : : : : : : : : : : : : : : : 11.2 Summary : 21.3 Paging : 31.3.1 Previous Results : 41.3.2 New Results : 51.3.3 Related Results : 61.4 The Weighted Caching and K-Server Problems : : : : : : : : : : : : : : : : 71.4.1 Previous Results : 81.4.2 New Results : 91.4.3 Related Results : 91.5 The K-Server Dual : 101.5.1 Previous Results : 111.5.2 New Results : 111.6 Duality Analyses of Weighted Matching Strategies : : : : : : : : : : : : : : 121.6.1 Reproduced Results : 132 Paging 152.1 Partitioning a Sequence into K-Phases : 152.2 Randomized Paging : 17v

2.3 Resource-Bounded Lookahead : 222.4 Loose Competitiveness : 252.4.1 Upper Bounds for Lru, Fifo, Fwf, and Mark : : : : : : : : : : : : 262.4.2 A Lower Bound for Fwf : 303 Deterministic Weighted Caching 343.1 The K-Server Dual: Timings : 343.2 The Greedy Dual Strategy : 354 The K-Server Dual 394.1 The K-Server Problem as Assignment : 404.1.1 The Assignment Dual : 414.1.2 Stretching a Timing : 414.2 K-Phase Timings : 424.3 Lru, K-Phase Timings, and Balance : 454.4 Duality Yields a Potential Function : 474.4.1 A Space-Time Formulation of Timings : : : : : : : : : : : : : : : : : 494.4.2 An Intuitive Analysis of Balance : : : : : : : : : : : : : : : : : : : 504.4.3 A Potential Function Analysis of Balance : : : : : : : : : : : : : : 524.5 K-Phase Timings, Perm, and Optimal Timings : : : : : : : : : : : : : : : : 555 Duality Analyses of Weighted Matching Strategies 576 Conclusion 606.1 Remarks : 606.2 Future Work : 616.2.1 Randomized Weighted Caching : 616.2.2 Lookahead : 626.2.3 Loose Competitiveness : 626.2.4 The K-Server Dual : 626.3 Summary : 63Bibliography 68vi

Chapter 1IntroductionIn this thesis we present research done by the author on competitive analysis of on-lineproblems.In Section 1.1 of this chapter we introduce on-line problems and competitive analysis.In Section 1.2 we brie
y summarize the thesis. In the succeeding sections we summarizethe concepts and results relevant to the individual chapters.1.1 On-Line Problems and Competitive AnalysisAn on-line problem is a problem that is given and solved one piece at a time. An on-linestrategy for solving such a problem must give the solution to each piece knowing only thecurrent piece and preceding pieces, in ignorance of the pieces to be given in the future.We use the following terminology from standard competitive analysis:� A strategy is c-competitive if the cost of the solution produced by the strategy isbounded by c � opt + b, where opt is the cost of the optimal solution and b dependsonly on the starting con�gurations of the on-line and optimal (o�-line) strategies.� The competitive ratio, or competitiveness, of the strategy is the in�mum of such c.In this thesis we consider competitive on-line strategies for several combinatorial opti-mization problems: paging, weighted caching, the k-server problem, and weighted matching.1

CHAPTER 1. INTRODUCTION 21.2 SummaryIn Chapter 2, we introduce new variations on the standard model of competitive analysis forpaging: allowing randomization, allowing resource-bounded lookahead, and loose competi-tiveness, in which competitive ratios over a range of fast memory sizes are considered andnoncompetitiveness is allowed provided the fault rate is insigni�cant. All of these variationslead to substantially reduced competitive ratios.In the remaining chapters we present and study a general technique for competitiveanalysis of linear optimization problems: we obtain competitive analyses by using linearprogramming duality to obtain bounds on the optimal cost. The technique, which we referto as the dual bounding technique, is implicit in previous work on paging, weighted caching,and weighted matching.In Chapter 3, we present and analyze the greedy dual algorithm, a new, deterministic, on-line strategy for weighted caching. The strategy generalizes the least-recently-used, �rst-in-�rst-out, and marking algorithms for paging and the balance algorithm for weighted caching.We analyze the strategy with the dual bounding technique. The analysis strengthens andgeneralizes a previous analysis of the balance algorithm for weighted caching.In Chapter 4, we explore the linear programming dual of the k-server problem. Weshow that the k-server problem is a special case of the assignment (minimum-cost, perfect,bipartite matching) problem, so that the dual problem is a special case of the well-studiedassignment dual.We show how existing paging strategies implicitly use the dual, and how the greedy dualalgorithm generalizes this implicit use of duality.We present a direct, intuitive interpretation of the k-server dual, and use it to give anintuitive analysis of the balance algorithm for weighted caching. We discuss how dualitytransformations are similar to potential function analyses, and derive a potential functionanalysis of the balance algorithm for weighted caching from the duality analysis.We discuss how the greedy dual algorithm is related to a previously analyzed on-lineassignment algorithm, and we discuss the structure of optimal k-server dual solutions.In Chapter 5, we use the dual bounding technique to reproduce the analyses of severalexisting weighted matching strategies. The purpose is to study the general applicability of

CHAPTER 1. INTRODUCTION 3the technique.We conclude the thesis with Chapter 6, in which we make some �nal comments, considerdirections for future work, and summarize our results.1.3 PagingIn this section we introduce concepts and results relevant to Chapter 2. We de�ne thepaging problem and relevant terminology, and summarize the pertinent paging strategies.We summarize old results on deterministic paging strategies, our new results on variations,and related work by other authors.� The paging problem is as follows: One is given a collection of items (representingpages), a fast memory (or equivalently a cache) capable of holding a �xed number kof these items, and a sequence of requests for items. In response to each request, therequested item must be moved into the fast memory if it is not already present. If kitems are already in the fast memory, some item (or items) must be evicted to makeroom for the new item. The problem is to choose which items to evict to minimizethe number of evictions.� A paging strategy is on-line if a strategy chooses which item to evict without knowl-edge of future requests.� A schedule satisfying a sequence of requests is an appropriate sequence of evictions.� The cost of the schedule is the number of evictions.� The cost of a strategy on a sequence for a given k is the cost of the schedule producedby the strategy, unless the strategy is randomized. In this case the cost of the scheduleis a random variable, and the cost of the strategy refers to the expected cost of theschedule.� Cr(X; k) denotes the cost of strategy X , using a fast memory of size k, on sequence r.We consider the following paging algorithms:

CHAPTER 1. INTRODUCTION 4Opt | Belady's algorithm [Bel66], which yields an optimal (minimum cost) schedule forpaging by evicting the item whose next request is further in the future.Lru | Least-recently-used, which evicts the item that has been requested least recently.Fifo | First-in-�rst-out, which evicts the item that has been in the fast memory thelongest.Fwf | Flush-when-full, which evicts all items when space is needed.Mark | The marking algorithm [FKL+88], which evicts an item chosen uniformly atrandom from the set of items not in the fast memory of Fwf when space is needed.� A conservative paging strategy is one that, with a fast memory of size k,� incurs no evictions before k + 1 distinct items have been requested, and� incurs at most k evictions during any subsequence of requests to at most kdistinct items.The reader may verify that all of the above strategies except Opt are on-line, and allare conservative.Throughout this thesis, X refers to a conservative, on-line paging strategy and r to asequence of r0r1 � � �rN of items, each of which represents a request. If \ri" is used to denotean item which is the subject of some request, it is intended that the request in question isthe ith. For instance, if r = aba, then, in \Let ri denote the last item requested," i could(in principle) be taken to be either 0 or 2; it is intended that i be taken to be 2.Generally, k refers to the fast memory size of an on-line strategy, and h to the fastmemory size of Opt. The competitive ratio of a strategy generally depends on k and h.Generally we assume h � k, sometimes restricting to the special case h = k.1.3.1 Previous ResultsThe �rst competitive analysis for paging, given by Sleator and Tarjan [ST85], showed thatLru and Fifo have competitive ratio k=(k � h + 1) and that no deterministic, on-linepaging strategy has a better competitive ratio. Sleator and Tarjan also showed that theleast-frequently-used paging strategy, for instance, is not competitive.

CHAPTER 1. INTRODUCTION 51.3.2 New ResultsRandomization can help on-line algorithms. When h = k, deterministic, on-line strategiesare at best k-competitive, whereas Mark is 2Hk-competitive.1 On the other hand, norandomized, on-line strategy is less than Hk-competitive.For h < k, Mark is roughly 2 ln kk�h -competitive, and no randomized, on-line strategyis less than roughly ln kk�h -competitive.Resource-bounded lookahead helps on-line algorithms:� A strategy is on-line with resource-bounded lookahead l if its choices depend only onthe past requests and the maximal pre�x of the future requests for which it will incurl evictions.A natural adaptation of Mark taking advantage of resource-bounded lookahead l is2(ln(k=l) + 1))-competitive when h = k, while a deterministic version of this algorithm isin turn maxf2k=(k � h+ l); 2g-competitive. These ratios are within a factor of about 2 ofoptimal. These results further explore the the trade-o�, implicit in Sleator and Tarjan'sanalysis, between knowing the future and having a larger fast memory.Relaxing the model helps on-line algorithms:� A strategy X has loose competitive ratio c(k) if, for any sequence r and numbers nand d, for all but o(n) values of k 2 f1; : : : ; ng,Cr(X; k) � max fc(k) � Cr(Opt; k); � � Cr(Opt; 1)g+ b;where � = 1=nd and b depends only on the starting con�gurations of X and Opt.Intuitively, if X is loosely c(k)-competitive, then, for almost any fast memory size k, thecompetitive ratio is at most c(k) or the cost is insigni�cant.For nondecreasing c(k), conservative paging strategies such as Lru, Fifo, and Fwf haveloose competitive ratio c(k) provided c(k)= lnk is unbounded and k=c(k) is nondecreasing,while Mark has loose competitive ratio c(k) provided c(k) � 2 ln ln k is unbounded and2 ln k � c(k) is nondecreasing. Fwf is not loosely c(k)-competitive for any c(k) which isO(ln k).1Hk = 1 + 1=2 + � � �+ 1=k � ln k.

CHAPTER 1. INTRODUCTION 61.3.3 Related ResultsMark is similar in spirit to the randomized on-line algorithm given by Borodin, Linial, andSaks for metrical task systems [BLS87].The analysis of Mark when h = k, and the corresponding Hk lower bound on compet-itiveness for randomized paging strategies, were discovered in the summer of 1988 by threeindependent groups: Fiat, Karp, and Luby; McGeoch and Sleator; and the author. Theresults were published jointly [FKL+88].McGeoch and Sleator [MS89] subsequently developed the partitioning algorithm, a ran-domized, on-line, Hk-competitive paging algorithm.Kalyanasundaram and Pruhs [KP91] consider a form of lookahead for on-line assignment(min-cost, bipartite, perfect matching). Instead of receiving the input in individual pieces,the on-line algorithm receives the pieces in groups. If the assignment problem instancearrives in t groups, they give an on-line algorithm with competitive ratio 2t� 1.Ron Graham, in his talk \How Much of the Future is Worth Knowing?" at the 2ndAnnual ACM-SIAM Symposium on Discrete Algorithms in January of 1991, mentionedresults concerning lookahead in the k-server problem with excursions. The gist of his talkwas that, in contrast to the k-server problem without excursions, lookahead can sometimeshelp the competitive ratio of on-line algorithms with excursions.Borodin, Irani, Raghavan, and Schieber [BIRS91] considered relaxing the standardmodel by restricting request sequences to paths in an \access graph". Their relaxationis intended to study locality of reference in paging. They characterize resulting competitiveratios in terms of the structure of the access graph: if the access graph is a tree of k + 1nodes, for instance, the competitive ratio of Lru is shown to be the number of leaves in thetree, minus 1.Our model for randomized strategies assumes the requests are independent of the spe-ci�c random choices of the strategy. This is false in some situations: if the time to servicea request can in
uence later requests, for instance. More appropriate models for this sit-uation, and general relations between randomized and deterministic competitiveness, wereconsidered by Ben-David, Borodin, Karp, Tardos, and Wigderson [BDBK+90].

CHAPTER 1. INTRODUCTION 71.4 The Weighted Caching and K-Server ProblemsIn this section we introduce two generalizations of the paging problem: the weighted cachingand k-server problems, which we study in Chapter 3. We enumerate the weighted cachingstrategies that we study in the chapter, and we summarize relevant previous results, ournew results, and related work by other authors.� The weighted caching problem is a generalization of the paging problem in which thecost to evict an item ri is a nonnegative function w(ri) of the item.� The k-server problem is a further generalization in which the cost is a nonnegativefunction d(ri; rj) of the item ri evicted and the item rj requested, and in which thefast memory is assumed to be initially full. Except for the special case of weightedcaching, d is assumed to be metric2.The k-server problem may be transformed as follows into a network problem: Given nitems, a fast memory of size k, and a request sequence r, form a complete, directed graphwith the n items as vertices and with the length d(ri; rj) of edge (ri; rj) equal to the costof evicting item ri from the fast memory and bringing in item rj. Initially, place k serverson the vertices corresponding to the items initially in the fast memory. Transform eachsubsequent request for an item into a request for service at the corresponding vertex of thegraph: when a vertex ri is requested, if no server resides on vertex ri, then a server mustbe moved to vertex ri from some vertex rj at a cost of d(ri; rj). This is the standard formof the k-server problem.For simplicity, we assume that all servers start on the �rst requested node, r0.3 Whenwe consider paging or weighted caching as restrictions of the k-server problem, when wewish to allow the on-line strategy to start with an empty fast memory, we assume thatrequest 0 is to an arti�cial vertex o s.t. d(o; �) � 0.We consider the following weighted caching and k-server algorithms:Opt | The algorithm that produces an optimal k-server or weighted caching schedule.2Symmetric, satisfying both the triangle inequality and d(ri; ri) = 0.3This assumption gives the on-line strategy less of a disadvantage than the usual assumption that thestrategy may choose the starting positions of the servers. The assumption is, however, without loss ofgenerality, in that it increases the cost of Opt by at most an additive constant.

CHAPTER 1. INTRODUCTION 8Balance | The balance algorithm [McG87, MMS88, MMS90, CKPV90] for k servers. Inresponse to request r, Balance moves the server s which minimizes Ws + d(s; r),where Ws is the distance traveled by s so far, and d(s; r) is the length of the edgefrom the node served by s to r.GreedyDual | The greedy dual algorithm [You91, You] for weighted caching. The al-gorithm maintains values on the servers. Initially the value of a server is the weightof the node it serves. When an unserved vertex is requested, the server values aredecreased by the minimum server value, some zero-valued server is moved, and itsvalue is raised to the weight of its new vertex. When a served vertex is requested, theserver value is reset anywhere between its current value and the weight of its vertex.1.4.1 Previous ResultsThe k-server problem is a natural abstraction of a number of on-line scheduling problemsand has been studied a great deal in the past several years. McGeoch [McG87], and byManasse, McGeoch, and Sleator [MMS88, MMS90] give a 2-competitive, residue-based 2-server algorithm. Irani and Rubinfeld [IR] present a 10-competitive variant of Balancefor 2 servers. Chrobak and Larmore [CL] present a 2-competitive 2-server algorithm basedon the concept of the closure of a metric space. Berman, Karlo�, and Tardos show thatHarmonic (a natural, memoryless, randomized algorithm which moves a server with prob-ability inversely proportional to the cost of the edge it must traverse) is competitive for 3servers.Currently the most general analyses are the following: Coppersmith, Doyle, Raghavan,and Snir [CDRS90] use properties of random walks to show thatHarmonic is k-competitivein a large class of graphs. Chrobak and Larmore [CL91a] give a natural, k-competitive, de-terministic algorithm for k servers on trees.4 Both of these analyses show that the respectivealgorithms are k-competitive for weighted caching.Manasse, McGeoch, and Sleator [MMS88, MMS90] show that in any metric space (orgraph with symmetric edge weights satisfying the triangle inequality) with at least k + 1distinct points, no deterministic, on-line strategy is better than (k=(k�h+1))-competitive.4\On trees" means that the distances in the graph are shortest path distances in some spanning tree ofthe graph.

CHAPTER 1. INTRODUCTION 9Balance has been considered previously by a number of authors. McGeoch [McG87],and Manasse, McGeoch, and Sleator [MMS88, MMS90] show thatBalance is k-competitive(when h = k) for the general k-server problem provided the number of distinct verticesrequested is k + 1. Chrobak, Karlo�, Payne, and Vishwanathan [CKPV90] show thatBalance is k-competitive (when h = k) for weighted caching.1.4.2 New ResultsGreedyDual, a new algorithm that generalizes Lru, Fwf, Mark, and Balance, is(k=(k� h + 1))-competitive for weighted caching. This result is the �rst result we know ofshowing reduced competitiveness when h < k for any problem other than paging.GreedyDual is motivated by the discovery of a general technique, called the dualbounding technique, implicit in the analyses of the strategies it generalizes.The technique stems from an answer to the question \How can we obtain a bound on theoptimal cost in order to show competitiveness?" The answer is \Formulate the problem of�nding the optimal solution as a linear program, so that each solution to the problem yieldsa feasible solution to the linear program of equal cost. The cost of any feasible solution tothe dual of this linear program is a bound on the optimal cost." The technique is to producesuch a lower bound and correlate it with the on-line algorithm to show competitiveness.1.4.3 Related ResultsKarlin, Manasse, McGeoch, and Owicki [KMMO90] considered randomized algorithms for2 servers on isosceles triangles: 3-node graphs with nonnegative symmetric edge weights1, d, and d, with d � 1=2. Lower and upper bounds on the optimal competitiveness ofrandomized, on-line strategies were shown. For integer d > 1 the lower bound exceeds H2.To see the relevance to weighted caching, note that any server problem with requests tothe vertices of a triangle is equivalent to a 3-node, nonnegatively weighted caching problem.55Given a triangle with sides of length l1, l2, and l3, choose w1, w2, and w3 to satisfy the 3 linear equationsli = Pj 6=i wj=2 for i = 1; 2; 3. Then the triangle inequalities li � Pj 6=i lj for i = 1; 2; 3 are equivalent tothe inequalities wj � 0 for j = 1; 2; 3. Instead of charging li for a server to traverse edge i of the triangle,imagine charging wj=2 when a server enters or leaves vertex j. The charges are equivalent, and the latter isequivalent to a 3-node weighted caching problem with nonnegative weights w1, w2, and w3. Note that thisconstruction may be reversed to obtain a triangular server problem from any 3-node, nonnegatively-weightedcaching problem.

CHAPTER 1. INTRODUCTION 10Thus, for some server problems, randomized algorithms can not be as competitive as forthe paging problem.More recently, lower bounds for randomized algorithms for the general k-server problemhave been studied by Karloof, Rabani, and Ravid [KRR91].GreedyDual appears to be closely related to Chrobak and Larmore's algorithm for kservers on trees [CL91a] as the algorithm applies to the weighted caching problem.Duality has been used to obtain lower bounds in other contexts. Yao [Yao82] observedthat, as a consequence of Von Neumann's min-max theorem for zero-sum games, a lowerbound on the complexity of a randomized algorithm may be obtained by �xing an inputdistribution and showing a lower bound on the expected complexity of any deterministicalgorithm for that distribution. (The min-max theorem may be viewed as a special case oflinear programming duality.)Lov�asz [Lov89] used duality directly, but in a similar way, to give lower bounds onrandomized communication complexity.1.5 The K-Server DualIn this section we introduce the concepts relevant to Chapter 4. We summarize the relevantk-server strategies, old results, and our new results.The following k-server strategies are considered:K-Phase | Roughly, K-Phase develops a nonoptimal solution to the dual of the k-serverproblem on-line and uses complementary slackness conditions to determine its choices.Perm for k servers | Perm, an on-line assignment algorithm, interpreted as a k-serverstrategy via the reduction (see Section 4.1) of the k-server problem to assignment.Perm for k servers is the following: keep servers on k vertices that could currentlybe covered by Opt (with h = k) if the current request were the last.Work� | The \work" algorithm. In response to the current request r, let S denote theset of possible states of Opt's k servers after serving r, let Cs denote the cost incurredby Opt given that its servers are in state s 2 S, let w denote the current state of

CHAPTER 1. INTRODUCTION 11the on-line algorithm's servers, and let d(w; s) denote the cost of moving servers fromstate w to s. Work� moves its servers into a state s 2 S minimizing �d(w; s) + Cs.We mention Work because Work0, for the k-server problem, is Perm for k servers.1.5.1 Previous ResultsChrobak et al. [CKPV90] formulated the problem of �nding an optimal k-server schedule asan integral capacity min-cost max-
ow problem, and conversely gave a linear-time reductionfrom the assignment (min-cost, bipartite, perfect matching) problem to the o�-line k-serverproblem.Kalyanasundaram and Pruhs [KP91] showed that a c(k)-competitive (when h = k)k-server algorithm implies a (2c(k) � 1)-competitive on-line assignment algorithm for as-signments in 2k-node bipartite graphs. Kalyanasundaram and Pruhs, and independentlyKhuller, Mitchell, and V. Vazirani [KMV90], discovered Perm, which is (2n�1)-competitivein 2n-node bipartite graphs.A number of researchers, including McGeoch and Sleator (stemming from their workon residues); Chrobak and Larmore; and Karlo�, have conjectured that Work1 is k-competitive [McG91]. The generalization to Work� is due to Chrobak and Larmore[CL91b].1.5.2 New ResultsAn optimal k-server schedule may be found by formulating the problem as an assignment(minimum-weight bipartite matching) problem. The intuition for this formulation is simple:each request represents a demand for a server from previous requests and a supply of a serverto later requests; the cost of supplying the jth demand with a server from the ith request,where i < j, is the distance from the ith requested vertex to the jth requested vertex. Theformulation, which is described in detail in Chapter 4, maintains the on-line interpretationof the problem.K-Phase is a new algorithm, invented by generalizing the implicit use of duality inLru. For paging, Lru is a special case of K-Phase. For weighted caching, Balance isobtained from K-Phase by ignoring served requests, while GreedyDual is essentially a

CHAPTER 1. INTRODUCTION 12combination of K-Phase and Balance. (GreedyDual generalizes both.) For the generalproblem, K-Phase is not competitive.Lower bounds obtained from dual solutions are similar to amortized analyses with poten-tial functions, in that each can be viewed as transforming the costs of the original problemand then applying simple, \local" lower bounds. Balance for weighted caching has a nice,intuitive analysis using duality which illustrates this similarity, and which leads directly toa potential function analysis.K-Phase may be thought of as an approximation to Perm for k servers, in that eachmay be viewed as developing a solution to the dual problem on-line, and using complemen-tary slackness conditions to guide its choices. The di�erence is that K-Phase develops anonoptimal dual solution.The formulation of the k-server problem as an assignment problem, together with theunderstanding of dual solutions implicit in the analysis ofK-Phase, provide some suggestiveinsight into the structure of optimal solutions to the general k-server dual.1.6 Duality Analyses of Weighted Matching StrategiesIn this section we introduce the weighted matching algorithms considered in Chapter 5, andsummarize their analyses, reproduced in the chapter with the dual bounding technique.� A matching is a subset of the edges of a graph such that each vertex in the graphadjoins at most one edge of the subset.� A perfect matching is a matching such that each vertex adjoins exactly one edge.� The cost of a matching in a weighted graph is the sum of the weights of the edges inthe matching.� An assignment is a perfect matching in a bipartite graph. Abusing terminology, if thebipartite graph G = (U;W;E) with vertex set U [W and edge set E � U �W hasjU j 6= jW j, we also call a matching of size minfjU j; jW jg an assignment.� A metric graph is a complete, or complete bipartite, graph with symmetric edgeweights satisfying the triangle inequality: the weight of any edge is at most the weight

CHAPTER 1. INTRODUCTION 13of any path connecting the endpoints.Matchings and weighted matchings are well-studied.For maximum-weight matching problems, we assume the edge weights are nonnegative.We consider the following three o�-line matching algorithms:Min | An algorithm that produces a min-cost perfect matching.Max | An algorithm that produces a max-weight matching.GreedyMax2 | The greedy heuristic for max-weight matching [Avi83], which generatesa matching by starting with the empty matching and repeatedly adding a maximum-weight edge not adjacent to any edge currently in the matching.� The on-line assignment problem in a weighted bipartite graph G = (U;W;U �W) isas follows. The vertices of U are presented in some order. When a vertex is presented,costs of all adjoining edges are revealed, and some such edge must be added to thematching.We consider the following deterministic, on-line assignment algorithms:GreedyMax3 | The greedy algorithm for on-line, maximum-weight, bipartite matching[KVV90, KP91], which adds the max-weight edge that adjoins the presented vertexbut is not adjacent to any edge already in the matching.Perm | The permutation algorithm for on-line assignment [KP91, KMV90], which addsan edge adjoining the presented vertex to maintain the following invariant: the set ofvertices in W adjoining some edge in the matching may be matched to the set P ofpresented vertices by a matching that is minimum-cost among maximum matchingsin GP = (P;W; P �W).1.6.1 Reproduced ResultsThe following results are reproduced using the dual bounding technique:

CHAPTER 1. INTRODUCTION 14� GreedyMax2 produces a matching within a factor of two of maximum in any graph.This is a result by Avis [Avi83]; a special case of the result is mentioned by Karp,Vazirani, and Vazirani [KVV90].� GreedyMax3 produces an assignment within a factor of three of maximum in anycomplete, bipartite, metric graph. This is a result by Kalyanasundaram and Pruhs[KP91].� Perm produces an assignment within a factor of 2n� 1 of minimum in any complete,2n-node, bipartite, metric graph. This is a result by Kalyanasundaram and Pruhs[KP91] and Khuller, Mitchell, and V. Vazirani [KMV90].

Chapter 2PagingIn this chapter, we consider three variants on the standard model for competitive analysis ofpaging strategies: allowing randomization, allowing resource-bounded lookahead, and loosecompetitiveness.2.1 Partitioning a Sequence into K-PhasesWe begin by explaining how to break a sequence of requests into k-phases. K-phases serveas an intermediate step in our competitive analyses for paging, providing lower bounds onoptimal schedule costs and upper bounds on on-line schedule costs.� The k-phase partitioning (a partitioning into k-phases, generally NOT a partitioningof size k) of a paging request sequence r is de�ned as follows. The �rst k-phase isthe maximal pre�x of r containing requests to at most k distinct items. In general,the ith k-phase is the maximal pre�x of ri containing requests to at most k distinctitems, where ri denotes r with the �rst i� 1 k-phases removed.Thus, the ith k-phase starts exactly with the request that causes Fwf with an (initiallyempty) fast memory of size k to
ush its memory for the i� 1st time.Generally, \a k-phase", or \a phase" will refer to one that is nonempty. Thus, eachk-phase (except the last) of a sequence contains requests to k distinct items, and thelast contains requests to at least 1 and at most k distinct items.15

CHAPTER 2. PAGING 16abacd�EaFeab�CDebFigure 1: A 4-phase partitioning, with new requests in capitals.� The new requests within a k-phase (other than the �rst) are requests to items thatwere not requested yet in this phase or the previous. Note that at least the �rstrequest of every phase (other than the �rst) is new.� Nr(k) denotes the average number of new requests per k-phase other than the �rst.� Pr(k) denotes the number of (nonempty) k-phases other than the �rst.The following lemma characterizes optimal schedule costs su�ciently for all of our com-petitive analyses for paging.Lemma 2.1.1 ([You91, You])Cr(Opt; h)=Pr(k) � k � h+ 1 (1)Cr(Opt; h)=Pr(k) � (k � h+Nr(k))=2 (2)Cr(Opt; h)=Pr(h) � Nr(h) (3)Proof: (1) In the optimal schedule for r with a fast memory of size h, after the �rst requestof the ith (i > 1) k-phase, at most h � 1 of the k distinct items requested in the previousphase remain in the fast memory. Thus, at least k � h + 1 evictions occur after the �rstrequest of the i� 1st phase and before the second request of the ith.1(2) Let mi (i > 1) denote the number of new requests in the ith k-phase. Then, duringthat k-phase and the previous, k + mi distinct items were requested. Consequently, anyschedule for r with a fast memory of size h has at least k � h +mi evictions in these two1This argument is essentially due to Sleator and Tarjan [ST85].

CHAPTER 2. PAGING 17phases. Thus one can argue that the total number of evictions is at leastmax8<:Xi�1(k � h +m2i+1);Xi�1(k� h+m2i)9=; � (k � h+Nr(k))Pr(k)=2:(3) Any (o�-line) schedule that chooses to evict any item that will not be requestedduring the current phase incurs a cost of at most mi in the ith phase.With this lemma, the problem of �nding a competitive schedule for r is essentiallyreduced to the sub-problem of �nding a competitive schedule for each k-phase of r. Forexample:Lemma 2.1.2 ([You91, You]) For any conservative paging strategy X, sequence r, andk � h, Cr(X; k) � kk � h+ 1Cr(Opt; h):Proof: Any schedule produced by a conservative paging strategy has no evictions in the�rst phase and at most k evictions in each subsequent phase, while, by (1) of lemma 2.1.1,for each subsequent phase the optimal schedule incurs2 a cost of at least k � h+ 1.Corollary 2.1.3 ([ST85]) Lru, Fifo, and Fwf are k=(k � h + 1)-competitive.Recall that Sleator and Tarjan [ST85] showed such strategies are optimally competitive:Lemma 2.1.4 ([ST85]) No deterministic paging strategy is better than (k=(k � h + 1))-competitive.2.2 Randomized PagingThe proof of bound (3) essentially shows that the (o�-line) strategy that evicts items thatwill not be requested during the current phase, thus incurring an eviction only in responseto a new request, is 2-competitive.2Note that the k � h+ 1 evictions might not be incurred during the phase. Let ai denote the number ofevictions incurred by the on-line strategy in the ith phase, and let bi = k � h+ 1 for 1 < i � Pr(k). Thenthe on-line cost isPi ai, the optimal cost is at leastPi bi (by lemma 2.1.1), and ai � bik=(k�h+1). Thus,the on-line cost is at most k=(k � h+ 1) times the optimal cost.

CHAPTER 2. PAGING 18This suggests that the goal of an on-line algorithm should be, to the extent possible, toevict the items that will not be requested during the phase. Deterministic algorithms suchas Lru attempt this by distinguishing between items in the fast memory that have beenrequested this phase, and items that have not, and evicting the latter. Of course, itemsthat have not yet been requested this phase may be requested later during the phase, sothis strategy is imperfect. Nonetheless, with each eviction, any on-line algorithm followingthis strategy gets hold of one more of the items that will be requested in the phase, thusincurring at most k evictions before it has all of the items that will be requested during thephase in the fast memory.Consider the two request sequences ABCA and ABCB (each with 2-phase partitioningof the form AB�CX). If an on-line strategy using a fast memory of size 2 is deterministic,it will incur 2 evictions on one of these sequences and 1 on the other. The optimal schedulewill incur 1 eviction. Thus, no deterministic strategy can be better than 2-competitive onthese two sequences. From the standpoint of the discussion in the previous paragraph, thedeterministic algorithm pays 2 in the worst case because it must commit to a guess aboutwhich item will not be requested during the phase, and in the worst case it will be wrong.From this perspective, a natural thing to try is not committing to either guess, insteadchoosing randomly. If, after receiving requests AB, the strategy evicts A or B with equalprobability in response to requestC, the strategy will incur an expected cost of 1.5 on eithersequence. Thus a randomized strategy can be 1.5-competitive on the two sequences.Mark, the randomized paging strategy, may be described as follows:MarkMaintain phases explicitly. When room for a new item is required, evict an item thathas not yet been requested during the current phase uniformly at random.Next we show the following:Lemma 2.2.1 ([FKL+88]) Mark is 2Hk-competitive when h = k.Proof: We show that in a k-phase with m new requests, the expected number of evictionsby Mark is bounded by m(Hk �Hm + 1). Bound (2) of lemma 2.1.1, applied with h = k,implies that the optimal schedule incurs a cost of at least m=2 for the phase, so this shows

CHAPTER 2. PAGING 19the result.3An old request is a request to an item requested in the previous phase but not yet in thisphase. A repeat request is a request to an item requested previously in this phase. Thereare k �m old requests, and an arbitrary number of repeat requests.Just before the ith old request, at most m + i � 1 distinct items have been requestedthis phase, so at least k �m� i+ 1 of the k � i+ 1 items requested in the previous phasebut not yet in this phase remain in the fast memory. Each such item is in the memorywith equal probability, so the probability that the ith old request will cause an eviction isat most m=(k� i+ 1).Thus the expected number of evictions in response to old requests is at mostmk + mk � 1 + � � �+ mm+ 1 = m(Hk �Hm):In addition, each of the m new requests causes an eviction, while none of the repeatrequests causes an eviction. This gives the result.For h < k, one can showLemma 2.2.2 ([You91]) When h < k, Mark is2�ln kk � h � ln ln kk � h + 12��competitiveif k=(k � h) > e and 2-competitive otherwise.Proof: The previous proof showed that the expected number of evictions in a phase withm new requests is at most m(Hk �Hm + 1).The bound Hk �Hm � ln km follows from an integration argument:Hk �Hm = kXi=m+1 1i = Z km dxdxe � Z km dxx = ln km:By (2) of lemma 2.1.1, the optimal schedule with a fast memory of size h incurs a costof at least (k � h+m)=2 for the phase. Thus the competitiveness is bounded by 2�maxm f(m) = m(ln k � lnm+ 1)k +m� h :3Again, note that the cost is not necessarily incurred during the phase. See the footnote in the proof oflemma 2.1.2.

CHAPTER 2. PAGING 20Next we use elementary analytic techniques to bound f(m).First, f 0(m) = k�h(k+m�h)2 �ln km � mk�h�, so f has a single maximum at m = m� withm� = (k � h) ln km� .From f(m) = mk+m�h (ln km + 1) and m� = (k � h) ln km� we derive the equality:f(m�) = (k � h) ln km� �ln km� + 1�k � h+ (k � h) ln km�= ln km�= ln kk � h � ln ln km�= ln kk � h � ln f(m�) (4)Applying (4), the monotonicity of ln, and assuming WLOG that f(m�) � 1, yieldsf(m�) = ln kk � h � ln�ln kk � h � ln�ln kk � h � ln f(m�)��� ln kk � h � ln�ln kk � h � ln ln kk � h�� ln kk � h � ln ln kk � h + 12 :The last inequality follows from the general inequality (for x � 1) ln(x � ln x) � ln x =ln(1� lnxx) � ln(1� 1e) � �12 .In fact, Mark is within approximately a factor of two of optimally competitive:Lemma 2.2.3 ([You91]) The competitive ratio of any randomized, on-line paging strategyis at least Hk when h = k,4 and at leastln kk � h � ln ln kk � h � 2k � hwhen h < k and k=(k� h) � e.(Note that when k=(k� h) � e the analysis of Mark shows that its competitive ratio is atmost 2.)4An alternate proof of the lower bound when h = k is given by Fiat et al. [FKL+88]. The advantage ofthis proof is that it generalizes nicely to h < k.

CHAPTER 2. PAGING 21Proof: We adapt Sleator and Tarjan's [ST85] lower bound on deterministic, on-line pagingstrategies.Let X denote the on-line strategy, �x � > 0 arbitrarily small, and let m denote a positiveinteger to be determined later.We generate a sequence of requests in segments. Each segment is generated as follows.Generating an Adversarial Segment1. Mark the h items currently in Opt's fast memory.2. Request and mark k � h+m items not previously requested.3. Unmark the last such item requested.4. For i = 1; : : : ; h� 1(a) While some unmarked5 item has probability less than 1 � � of being in X'sfast memory, request such an item.(b) Request and unmark a marked item least likely to be in X's fast memory.If X is competitive, only a bounded number of requests can be generated in step (4a),otherwise X incurs an unbounded cost on a subsequence of requests to less than h items.Thus, if X is competitive, the above method in fact generates a �nite length segment ofrequests.Opt can service the segment, incurring at most k � h + m evictions, by choosing toevict any item except the at most h items that will be unmarked by the end of the segment.By following such a strategy, after the k� h+m requests in step (2), the fast memory willcontain the h items that will be unmarked by the end of the segment; no others will besubsequently requested.X , in addition to the cost of k � h + m incurred in response to step (2), will incur anexpense for each of the h � 1 requests to marked items. Before the request to a markeditem in the ith iteration of the loop, the expected number of unmarked items in the X 'smemory is at least i(1� �), so the expected number of the marked items in the fast memoryis at most k � i(1� �). Since there are k +m� i of these, some marked item is not in thefast memory with probability at least 1� (k� i(1� �))=(k+m� i). Thus, the probabilityof an eviction in the ith iteration of the loop is at least (m� i�)=(k +m� i).5By \unmarked", we mean previously marked during the segment, but not currently marked.

CHAPTER 2. PAGING 22It follows that the expected number of evictions can be made arbitrarily close tok � h+m+ mk +m� 1 + mk +m� 2 + � � �+ mk +m� h + 1= k � h+m+m(Hk+m�1 �Hk+m�h);and a lower bound on the competitiveness is given bymaxm=1;2;::: 1 + mk � h +m(Hk+m�1 �Hk+m�h): (5)When h = k, expression (5) is maximized at Hk when m = 1. It remains only to provethat expression (5) is at least ln kk�h � ln ln kk�h � 2k�h when h < k and kk�h � e.Let x = ln kk�h , so x � 1, and m = by = (k � h)(x� 1) + 1c, so m � 1. Then1 + mk � h +m(Hk+m�1 �Hk+m�h)� 1 + �1� k � hk � h+m�� �Hk�1 �Hk+m�h�2 � 2k +m� h� 1�� 1 + �1� k � hk � h+m�� �ln kk +m� h � 1 � 2k � h�� 1 + �1� k � hk � h+ y � 1�� �ln kk + y � h� 1 � 2k � h�= 1 + �1� 1x��ln k(k � h)x � 2k � h�= 1 + �1� 1x��x� ln x� 2k � h�� x� ln x� 2k � h:The �rst inequality follows from the expansion of Hk+m and Hk+m�h+1 . The second followsfrom Ha�Hb � ln((a+ 1)=(b+ 1)) (which follows from an integration argument) and fromm � 1. The third follows from y � 1 � m � y. The rest are relatively straightforward.2.3 Resource-Bounded LookaheadIt is easy to see that allowing the on-line algorithm to see the next l requests in decidingwhich item to evict does not help it in the worst case: for any on-line algorithm withlookahead l, construct an equally competitive on-line algorithm with lookahead 1 as follows.On request sequence r1r2r3 � � �, simulate the algorithm with lookahead l on the request

CHAPTER 2. PAGING 23sequence rl1rl2 � � � (where xl represents x repeated l times), and have the algorithm withlookahead 1 mimic the actions of the simulated algorithm on the �rst request of each rli.Instead, we consider resource-bounded lookahead.In this model, the paging strategy is given a lookahead queue, the contents of whichit knows. The strategy may either service the request at the head of the queue (providedthere is one) or add an additional request (if there is one) to the end of the queue.At a given moment, the contents of the queue form a subsequence of the entire requestsequence. The strategy is on-line with resource-bounded lookahead l provided it never incursmore than l evictions on any such subsequence.6A more intuitive description of resource-bounded lookahead is as follows: Imagine thatthe resource being measured by the cost to the on-line algorithm is time. Speci�cally, if thealgorithm incurs cost c to handle a request given at time t, then the next request is givenat time t+ c. In this interpretation, the on-line algorithm is allowed to look ahead into thefuture as many requests as it wants; it is on-line with resource-bounded lookahead of l if itnever looks more than l time units into the future.Mark[l], the marking algorithm with resource-bounded lookahead of l, is an adaptation ofMark that uses resource-bounded lookahead. Mark[l] mimicsMark but, at the beginningof each phase, adds requests to the end of the queue until either k distinct items or l newrequests are in the queue (or there are no more requests). Subsequently, instead of markingall items in the fast memory, it marks only those items not requested in the lookaheadqueue. Finally, when an item must be evicted during the phase, a marked item is evicteduniformly at random.Lemma 2.3.1 When h = k, Mark[l] is 2(ln(k=l) + 1)-competitive.76This is not a very realistic notion of lookahead, but it is theoretically interesting | it leads to reducedcompetitive ratios. The challenge, of course, is to �nd a model which is both realistic and interesting in thissense; we present resource-bounded lookahead as a small step in that direction.More realistic alternatives might be considering loose competitiveness of strategies with regular lookahead,assuming an average (rather than consistent) resource-bounded lookahead of l, or assuming that the sequenceis �xed by an adversary but the lookahead is stochastic. None of these alternatives seems very promising onpreliminary consideration.7When h < k, essentially the proof of the lemma shows that the competitive ratio is bounded bymaxf2; maxm=l;l+1;::: m(Hk �Hm + 1)=(k � h+m)g:The ratio in the expression (see the proof of lemma 2.2.3) is unimodal, with a single maximum aroundm� � (k � h) ln(k=(k � h)). For l larger than m�, the ratio is maximized when m = l. For l smaller, the

CHAPTER 2. PAGING 24Proof: Consider the k-phase partitioning of an arbitrary request sequence. At the begin-ning of a given phase, if m, the number of new requests in the phase, is less than l, then allitems requested in the phase will be in the lookahead queue. Thus, m items will be markedand subsequently evicted during the phase, while (from lemma 2.1.1) the optimal schedulehas at least m=2 evictions for the phase.Otherwise, an analysis essentially the same as forMark shows that the expected numberof faults in the phase is at most m(Hk �Hm + 1). Again the optimal schedule has at leastm=2 evictions for the phase. Since m � l, and Ha �Hb � ln(a=b), this gives the result.Let Dmark[l] denote any deterministic version of Mark[l]: Mark[l] with the randomchoices replaced by arbitrary deterministic choices.Lemma 2.3.2 Dmark[l] is maxf2k=(k� h+ l); 2g-competitive.Proof: As in the previous proof, either m < l, in which case at most m evictions areincurred, while the optimal schedule incurs a cost of (k� h+m)=2 for the phase, or m � l,in which case at most k evictions are incurred, while the optimal schedule has at least(k � h + l)=2 evictions for the phase.These upper bounds seem weak, in that the algorithms seem not to take full advantageof the lookahead. Yet the following lemma shows that they are roughly within a factor of2 of optimally competitive:Lemma 2.3.3 A (randomized) on-line paging strategy with resource-bounded lookahead lusing a fast memory of size k can be simulated by a (randomized) on-line paging strategyusing a fast memory of size k + l � 1, so that on any sequence the cost of the standardstrategy is no more than the cost of the simulated strategy.Proof: The simulated strategy cannot ask for an item to be added to the queue if thereare currently l distinct items in the queue and not in the fast memory, as it risks having arequest to an item not in the fast memory or in the queue added to the queue, which wouldcause l + 1 distinct items to be in the queue and not in the fast memory, which would inturn violate the assumption that it is resource-bounded lookahead l.ratio is maximized independently of l at m = m�. It seems likely that a better analysis, either of Mark[l]or a variant, could be given when h < k and l < m�.

CHAPTER 2. PAGING 25Thus, at most k + l � 1 distinct items are either in the fast memory or in any but the�nal spot of the queue. Simulate the strategy by keeping these items in our fast memory:service each request at the instant it ceases to be the �nal request in the queue, evicting anitem when the simulated strategy evicts it.Corollary 2.3.4 No randomized, on-line strategy with resource-bounded lookahead of l isbetter than �ln k + l � 1l� 1 � ln ln k + l� 1l� 1 � 2l � 1��competitivewhen h = k.No deterministic, on-line strategy with resource-bounded lookahead of l is better thank + l� 1k + l � h�competitive:Proof: Follows directly from lemmas 2.1.4, 2.2.3, and 2.3.3.2.4 Loose CompetitivenessFigure 2 shows graphs of Cr(X; k)=Cr(Opt; k) versus k for a number of paging strategies Xon a typical sequence8 r. For large k, the ratio is not near k or even Hk .Such simulations led us to consider loose competitiveness. Recall that a paging strategyX is loosely c(k)-competitive if, for any d, as n!1, for any request sequence r, the numberof k 2 f1; :::; ng such thatCr(X; k) � maxfc(k)Cr(Opt; k); Cr(Opt; 1)=ndg+ bis o(n), where b depends only on k and the initial server locations in the schedules producedby Opt and X for k servers serving r.In this section we show that conservative paging strategies (including Lru, Fifo, andFwf) are loosely c(k)-competitive provided c(k)= lnk ! 1 and both c(k) and k=c(k) are8The input sequence, traced by Dick Sites [SA88], consists of 692,057 requests to 642 distinct pages of1024 bytes each. The sequence was generated by two X-windows network processes, a \make" (program com-pilation), and a disk copy running concurrently. The requests include data reads and writes and instructionfetches.

CHAPTER 2. PAGING 26
0 100 200 300 400 500

Cache Size

2

4

6

8

Competitiveness

lru
mark

opt

fifo

fwf

randFigure 2: Typical competitiveness vs. fast memory size.nondecreasing. We show that Mark is loosely c(k)-competitive provided c(k)� 2 ln ln k !1 and both c(k) and 2 ln k � c(k) are nondecreasing. We also give a tight lower bound forFwf: Fwf is not loosely c(k)-competitive if c(k) is O(ln k).2.4.1 Upper Bounds for Lru, Fifo, Fwf, and MarkFirst, we summarize the bounds useful for the analysis:Lemma 2.4.1 ([You91, You]) Let X denote any conservative paging strategy. ThenPr(k) � Cr(X; k)=k (6)Nr(k) � 2kCr(Opt; k)Cr(X; k) (7)Nr(k) � k exp�1� 12 Cr(Mark; k)Cr(Opt; k) � (8)(Recall that Pr(k) and Nr(k) are, respectively, the number of k-phases of r (other than the�rst) and the average number of new requests per k-phase (other than the �rst) of r.)Proof: (6) Follows directly from the de�nition of conservativeness.(7) Follows from the de�nition of conservativeness and bound (2) of lemma 2.1.1.

CHAPTER 2. PAGING 27
0 100 200 300 400 500 600

Cache Size

0.005

0.01

0.015

0.02

Fault Rate
lru

opt

Figure 3: Typical fault rate vs. fast memory size.(8) Follows from bound (2) and from the proof in lemma 2.2.1 that, in a k-phase withm new requests, Mark incurs a cost of at most m(Hk �Hm + 1).Note that, for the on-line paging strategies we consider, high cost in an absolute senseimplies high Pr(k), while high cost relative to the optimal schedule implies low Nr(k).The essential observation for the analysis is that if Nr(k) is low, then a small increasein k will result in a large decrease in the number of phases:Lemma 2.4.2 ([You91, You]) Fix a sequence r. For any k, and any k0 � k + 2Nr(k),Pr(k0) � 34Pr(k):Proof: Let p0; : : : ; pPr(k) denote the k-phase partitioning of r.At least half (and thus at least dPr(k)=2e) of the Pr(k) k-phases p1; :::; pPr(k) have anumber of new nodes not exceeding 2Nr(k). Denote these by pi1 ; : : : ; pidPr(k)=2e :If we modify the k-phase partitioning of r by joining pij�1 and pij for odd j, we obtain acoarser partitioning of r into at most Pr(k)�dPr(k)=4e pieces. In the coarser partitioning,pieces resulting from a join reference at most k + 2Nr(k) � k0 distinct nodes, while theother pieces reference at most k distinct nodes.

CHAPTER 2. PAGING 28If we now consider the k0-phase partitioning, we �nd that each k0-phase must containthe �nal request of at least one of the pieces in the coarser partition, because if a k0-phasebegins at or after the beginning of a subsequence of requests to at most k+2Nr(k) distinctnodes, it will continue at least through the end of the subsequence.Thus Pr(k0) � Pr(k)� dPr(k)=4e � 34Pr(k).Thus, there are few k with high Pr(k) and low Nr(k):Theorem 2.4.3 For any � > 0;M > 0, and any sequence r, the number of k = 1; 2; : : :such that Nr(k) �M and Pr(k) � �Pr(1) (9)is O(M ln 1�).Proof:Let s be the number of k violating the condition.We can choose l = ds=d2Mee such k so that each is at distance 2M from the preceding.Then we have 1 � k1 � k2 � : : :� kl such that for each iNr(ki) � M; (10)ki+1 � ki � 2M; and (11)Pr(kl) � �Pr(1): (12)Then for any i, by (10) and (11), ki+1 � ki + 2Nr(ki), so, by lemma 2.4.2, Pr(ki+1) �(3=4)Pr(ki). Inductively, Pr(kl) � (3=4)lPr(1).This, and (12), imply (3=4)l � �, sods=d2Mee = l � ln4=3 1� :This implies the bound on s.Recall that high absolute cost implies high Pr(k), while high relative cost implies lowNr(k). The preceding theorem thus implies that there are few k such that both absoluteand relative costs are high, which shows loose competitiveness:

CHAPTER 2. PAGING 29Corollary 2.4.4 Let X denote any conservative paging strategy and C : N+ ! R+ anondecreasing function.X is loosely c(k)-competitive provided that k=c(k) is nondecreasing andc(k)ln k !1; (13)while Mark is loosely c(k)-competitive provided 2 ln k � c(k) is nondecreasing andc(k)� 2 ln ln k!1: (14)Proof: Let X denote either any conservative paging strategy, in which case we assumecondition (13) and that k=c(k) is nondecreasing, orMark, in which case we instead assumecondition (14) and that 2 ln k � c(k) is nondecreasing.We show that, for any d > 0, n > 0, and request sequence r, the number of violatorsk 2 f1; : : : ; ng is o(n), where a violator is a k such thatCr(X; k) � maxfc(k)Cr(Opt; k); Cr(Opt; 1)=ndg:Let k be a violator. Then bound (6) impliesPr(k) � Cr(X; k)k � Cr(Opt; 1)nd+1 = 1nd+1Pr(1): (15)Bound (7) and the monotonicity of k=c(k) implyNr(k) � 2kCr(Opt; k)Cr(X; k) � 2kc(k) � 2nc(n) : (16)Since each violator k satis�es (15) and (16), by theorem 2.4.3, the number of violators isO ��ln nd+1�n=c(n)�. This is o(n) by assumption (13).If X = Mark, then bound (8) and the monotonicity of 2 lnk � c(k) imply, for eachviolator k, Nr(k) � k exp�1� Cr(Mark; k)2Cr(Opt; k) �� k exp(1� c(k)=2)� n exp(1� c(n)=2);so that by theorem 2.4.3 the number of violators is O ��ln nd+1�n exp(1� c(n)=2)�. Thisis o(n) by assumption (14).

CHAPTER 2. PAGING 302.4.2 A Lower Bound for FwfIn the remainder of this section, we show that corollary 2.4.4 is tight for Fwf.First, we prove theorem 2.4.5, which shows that lemma 2.4.2 is qualitatively tight in avery strong sense: for any n > 0 and appropriately monotonic and smooth � : N ! N ,there exists a request sequence r such that, for any k � n, the average number of newrequests per k-phase of r is at most 5�(k), while the number of (k+�(k))-phases is at least1/8 the number of k-phases.A consequence of this theorem is that the bound provided by theorem 2.4.3 is tight inthe worst case.Since the costs of Fwf andOpt for a given k on a given sequence are essentially capturedby the average number of new requests per phase and the number of phases, as a corollarywe show the lower bound for Fwf.Theorem 2.4.5 Fix any n > 0, and any function � : N ! N such that, for all k 2 N ,�(k) � �(k + �(k)) � 2�(k) and 1 � �(k) � k:Then there exists a request sequence r such that for k = 1; : : : ; nNr(k) � 5�(k) and Pr(k + �(k))Pr(k) � 18 :Proof: Fix n and � as described above.Let k0 = 1, and ki+1 = ki + �(ki) for i = 0; 1; : : :.The proof is in two parts:I. We inductively construct sequences s0; s1; : : : such that, for j � i,Psi(kj) = 2i�j � 1; andNsi(kj) = �(kj):II. We show that for any k; i; j s.t. k < kj < kiPsi(k + �(k))=Psi(k) � 1=4� 2j�i�1; andNsi(k) � 5�(k):

CHAPTER 2. PAGING 31Any si such that ki�2 > n then proves the theorem, since k � n implies k < ki�2 < ki,which in turn implies Psi(k + �(k))=Psi(k) � 1=4� 1=8 = 1=8.(I.) Each request in each si is to a member of N , but may be represented either by themember itself or by the special symbol 'x', which represents a unique request to a newitem. To interpret such a sequence as a request sequence per. se., for instance in order toperform a k-phase partitioning, replace each special symbol with a request to a unique item:a member of N not requested anywhere else in the sequence.Inductively Constructing si1. Let s0 = x.2. For i = 0; 1; 2; : : :(a) Let s0i si.(b) Scan s0i from left to right. After �(ki+1) � �(ki) special symbols have beenscanned, continue scanning, replacing each occurrence of the special symbolwith a request to the smallest element of N not requested anywhere else inthe sequence.(c) Let si+1 = si; s0i.Inductively, one can verify the following for j < i:� Each si consists of 2i requests to ki distinct items and has �(ki) special symbols.� The �rst subsequence of 2j requests of si is a copy of sj .� Each subsequent (nonoverlapping) subsequence of length 2j is a copy of sj , except thateach special symbol might be replaced by a request to an item that is not requestedin the preceding subsequence of length 2j .Now, considering the successive nonoverlapping subsequences of length 2j in si, each re-quests kj distinct items, and each but the �rst begins with a request to an item not inthe preceding subsequence. Thus, the successive subsequences exactly form the kj-phasepartitioning of si. Thus, 1 +Psi(kj) = 2i�j . (Recall that Pr(k) is the number of nonemptyk-phases in r other than the �rst.)Furthermore, the new requests in each kj-phase consist exactly of the �(kj) requestswhich correspond to special symbols in sj . Thus, Nsi(kj) = �(kj).

CHAPTER 2. PAGING 32(II.) Fix k and i s.t. k < ki�1 < ki.Find j s.t. kj�1 � k < kj = kj�1 + �(kj�1).First we bound Pri(k + �(k))=Pri(k): Note that k + �(k) � kj + �(kj) = kj+1, soPsi(k + �(k))Psi(k) � Pri(kj+1)Pri(kj�1) = 2i�j�1 � 12i�j+1 � 1 � 14 � 2j�i�1:Next we bound Nri(k): Consider any k-phase (other than the �rst) withm new requests.The number of distinct items requested in the k-phase and the previous is k + m. Sincethe 2 k-phases are contained in a subsequence formed by at most 3 consecutive kj-phases,and there are at most kj + 2�(kj) distinct items requested in any 3 consecutive kj-phases,it follows that m � kj � k + 2�(kj). Since kj � k � kj � kj�1 = �(kj�1) and �(kj) =�(kj�1 + �(kj�1)) � 2�(kj�1), it follows that m � 5�(kj�1) � 5�(k).Corollary 2.4.6 Fwf is not loosely c(k)-competitive for any c(k) which is O(ln k).Proof: We show that for any �xed b > 0 and even n, there exists a sequence r withCr(Opt; n) arbitrarily large such that for k between n=2 and n,Cr(Fwf; k) � (1=n)3b+3 � Cr(Opt; 1); and (17)Cr(Fwf; k) � (b lnk=10) � Cr(Opt; k): (18)Thus, for any c(k) which is O(ln k), and any n, there is a sequence r and a d such that,for all k between n=2 and n,Cr(Fwf; k)�maxfc(k)Cr(Opt; k); Cr(Opt; 1)=ndgis arbitrarily large. (Take b s.t. 2c(k) � b ln k and take d � 3b+ 4.)Next we exhibit the sequence satisfying (17) and (18) for k between n=2 and n. Notethat Cr(k;Fwf) = kPr(k) and Cr(k;Opt) � Nr(k)Pr(k), so to show (17) and (18) it su�cesto show kPr(k) � (1=n)3c+3 � Pr(1); and (19)k � (c lnk=10) � Nr(k): (20)

CHAPTER 2. PAGING 33Applying theorem 2.4.5 with �(k) = minfk; ag, where a = n=(c lnn), we obtain asequence r such that for k < n, Nr(k) � 5minfk; ag and Pr(k +minfk; ag) � Pr(k)=8.The former implies (20) for k between n=2 and n.It remains only to show that the latter implies (19) for k between n=2 and n. We omit thedetails, noting that �rst one shows Pr(a) � (1=8)log2 aPr(1), and then Pr(k) � (1=8)k=aPr(a)for k � a, and the result follows.

Chapter 3Deterministic Weighted CachingSection 3.1 of this chapter introduces timings, which are useful for obtaining lower boundson k-server schedule costs, much as k-phases were useful for paging.Section 3.2 introduces GreedyDual, a weighted caching algorithm, and presents acompetitive analysis of GreedyDual using timings.3.1 The K-Server Dual: Timings� A timing for a k-server request sequence r = r0r1 � � �rN is a real value B1, a realvalue A0, and a pair of real values fAi; Big for i = 1; : : : ; N such thatAi � Bj � (d(ri; rj) 0 � i < j � N0 0 � i � N , j =1� The cost of the timing for k servers isk(A0 �B1) + NXi=1Ai �Bi:Timings seem a bit mysterious as introduced in this chapter; Chapter 4 discusses howtimings represent the linear programming dual of a natural formulation of the k-serverproblem as an assignment problem, and presents a more intuitive interpretation of timings.For the purposes of this chapter, think of a timing as a transformation of the originalk-server problem speci�ed by r. Any schedule for r is still a schedule for the transformed34

CHAPTER 3. DETERMINISTIC WEIGHTED CACHING 35problem, but the costs associated with the various server movements are transformed, sothat the cost of the schedule is also changed. Speci�cally, when a server leaves a node ri, orremains on ri after the �nal request, the schedule is credited (has its cost reduced) by Ai,when a server enters a node ri, the schedule is charged an additional Bi, and when a serverremains on any node after the �nal request, the schedule is charged an additional B1.In this manner, the cost of any schedule for k servers will be decreased by exactly thecost of the timing for k servers. For instance, when a server enters and leaves a node ri, thetransformation results in an additional charge of �Ai+Bi to the schedule, which contributesone term to the cost of the timing.On the other hand, it is not hard to see that the transformation leaves the cost ofthe schedule nonnegative. This is because the individual charges to the schedule in thetransformed cost (either d(ri; rj)�Ai +Bj to move a server from ri to rj or �Ai +B1 toleave a server on ri after the �nal request) remain nonnegative due to the constraints onthe values of the timing.Thus, the cost of the schedule is at least the cost of the timing. This shows the followinglemma.Lemma 3.1.1 ([You91, You]) The cost of the optimal schedule for k servers satisfying arequest sequence r is at least the cost for k servers of any timing for r.It will follow as a consequence of results in Section 4.1 that the lower bound providedby the lemma can, with the right timing, always be made tight.3.2 The Greedy Dual StrategyGreedyDual, the greedy dual strategy for weighted caching described in the introductorychapter, may be described more carefully as follows.

CHAPTER 3. DETERMINISTIC WEIGHTED CACHING 36GreedyDualEach server has a varying amount of credit. In response to request 0, all servers areplaced on r0 with no credit. In response to each subsequent request j to node rj,1. If node rj has no server:(a) Each server's credit is increased equally until some server has enough creditto move to rj . (If a server is currently on ri, it must have d(ri; rj) = w(ri)credit to move to rj.)(b) One such server serves request j, giving up all its credit.2. If node rj has at least one server:(a) One such server serves request j.(b) Unless the server has not yet moved, it gives up an arbitrary amount (possiblynone) of its credit.We have the following lemmaLemma 3.2.1 ([You91, You]) GreedyDual is kk�h+1 -competitive:Cr(Opt; h) � k � h+ 1k Cr(GreedyDual; k)� (k � h)w(r0):Proof: Let Pi, for i = 0; 1; : : : ; N , denote the amount credited to each server in responseto request i. Let PN+1 = 0.For i = 0; : : : ; N , let i0 = minfj > i : rj served by server of rig if the minimum iswell-de�ned, otherwise let i0 = N + 1.For i = 0; : : : ; N and j = 1; : : : ; N + 1, letBj = P0 + � � �+ Pj�1;Ai = P0 + � � �+ Pi0 :Let B1 = BN+1.We prove the lemma in three parts:I. The on-line cost is at most kB1.II. fA0; B1g [fAi; Bi : i = 1; : : : ; Ng is a timing.III. The cost of the timing simpli�es to (k + 1� h)B1 � (k � h)w(r0).

CHAPTER 3. DETERMINISTIC WEIGHTED CACHING 37From these and lemma 3.1.1, the on-line algorithm is kk�h+1 -competitive.(I.) The distance moved by servers is bounded by the total amount credited to servers,which is kB1.(II.) The quantity Ai�Bj is nonpositive if j > i0, and otherwise may be written Pj+� � �+Pi0 .Thus it su�ces to verifyPj + � � �+ Pi0 � 8>>>>><>>>>>:w(ri) for 0 � i < j � N , ri 6= rj,0 for 0 � i < j � N , ri = rj, i0 = j,0 for 0 � i < j � N , ri = rj, i0 6= j,0 for 0 � i � N , j = N + 1.The �rst case holds because the amount credited to the server of request i in response torequests i+ 1 through i0, inclusive, is at most w(ri).The second case holds because, since ri = rj and i0 = j, nothing was credited to serversin response to request j, so Pj = 0.In the third case, the server of request i was on node rj = ri at request j but some otherserver served it. Since no server is ever moved to a node that is served, this happens only ifthe two requests are to node r0 and the two servers have not yet moved. Since the server ofri is never credited after the ith request until it moves (which can't happen before requesti0) we have Pj + � � �+ Pi0 � Pi+1 + � � �+ Pi0 = 0.In the �nal case, since i0 � j, Pj + � � �+ Pi0 = PN+1 = 0.(III.) Note that Ai�Bi�Pi = Pi+1+ � � �+Pi0 , which is the amount credited to the server ofrequest i in response to requests i+1 through i0, inclusive. Let Rs denote the set of requests(other than request 0) served by the server s, and let is = minRs. The total credited to aserver s is P0 + � � �+ PN+1= P0 + � � �+ Pis + Xi2RsPi+1 + � � �+ Pi0= w(r0) + Xi2RsAi �Bi � Pi;so the total, kB1, credited to all servers may also be writtenkw(r0) + Xi2[sRsAi �Bi � Pi = kw(r0) + NXi=1Ai �Bi!�B1:

CHAPTER 3. DETERMINISTIC WEIGHTED CACHING 38(Note that P0 = PN+1 = 0.) Thus, PNi=1Ai � Bi = (k + 1)B1 � kw(r0), which gives thedesired simpli�cation.Note that if we wish to allow the on-line strategy to start with an empty fast memory,so that r0 is an arti�cial vertex of weight 0, the algorithm and analysis simplify slightly.The reader may verify that Fifo and Lru, and Balance as it applies to weightedcaching, are special cases of GreedyDual. Also, Mark is a special case of GreedyDualin the sense that it is obtained by breaking ties in step (1b) uniformly at random and havingthe server give up all its credit in step (2b).

Chapter 4The K-Server DualPreceding chapters have concentrated on presenting results and their proofs. This chapteris a more intuitive exploration of the relationships between the results, via timings. Thegoal of the chapter is to gain insight into the general k-server problem, and to record somesuggestive partial or preliminary results.In section 4.1 of this chapter, we show how the k-server problem is a special case of theassignment problem, so that the problem of �nding a maximum-cost timing is a special caseof the dual of assignment, and we discuss how nonoptimal timings may be improved.In Section 4.2 we de�ne k-phase timings, which generalize k-phases, and work an exam-ple.In Section 4.3, we introduce K-Phase, a k-server strategy which uses k-phase timingsexplicitly in the way that Lru uses k-phases implicitly. K-Phase is central to this thesis,in that it relates Lru, Balance, and Perm (the on-line assignment algorithm), and is astepping stone to GreedyDual.In Section 4.4, we present an intuitive interpretation of timings, an intuitive analysisof Balance for weighted caching obtained therewith, and a potential function analysisobtained from the intuitive analysis.Finally, in Section 4.5, we discuss how Perm may be interpreted as a k-server strategy,and how Perm relates to K-Phase. We also discuss the structure of the optimal timingsimplicit in Perm. 39

CHAPTER 4. THE K-SERVER DUAL 404.1 The K-Server Problem as AssignmentThe k-server problem is a special case of the assignment problem.Intuitively, each k-server request represents a demand for one server from previousrequests and a supply of up to one server to later requests, with the exception that the�rst request represents no demand and a supply of up to k servers for later requests. If theserver of request i next serves request j, this corresponds to the ith supply being assignedto the jth demand, at a cost of d(ri; rj). To balance the supply and demand, an arti�cialdemand, 1, is added, which costs nothing to supply. Speci�cally,� GN = (UN ;WN ; UN�WN), given a k-server request sequence r = r0r1 � � � and N � 0,is the supply-demand graph for r: a complete, bipartite graph with edge lengths d,where UN = f0; : : : ; Ng are the supply vertices,WN = f1; : : : ; N;1g are the demand vertices, andd(i; j) = 8><>:1 i � jd(ri; rj) 0 � i < j � N0 0 � i � N; j =1.� Fk is the function Fk(i) = (1 i 62 f0;1gk i 2 f0;1g.� An Fk-factor of GN is any subset of the edges of GN such that nodes 0 and 1 havedegree at most k in the subset, and every remaining node has degree 1 in the subset.� The cost of an Fk-factor is the sum of the lengths of its edges.We leave it to the reader to verify that the schedules of k servers satisfying the �rstN requests of r correspond one-to-one with the �nite-cost Fk-factors in GN , and thatthe correspondence preserves cost. In this chapter we identify the problems of optimallyscheduling the k servers and �nding the minimum-cost Fk-factor.

CHAPTER 4. THE K-SERVER DUAL 414.1.1 The Assignment DualThe problem of �nding a minimum-cost Fk-factor of GN is an instance of the Hitchcockproblem [PS82, p.143].1 The standard form of the dual problem is to �nd a maximum-costpotential (assignment of weights to the vertices) of GN such that�u + �w � d(u; w) for (u; w) 2 U �W;where �u is the weight of u 2 UN and �w is the weight of w 2 WN , and the cost of thepotential is k(�0 + �1) + NXi=1 �i + �i:The essential properties of the dual are that the cost of any potential is a lower boundon the cost of any Fk-factor, and equality is achieved if both are optimal. Potentials forGN are trivially isomorphic to timings for r: from a potential we can obtain an equal costtiming, or vice versa, by negating the weights of the supply vertices. Thus, in the remainderof this chapter we consider only timings, and we refer to \timings for GN".4.1.2 Stretching a TimingGiven a timing, when and how can it be improved? Here we summarize the necessarytechnique, obtained by considering the equivalent Hitchcock problem as described in Pa-padimitriou and Steiglitz [PS82]. Given a timing,� The slack of an edge (u; w) is d(u; w)� Au + Bw.� The admissible edges are the edges with slack 0.� The admissible neighbors of a vertex are the neighbors of the vertex along admissibleedges.� The weight, jvj, of a vertex v in GN is 1, unless the vertex is 0 or 1, in which casethe weight is k.� The weight, jSj, of a subset S of the vertices is the sum of the weights of the verticesin the subset.1It is straightforward to transform a minimum-cost Fk-factor problem into an assignment problem bysplitting the nodes 0 and 1 each into k identical nodes. We use the \nonsplit" form for syntactic simplicity.

CHAPTER 4. THE K-SERVER DUAL 42� To stretch a subset U� of the supply vertices by � > 0, given a timing, is to increasethe weight of each vertex that is in U�, or is an admissible neighbor of U�, by �.� To stretch a subset U� of the supply vertices is to stretch U� by the largest � > 0possible without violating any constraints.Stretching a timing corresponds to a step of the primal-dual algorithm (see the alpha-beta procedure in Papadimitriou and Steiglitz [PS82]) for �nding a maximum-cost potential.If an Fk-factor exists among the admissible edges, the cost of the Fk-factor equals thecost of the timing, so both are optimal. Otherwise, some subset of UN exists such thatthe weight of the subset is greater than the weight of the admissible neighbors of thesubset.2 That is, if U� is the subset of UN , and W � is the set of admissible neighbors ofU�, then jU�j > jW �j. In that case, stretching U� by � increases the cost of the timing,k(A0 �B1) +PNi=1Ai � Bi, by �(jU�j � jW �j).How does stretching change the set of admissible edges? Stretching U� as much aspossible adds at least one admissible edge from U� to a vertex not in W �. Any admissibleedges from vertices not in W � to U� become inadmissible. The admissibility of any otheredge is unchanged.4.2 K-Phase TimingsTo reproduce and generalize k-phases with timings, we introduce some new terminology.� The zero timing for any GN is the timing for GN with all values 0.� The pending nodes of a timing are the supply nodes whose only admissible neighboris the demand node 1. Intuitively, these are the nodes that complementary slacknessconditions suggest are currently covered (that is, the supply corresponding to therequest is not used by a demand other than 1) in the optimal schedule.� Extending a timing for GN yields a timing for GN+1. Extending fA0; B1; : : : ; AN ; B1gyields fA0; B1; : : : ; AN ; BN+1; AN+1; B1g, where BN+1 and AN+1 are taken to be B1.Extending violates no constraints and leaves the cost unchanged. Newly admissible2This is a consequence of the alpha-beta procedure of Papadimitriou and Steiglitz [PS82].We review in Section 4.5 how to �nd such a U�.

CHAPTER 4. THE K-SERVER DUAL 43r: o A B A C D � E A F E A B � C D E B 1A: 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2B: 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2Figure 4: The 4-phase timing for oABACDEAFEABCDEBedges in GN+1 are (N+1;1) and edges of the form (u;N+1) such that d(ru; rN+1) = 0and (u;1) is admissible. Admissibility of other edges is unchanged. The new supplynode N +1 is pending, and all other pending nodes continue to pend, except pendingnodes i s.t. d(ri; rN+1) = 0.� The k-phase timing for a request sequence r0r1 � � �rN is de�ned inductively (and on-line) as follows. The k-phase timing for r0 is the zero timing. Given a k-phase timingfor r0 � � �rN�1, in response to request rN , the timing is extended, and if the weightof the pending nodes exceeds k (the weight of demand node 1, the only admissibleneighbor of the pending nodes), the pending nodes are stretched. This yields thek-phase timing for r0 � � �rN .An important invariant satis�ed by the k-phase timing for any request sequence r0 � � �rNis that the cost for k servers simpli�es:k(A0 �B1) + NXi=1Ai �Bi = B1: (21)This invariant is easily proved by induction; the key observation is that each stretch oper-ation raises equally B1 and the cost for k servers. From (21), the cost for h servers of ak-phase timing simpli�es to (k � h+ 1)B1 � (k� h)A0: (22)Next we try an example: we develop the 4-phase timing for paging request sequenceABACDEAFEABCDEB. Prepend to the sequence the arti�cial request o with d(o; �) �0, and assume that all servers start on o.Begin with the timing fA0 = 0; B1 = 0g for G0. The weight of supply node 0 (corre-sponding to the arti�cial request o) is k.In response to the �rst request A, extend the timing. The new (zero-cost) edge (0; 1) isadmissible, so supply node 0, of weight k, ceases to pend, but supply node 1, of weight 1,is now pending.

CHAPTER 4. THE K-SERVER DUAL 44In response to the second request B, extend the timing again. The timing is still a zerotiming. Supply nodes 1 and 2 are now pending, with combined weight 2.In response to the third request A, extend the timing a third time. Since the length ofedge (1; 3) is 0, supply node 1 ceases to pend. Supply nodes 2 and 3 are now pending.In response to each of the fourth and �fth requests CD, extend the timing again withoutstretching. This yields the zero timing for G5. Supply nodes 2, 3, 4, and 5 are now pending,with net weight 4.In response to the sixth request E, again extend the timing. The new supply node 6is now pending, so the combined weight of the pending nodes is 5, which exceeds k by 1.Stretch the timing, increasing A2 through A6, B1, and the cost of the timing by 1. Thisyields the timing fA0 = 0; A1 = 0; B1 = 0; A2 = 1; B2 = 0; A3 = 1; B3 = 0; A4 = 1; B4 =0; A5 = 1; B5 = 0; A6 = 1; B6 = 0; B1 = 1g. Supply nodes 2 through 5 cease to pend, astheir respective edges to demand node 6 have their slack reduced to 0. This timing is ofcost 1 for 4 servers.Continuing this example reveals the following general pattern. After request 1, or afterany stretch, one weight-1 supply node is pending. Subsequently, with each request, thecorresponding supply node is added to the set of pending nodes. If a supply node corre-sponding to a request to the same node was pending, that node ceases to pend, otherwisethe number (and weight) of the pending nodes increases by 1. If the number is k + 1, astretch occurs, and all nodes except the node corresponding to the last request cease topend.Each stretch raises the cost of the timing for k servers by 1. More generally, each stretchraises the cost of the timing for h servers by k � h+ 1.Thus, the k-phase timing, for a paging request sequence, corresponds to the k-phasepartitioning of the sequence, and gives a proof that the optimal schedule for h servers costsat least k � h+ 1 times the number of k-phases. (See lemma 2.1.1.)The complete 4-phase timing for the example is shown in �gure 4.

CHAPTER 4. THE K-SERVER DUAL 454.3 Lru, K-Phase Timings, and BalanceThe essential property of Lru, from the point of view of the proof of lemma 2.1.2, is thefollowing: once a node is requested within a phase, it remains for the duration of the phase.To restate this property in terms of timings, we need to clarify our terminology a bit.Speci�cally, for the following discussion we imagine that, as requests come in, we maintainthe k-phase timing on-line as discussed above: extending and possibly stretching the timingin response to each request. Then a node (in the original graph3) ri is pending provided thesupply node i is pending in the current timing.From the point of view of the k-phase timing, this property may now be restated simplyas follows: keep the pending nodes served.For de�niteness, we describe K-Phase, an on-line algorithm that keeps the pendingnodes served:K-PhaseMaintain a timing (in fact the k-phase timing) for the current request sequence on-line.In response to each request rj,1. Extend the timing. (The pending nodes ri s.t. d(ri; rj) = 0 cease to pend.)2. If the request was to a nonpending node and the weight of the pending supplynodes is now k + 1, stretch the pending supply nodes. (This causes at least onepending node ri to cease pending, so that Ai � Bj0 = d(ri; rj0), for some j0 s.t.i < j0 � j with d(ri; rj0) 6= 0.)3. If the request was to a nonserved node, move a server from a nonpending node.For paging, K-Phase simpli�es as follows:3The terminology is awkward, since there are two types of nodes in context: nodes in the original graphin which requests occur, and nodes in the supply-demand graph. In general, we refer to the latter type assupply or demand nodes to disambiguate.

CHAPTER 4. THE K-SERVER DUAL 46K-Phase for PagingMaintain marks on the nodes. (Pending nodes are those that are not marked.) Initially,the �rst k distinct nodes requested are served and not marked.4 Other nodes are marked.In response to each subsequent request,1. If the request was to a marked node, unmark the requested node.2. If k + 1 nodes are unmarked, mark all the nodes except the requested node.3. If the request was to a nonserved node, move a server from a marked node.5Note that in order to implement K-Phase for paging, it su�ces to maintain marks onthe servers of the marked nodes.For weighted caching, we also obtain some simpli�cation. Since the Bj are nondecreasingwith j in a k-phase timing, if a node ri ceases to pend as the result of a stretch, for weightedcaching, it must be that the edge (i; i+1) became admissible in the stretched timing. Thus,in order to keep track of the pending nodes, it su�ces to maintain, for each pending noderi, the slack in the current timing of the edge (i; i+ 1) (if it exists) in the supply-demandgraph. If and only if this slack is reduced to 0 or node ri is again requested does supplynode i cease to pend.Thus, to implement K-Phase for weighted caching, it su�ces to keep track of the slackon the edge (i; i+ 1) for each node i:K-Phase for Weighted CachingMaintain values on the nodes. Initially, all servers reside on node r0, which has valuew(r0). In response to each request,1. If the request was to a node with value 0, and k other nodes have positive value,reduce all the positive values by the minimum positive value.2. Raise the value of the requested node to its weight.3. If the request was to a nonserved node, move a server from a node with value 0.Note that in order to implement K-Phase for weighted caching, it su�ces to maintain the(nonnegative) values of the served nodes with the servers.It is not hard to verify that K-Phase is kk�h+1 -competitive for weighted caching. Theessential observation is that the cost in moving a server from a node ri is bounded by4As in the example, we assume r0 is to an arti�cial vertex o s.t. d(o; �) � 0.5Note that Mark is obtained by breaking ties uniformly at random in this step. The lower bound (2)used for the analysis of Mark is slightly di�erent; to reproduce that lower bound using timings, stretch atthe beginning of each phase by 1=2 rather than 1.

CHAPTER 4. THE K-SERVER DUAL 47Ai � Bi+1, so that the net cost is bounded by k(A0 � B1) +PNi=1Ai � Bi+1. One thenuses equation (21), B1 = 0, and AN = B1 to simplify this bound to kB1; with thesimpli�cation (22) of the cost for a k-phase timing, this gives the result.6 (We omit thedetails; this algorithm is a special case of GreedyDual, which is analyzed in full in lemma3.2.1.)If one modi�es K-Phase for weighted caching by ignoring requests to served nodes, oneobtains the following algorithm:K-Phase for Weighted Caching, Ignoring Served RequestsMaintain values on the nodes. Initially, all servers reside on node r0, which has valuew(r0). In response to each request to a nonserved node,1. If k nodes have positive value, reduce all the positive values by the minimumpositive value.2. Move a server from a node with value 0 and raise the value of the node to itsweight.In fact, this is Balance. To see this, imagine associating the values of served nodeswith the servers. Then the values of servers are always decreased uniformly; the value of aserver is otherwise changed only when it moves to a new node, at which point it is increasedby the weight of the node. Thus, the value of one server minus the value of another isexactly the net work that would have been done by the former server if it were to serve thenext request minus the corresponding quantity for the latter. By moving a minimum-valueserver one is thus moving the server that will have done the least work.Note that Fifo is a special case of Balance.Algorithm GreedyDual is obtained from K-Phase by relaxing step (2), so that, if thenode requested is served, the value of the server may be reset anywhere between its currentvalue (obtaining Balance) and the weight of the node (obtaining K-Phase). For paging,Balance generalizes Fifo, while K-Phase generalizes Lru. Lru is considered the betterpaging strategy, so perhaps for weighted caching K-Phase is preferable to Balance.4.4 Duality Yields a Potential FunctionIn this section, we give an intuitive formulation of timings, use it implicitly to give a directanalysis of Balance for weighted caching, and �nally show how this analysis may be recast6Note that if w(r0) = 0, the additive term may be taken to be 0.

CHAPTER 4. THE K-SERVER DUAL 48as a potential function analysis.An amortized analysis, or more speci�cally a potential function analysis, (see [Tar85,BM85, ST85, CL91a]), bounds the cost of a sequence of operations. Usually, such an analysisis in contrast with a worst-case analysis, which bounds the cost of the sequence by summingthe worst-case costs of the individual operations.A typical competitive analysis with a potential function is of the following form:Competitive Analysis with a Potential FunctionGiven X producing a solution in response to r = r0r1 � � �rN :1. De�ne a potential � which is a function of the states of X and of Opt.2. Show that, in response to each request ri,a � xi � b � oi +�i � �i�1;where a > 0, xi and oi are the costs incurred by X and Opt, respectively, inresponse to the ith request, and �i is the value of the potential function after Xand Opt have responded.3. Sum the inequalities, showing that the cost incurred by X is bounded by(b � opt + �N � �0)=awhere \opt" is Opt's cost.4. Show that �N ��0 is appropriately bounded.One may think of a potential function analysis as transforming Opt's costs: In responseto the ith request, Opt's cost is changed to o0i = oi + (�i � �i�1)=b. The analysis thenshows that Opt's overall cost is not substantially increased under the transformation, andgives a worst-case (per operation) bound on the transformed costs. That is, b � o0i � a � xi isshown for each i.Linear programming duality may be viewed similarly. The bound obtained by exhibitinga dual solution may often be viewed as follows: The dual solution gives a dual transformationof any primal solution. The dual transformation changes any primal solution's cost by anamount independent of the primal solution. The lower bound on the primal solution isthen obtained by giving a simple, \localized" lower bound on the cost of the transformedprimal solution, and taking into account the amount by which the transformation changedthe cost.77For examples, consider the proof of lemma 3.1.1 or the discussion of the duals of weighted matchingproblems in Chapter 5.

CHAPTER 4. THE K-SERVER DUAL 49The intuitive analysis of Balance for weighted caching which we give in this sectionuses duality in a manner very similar to a potential function argument: Opt's cost istransformed by a dual transformation, and it is shown that under the transformed cost, thecost incurred by Opt's server after it serves the ith request is at least the cost incurred byBalance's server after it serves the same request. The di�erence is that the transformationonOpt's cost increases Opt's overall cost, but by a predictable amount, and the subsequentbound correlates the costs of Opt and Balance to move from, rather than respond to, ri.Generally a dual solution can be interpreted as yielding any of a number of dual transfor-mations. For instance, the proof of lemma 3.1.1 and the space-time formulation of timingspresent two di�erent transformations for the k-server dual.If we can view the dual problem via a dual transformation which does not increase Opt'soverall cost, and which gives a \localized" lower bound of the form \in response to the ithrequest, Opt's cost is bounded by a (positive) constant times the on-line algorithm's cost,"then we have obtained a duality transformation which is essentially a potential function.It would seem that one can always �nd such a transformation; the question is how simpleit and the resulting potential function are.4.4.1 A Space-Time Formulation of TimingsNext we describe an intuitive interpretation of the k-server dual.Let T : f0; : : : ; Ng ! R be an arbitrary function. Imagine that the requests of asequence r = r0r1 � � �rN occur at speci�ed times: request i occurs at time T (i).Now, instead of charging the servers only to move through space (i.e. in the graph),imagine that the servers, except for the one about to service the next request, are alsocharged to move through time. Speci�cally, if the server of request i next services requestj > i, then imagine that instead of incurring a cost d(ri; rj), the server incurs a cost ofdT (i; j) = d(ri; rj) + T (j � 1)� T (i):Additionally, if a server last services request i, then imagine that instead of incurring nocost to remain on the node until the �nal request, the server incurs a cost ofdT (i; N + 1) = TN � Ti:

CHAPTER 4. THE K-SERVER DUAL 50In charging to move through time as well as space, the cost of any given schedule8 forh servers is increased by exactly (h� 1)(T (N)� T (0)).Next, let Mi = minj:i<j�N+1 dT (i; j), so Mi is a lower bound on the cost in time andspace incurred by the server of the ith request until serving another request, if it servesanother one, or until time T (N), if not. Then the net cost, in space and time, of anyschedule for h servers is at least hM0 +PNi=1Mi, and the cost in space alone is at least(h� 1)(T (0)� T (N)) + hM0 + NXi=1Mi:T is an alternate representation of a timing for r, and the above quantity is the cost ofthe timing for h servers. The correspondence between this representation of the timing andthat given in lemma 3.1.1 is given by Bj = T (j � 1)� T (0), Ai = T (i)� T (0) +Mi, andB1 = T (N)� T (0).4.4.2 An Intuitive Analysis of BalanceThe space-time view of timings gives a nice analysis of Balance for weighted caching:Lemma 4.4.1 Balance is kk�h+1 -competitive for weighted caching.Proof: Consider the schedule produced by Balance for a weighted caching request se-quence r = r1 � � �rN . Assume for simplicity that no request is to a node served by Balance(such requests are ignored by Balance and can be omitted without increasing the cost toOpt), and that Balance handles the �rst k requests by placing successive servers on therequested nodes at no cost. (This decreases the cost of Balance by at most an additiveconstant.)The schedule assigns a path in the request graph to each server. Imagine that the serverssimultaneously start at their respective initial vertices and begin traversing their paths atunit speed (so that the time to traverse an edge is its length), not pausing at vertices.When a server �nishes traversing its path, imagine that it continues moving (anywhere) inthe graph until all servers have �nished traversing their paths. Call the distance traveledby the servers, including this extra movement, the cost in space of Balance.8Recall that all servers are assumed to begin on r0.

CHAPTER 4. THE K-SERVER DUAL 51Let T (0) be the starting time, and let T (i) denote the time that a server arrives at riin response to request i, so that T (i) is also the net distance traveled by the server by thetime it arrives.The de�nition of Balance implies that for weighted caching T is monotonic: if T (i+1) < T (i) then the server of request i + 1 would have been chosen as the server of requesti instead, since the net distance traveled by the server after serving the ith request wouldhave been less than that of the server actually chosen to serve the request.Next, consider changing the charges for any schedule to service r by charging servers tomove through space (in the graph) and, in addition, from time T (0) until T (N), chargingeach server, except the one which will next service a request, at a unit rate to exist in time.Speci�cally, for moving a server from ri to rj , imagine charging dT (i; j) = d(ri; rj) +T (j � 1)� T (i), instead of d(ri; rj), and for leaving a server on ri for the remainder of theschedule, imagine charging dT (i; N + 1) = T (N)� T (i).Clearly the cost in time and space (i.e. the cost under dT) of any schedule for h serversis exactly (h� 1)(T (N)� T (0)) plus the cost in space alone (i.e. the cost under d).Since k servers are moving at each time from T (0) until T (N), the cost in space ofBalance is k(T (N)� T (0)).Let Bn denote the set of k requests which have servers remaining on them after the nthrequest. We claim that for any i and j, with 0 � i < j � N + 1dT (i; j)� (w(ri) i 62 BN andT (N)� T (i) i 2 BN . (23)(We postpone the veri�cation of this claim until the end of the proof.)Thus, the cost in space and time incurred byOpt's server in the interval between servingthe ith request and serving its next request (if any, and otherwise until time T (N)) is atleast the cost in space incurred by the corresponding server of Balance.Consequently, the cost in space and time ofOpt is at least the cost in space ofBalance,and the cost in space of Opt is at least the cost in space of Balance, minus the cost intime of Opt. Thus, Cr(Opt; h) � (k� h� 1)(T (N)� T (0)): (24)Since Cr(Balance; k) is bounded by the cost in space of Balance, this gives the result.

CHAPTER 4. THE K-SERVER DUAL 52It remains only to verify the claim (23). Recall that 0 � i < j � N +1, T is monotonic,and we have assumed there are no requests nodes served by Balance.There are four cases:i. If i 62 BN , j � N , (23) becomes d(ri; rj) + T (j � 1)� T (i) � w(ri).This is clear if d(ri; rj) = w(ri). Otherwise, ri = rj , so the server of ri moved at timei0 < j to service a request. Thus, T (j � 1) � T (i0) = T (i) + w(ri).ii. If i 62 BN , j = N + 1, (23) becomes T (N)� T (i) � w(ri).Since i 62 BN , the server of ri moved at time i0 � N to service a request. Thus,T (N) � T (i0) = T (i) + w(ri).iii. If i 2 BN , j � N , (23) becomes d(ri; rj) + T (j � 1)� T (i) � T (N)� T (i).Since i 2 BN , request j is not to ri. Thus, d(ri; rj) = w(ri) and this case reducesto w(ri) + T (j � 1) � T (N). This follows from w(ri) + T (i) � T (N), which is truebecause otherwise the server of ri would have served rN .iv. If i 2 BN , j = N + 1, (23) becomes T (N)� T (i) � T (N)� T (i).4.4.3 A Potential Function Analysis of BalanceNext we sketch how to transform the analysis in lemma 4.4.1 of Balance for weightedcaching into a potential function analysis.Consider the schedule produced by Balance for weighted-caching request sequencer = r1r2 � � �, assuming that Balance handles the �rst k requests by placing successiveservers on the requested nodes at no cost. Assume also that Balance receives no requeststo served nodes.Let T (i) be de�ned as in the the proof of lemma 4.4.1: T (i) is distance traveled by theserver of the ith request from its �rst request until serving the ith request.The fundamental bound (case (i) of claim (23)) from that analysis isd(ri; rj) � w(ri) + T (i)� T (j � 1) for 0 < i < j:

CHAPTER 4. THE K-SERVER DUAL 53What we want is a series of values �k;�k+1; : : : such that, for j = k + 1; k+ 2; : : :, thequantity �j � �k is bounded, and(k � h+ 1)d(rj�; rj) � kd(rj�; rj) + �j � �j�1; (25)where j� and j� denote, respectively, the requests last served by the servers of Balanceand Opt that served request j.Observing that d(rj�; rj) = w(rj�) and d(rj�; rj) � w(rj�) + T (j�) � T (j � 1), we try�k = 0 and (for j > k)�j = �j�1 + (k � h + 1)w(rj�)� k(w(rj�)� T (j � 1) + T (j�)):We know this satis�es (25); if we can show it is appropriately bounded we will have thedesired potential function.Next we simplify �n. On denotes the set of i such that Opt's server of the ith requestdoes not serve another request until after request n, so jOnj = h. Similarly, Bn denotes thecorresponding set for Balance.The simpli�cation is a consequence of the following three equations:nXj=k+1w(rj�) = Xj2Bn T (j);nXj=k+1w(rj�) = nXj=1w(rj)� Xj2Onw(rj)= Xj2Bn T (j) + w(rj)� Xj2Onw(rj); andnXj=k+1T (j � 1)� T (j�) = 0@ nXj=k+1T (j)� T (j�)1A� T (n)= 0@ Xj2On T (j)1A� T (n):From these equations it is straightforward to show�n = nXj=k+1(k � h + 1)w(rj�)� k(w(rj�)� T (j � 1) + T (j�))= Xj2Bn(h� 1)(T (n)� T (j)� w(rj))� (k � h+ 1)w(rj)� Xj2On k(T (n)� T (j)� w(rj)):

CHAPTER 4. THE K-SERVER DUAL 54This gives the desired potential function. This isn't too bad: Consider �xing a j andletting n = j; j+ 1; : : :. The quantity T (j) +w(rj)� T (n) is w(rj) when Balance's serverserves rj, and, as n increases, the term decreases uniformly with the corresponding termsfor other j. When it becomes 0, the server leaves the node to serve its next request.To see that �n is nonpositive, rewrite it:�n = � Xj2Bn\On(k � h+ 1)(T (n)� T (j))+ Xj2Bn�On(h� 1)(T (n)� T (j)� w(rj))� Xj2On�Bn k(T (n)� T (j)� w(rj))� Xj2Bn�On(k � h + 1)w(rj)� � Xj2Bn�On(k � h+ 1)w(rj):The inequality follows because for j � n, T (n) � T (j), T (n) � T (j) + w(rj) (if j 2 Bn),and T (n) � T (j) + w(rj) (if j 62 Bn).Is this potential function analysis in fact a duality transformation, as discussed at thebeginning of this subsection? Yes. Brie
y, we have(k � h+ 1)d(rj�; rj) � kd(rj�; rj) + �j � �j�1 with�j � �j�1 = (k � h+ 1)d(rj�; rj)� k(w(rj�)� T (j � 1) + T (j�));and we want a duality transformation d� on the edge costs so that(k � h+ 1)d(rj�; rj) � kd�(i; j):It is straightforward to derived�(i; j) = d(ri; rj)� T (i)� w(ri) + T (j � 1) + k � h + 1k w(rj�)= dT (i; j)� w(ri) + k � h+ 1k w(rj�)as the desired duality transformation. We can view this as the transformation dT modi�edso that a little bit of the increase in the overall cost of Opt under dT is given back at eachstep, so that the overall cost is not increased by the modi�ed transformation.

CHAPTER 4. THE K-SERVER DUAL 55In sum, d� is a duality transformation, analogous to dT , for interpreting the lowerbound given by a dual solution. The interpretation corresponding to d� is as follows.Given an arbitrary server schedule for r for h servers, imagine changing the cost of servingrj with the server which last served ri from d(ri; rj) to d�(i; j). This transformation doesnot increase the overall cost for h servers, and the transformed costs satisfy kd�(i; j) �(k� h+1)d(rj�; rj). Thus, Balance is k=(k� h+1)-competitive. The transformation d�is in some sense equivalent to a potential function analysis with �.4.5 K-Phase Timings, Perm, and Optimal TimingsIn this section we brie
y describe howPerm, the on-line assignment algorithm, yields an on-line k-server algorithm closely related to K-Phase. In doing so, we also describe a methodfor generating optimal timings which produces timings with some suggestive structure.The transformation of the k-server problem to an Fk-factor problem in Section 4.1preserves the on-line nature of the problem: in response to request ri with (i > 0), the costsof edges adjacent to demand vertex i in GN are revealed, and if edge (i; j) is added to theFk-factor, a server is moved from ri to rj .This on-line Fk-factor problem reduces (by splitting supply vertex 0 into k identicalvertices) to the on-line assignment problem as de�ned in Section 1.6. Perm, the on-lineassignment algorithm, reduces in this way to Perm for k servers, which, in response to eachrequest, moves a server so that the servers cover vertices that would be covered by Optafter the request if it was the last request.To describe this algorithm more constructively, we de�ne alternating paths: Given apartial Fk-factor (a subset of edges so that each vertex i has degree at most Fk(i) in thesubset) among the admissible edges of a timing for GN ,� An alternating path is a path in GN whose odd edges are admissible and whose evenedges are in the partial Fk-factor.� An augmenting path is an odd-length alternating path, with each endpoint i of degreeless than Fk(i) in the partial factor.� To augment the factor by an augmenting path is to remove the even edges of the pathfrom the factor and add the odd edges, so that the degree of each endpoint in the

CHAPTER 4. THE K-SERVER DUAL 56partial factor is increased by 1.Now the algorithm may be described more constructively as follows:Perm for K-ServersMaintain an optimal timing and Fk-factor in the current Gj. In response to request rj,1. Extend the timing. (The timing ceases to be optimal; the factor becomes partial.)2. While there is no augmenting path (necessarily from demand node j to supplynode j),(a) Let U� denote the set of supply vertices reachable from supply node j byalternating paths.(b) Stretch U�.3. Augment the partial factor by the augmenting path. (The timing and the factorare now optimal.)4. Move a server from ri such that (i;1) is not an edge in the current Fk-factor.It is fairly easy to show that in each stretch operation, jU�j = jW �j+1, so that invariant(21) and the simpli�cation of the cost (22) also hold for the optimal dual solution producedin the above algorithm, so that the cost for h servers of the solution is(k� h+ 1)Cr(k;Opt)� (k � h)A0:Note the relation between this algorithm and K-Phase. K-Phase may be viewedas maintaining a nonoptimal timing (the k-phase timing) and a (very) partial Fk-factorconsisting of the k admissible edges (i;1) such that 1 is the only admissible neighbor ofi. In response to each request, the timing is stretched just enough so that the partial factormay be maintained, and a server is moved from ri such that (i;1) is no longer an edge inthe partial factor.

Chapter 5Duality Analyses of WeightedMatching StrategiesIn this chapter we use the dual bounding technique to analyze the maximum-weight match-ing heuristic GreedyMax2, the on-line weighted matching algorithm GreedyMax3, andthe on-line assignment algorithm Perm. The purpose is to explore the general applicabilityof the dual bounding technique.The dual problem of �nding an assignment in a weighted, bipartite graph with edgeweights is to �nd a maximum-cost potential (weighting of the vertices) such that the weightof any edge is at least the sum of the weights of its endpoints. The cost of the potential isthe sum of the weights. (If we are abusing the term \perfect matching", and the bipartitegraph has one part larger than the other, then the weights on the larger part must benonnegative in the dual problem.) Again, by duality, the cost of any potential is a lowerbound on the cost of any perfect matching.To see the lower bound directly in terms of a dual transformation, imagine that the edgeweights d(i; j) are modi�ed to d(i; j)� �i � �j , where �x denotes the weight of vertex x.This reduces the cost of the matching by (at least) Px �x, but leaves the cost nonnegative.The dual problem of �nding a maximum-cost matching in a weighted, bipartite graphwith nonnegative edge weights is to �nd a minimum-cost nonnegative potential such thatsuch that the length of any edge is at most the sum of the weights of its endpoints. Thecost of any such potential is an upper bound on the cost of any matching.57

CHAPTER 5. DUALITY ANALYSES OF WEIGHTED MATCHING STRATEGIES 58To see this upper bound directly, again imagine that the edge weights d(i; j) are modi�edto d(i; j)� �i � �j . This reduces the cost of the matching by Px �x, and leaves the costnonpositive.For nonbipartite graphs, the above bounds also hold, and are useful, even though theycannot necessarily be made tight.1The remainder of this chapter consists simply of the three analyses.Lemma 5.0.1 ([Avi83]) The cost of the matching produced by GreedyMax2 in an ar-bitrary, nonnegatively weighted graph is within a factor of 2 of maximum.Proof: If GreedyMax2 adds an edge (i; j) to the matching, let �i = �j = d(i; j). Let allother �i = 0.For any edge (i; j), d(i; j) � maxf�i; �jg � �i + �j : clearly this holds for any matchededge, and the only reason an edge remains unmatched is some adjacent edge, say (i; k), wasmatched �rst, in which case d(i; j)� d(i; k) = �i.The cost of the matching is Pi �i=2. Since Pi �i is an upper bound on the maximumcost of a matching, the cost of the matching is within a factor of 2 of maximum.Lemma 5.0.2 ([KP91]) In any metric, bipartite graph, the cost of the matching producedby GreedyMax3 is within a factor of 3 of maximum.Proof: When GreedyMax3 adds an edge (i; j) to the matching as a result of the pre-sentation of vertex j, let �i = 2d(i; j) and �j = d(i; j).For any edge (i; j), d(i; j) � �i + �j : If (i; j) is matched this is clear. Otherwise,suppose j was presented and matched to k. If i was not yet matched at that point, thend(i; j) � d(j; k) = �j . Otherwise, suppose i was already matched to h. When h waspresented, k was not yet matched, so d(k; h) � d(i; h). Thus,d(i; j)� d(i; h) + d(h; k) + d(k; j)� 2d(i; h) + d(k; j) = �i + �j :The cost of the matching is Pi �i=3. Since Pi �i is an upper bound on the maximumcost of a matching, the cost of the matching is within a factor of 3 of maximum.1The primal problems require more constraints in the nonbipartite case to ensure there are optimalsolutions corresponding to matchings. Thus, the dual problems allow a larger class of solutions, and possiblytighter bounds. See [PS82, p.255].

CHAPTER 5. DUALITY ANALYSES OF WEIGHTED MATCHING STRATEGIES 59The next analysis is a bit more complicated, and uses terminology (\stretching" a dualsolution, \alternating" and \augmenting" paths) from Section 4.5.Lemma 5.0.3 ([KP91]) In any 2n-node, metric, bipartite graph, the assignment producedby Perm is within a factor of 2n� 1 of minimal.Proof: Perm, when given the graph G = (U;W;U �W), may be described as follows:PermAt any given time, let P denote the subset of W presented so far. Imagine maintainingan optimal potential and a minimum-cost matching2 in the subgraph GP = (U;P; U �P). Initially, the potential is the zero potential. In response to the presentation of avertex j,1. P P [fjg.2. Extend the potential by adding �j = 0, and consider the previous minimum-costmatching as a partial matching in the new GP .3. While there is no augmenting path (necessarily from node j) in GP ,(a) Let S denote the set of vertices reachable from vertex j by alternating paths.(b) Stretch S. (Modify the potential by increasing the weights on vertices inS \P , and decreasing those on vertices in S \U , by �, where � > 0 is as largeas possible so that no constraints are violated.)4. Augment the partial matching by the augmenting path. (The matching and thefactor are now optimal.)5. Assign i to j in the assignment, where i is the other endpoint of the augmentingpath.To bound the cost of the resulting assignment, note that the cost of edge (i; j), where i,the other endpoint of the augmenting path, is assigned to j after j is presented, is boundedby the cost of the augmenting path. The even edges of the path (if any) form a subset ofthe previous minimum cost assignment, of cost no more than the previous potential. Theodd edges of the path form a subset of the current minimum cost assignment, of cost nomore than the current potential.Since the cost of the potential is only increased during the course of the algorithm,and the �rst augmenting path consists of one edge, after j � n vertices are presented andassigned, the cost of the assignment is bounded by 2j � 1 times the cost of the currentpotential.2To distinguish between this minimum-cost matching and the assignment being produced by Perm, werefer to the former as a matching and the latter as the assignment.

Chapter 6ConclusionWe conclude with some remarks, directions for future work, and a summary of the thesis.6.1 RemarksCompetitive analysis for on-line problems is not a new area. For instance, competitive ratiosof on-line bin-packing strategies have been considered for years (e.g. Co�man, Garey, andJohnson [CGJ83]).Can competitive analyses be made more realistic and practical? Existing models areuseful in that they provide a theoretical framework for judging on-line algorithms. For aproblem for which empirical data is not extensive, for instance in designing multi-processorsor con�guring network communication, competitive analysis can provide guidelines, or evenguarantees of good performance [KMRS88]. Nonetheless, competitive ratios are worst-case estimates, and, if high, may not be representative of typical behavior. An analogueexists here to NP-completeness, which is evidence that a problem is hard in the worstcase, but not necessarily in the typical case. In other words, the worst-case pessimism thatexisting models for competitive analysis sometimes su�er from is representative of a morefundamental problem in current theoretical computer science: how to (when possible) obtaintheoretically rigorous models for analyzing typical rather than worst-case or average-casebehavior. Perhaps on-line problems are a good arena in which to explore this issue.11One alternative model for paging might be the following: Assume the input sequence is generated by a�nite-state markov process. When the process enters a state, it requests an item depending only on the state.60

CHAPTER 6. CONCLUSION 61How useful is the dual-bounding technique? Generally, duality helps understand struc-ture, so it is not surprising duality is useful for analyzing optimization heuristics. Further,half of obtaining a competitive analysis is (at least implicitly) obtaining a useful bound onthe optimal cost; the other half is correlating this bound with an on-line solution. At thevery least, explicitly using duality can simplify the former: for linear optimization problems,unlike more general problems, obtaining a bound on all instances is simply a dual problemof exhibiting a single instance.Perhaps the interesting re�nement of the question is whether the latter | correlating thelower bound with an on-line algorithm | is made easier by considering duality. Perhapson-line algorithms use duality in a consistent way. Competitive algorithms always havepotential function analyses, the problem is �nding and analyzing the potential function;perhaps, for linear optimization problems, the class of interesting potential functions isessentially a subset of the duality transformations, as discussed in Section 4.4, and thespecial structure of these problems can aid the search for potential functions.6.2 Future Work6.2.1 Randomized Weighted CachingCurrently no randomized weighted caching algorithm with competitiveness below k=(k�h+1) is known, nor is a lower bound suggesting there is not room for substantial improvementwith randomized strategies. Markmay be viewed as using randomization to take advantageof degeneracy in k-phase timings to reduce competitiveness. For weighted caching, optimaltimings have a somewhat simpler structure than for the general k-server problem. Perhapsa better understanding of this structure could lead to progress on randomized weightedcaching.This might be appropriate for analyzing adaptive deterministic algorithms; from preliminary consideration,it would seem that such algorithms could in this model be as competitive as barely random algorithms:algorithms that use a number of random bits bounded independently of the length of the input. (Markcan be made barely random by randomly ordering the k servers, and breaking ties according to the randomordering instead of uniformly at random each time.)Prabhakar Raghavan spoke at the DIMACS Workshop on On-Line Algorithms (hosted by Lyle McGeochand Danny Sleator at Rutgers University in February 1991) of a model for analyzing investment strategies.The assumption was that the input would satisfy certain characteristics (e.g. certain investments would bemore volatile than others, but all would, in the long run, have similar net growth), but, subject to thatrestriction, the worst-case input would be considered.

CHAPTER 6. CONCLUSION 626.2.2 LookaheadThe obvious practical notion of lookahead does not yield reduced competitiveness, whileresource-bounded lookahead yields reduced competitiveness but is obviously not practical.The challenge here is to �nd a compromise: a notion of lookahead for paging which yieldssome advantage yet is arguably realistic.26.2.3 Loose CompetitivenessLower bounds on the loose competitiveness of Lru, Fifo, and Mark are open, and mightrequire only a clever modi�cation of the lower bound to Fwf.No work has yet been done on loose competitiveness for general k-server or the weightedcaching algorithms.3The key to showing loose competitiveness for paging was the idea of k-phases, partic-ularly the more general lower bound on the optimal solution in terms of the number ofnew requests per phase. Of course we speculate that linear programming duality might beuseful in developing the more general lower bounds needed to show loose competitivenessfor k-server problems more general than paging.6.2.4 The K-Server DualThe structure of optimal timings should be explored. In particular,� We conjecture that Perm for k servers (Work0) is k-competitive, or even kk�h+1 -competitive, for weighted caching, although it is easily shown not competitive for the2One should keep in mind that in practice on-line paging strategies may have costs close enough tooptimal that the improvement from lookahead is marginal, or at least impossible to model in a realisticand reasonably general way. In that case, we can only hope that our theoretical model provides heuristicevidence about the relative merits of various algorithms, or suggestions or guidelines about how to designgood algorithms. In this light, resource-bounded lookahead is not so bad.3One might want to focus �rst on kk�h+1 -competitive strategies, where they exist. For any such strategy,and any k, the cost of the schedule for k servers produced by the on-line strategy is within a factor of 2 ofthe cost of the optimal schedule for k=2 servers. Thus if the cost of the on-line schedule for k servers is highin comparison to the cost of the optimal schedule with k servers, then the cost of the optimal schedule withk servers is low in comparison to the cost of the optimal schedule with k=2 servers. Thus one can show, forinstance, that if, for every k in some range, the cost of the on-line schedule for k servers is at least c > 2times the cost of the optimal schedule for k servers, then the cost of the optimal schedule with k serversshrinks by a factor of 2=c every time k is doubled. This can show a weak variant of loose competitiveness:either the cost of the strategy rapidly becomes insigni�cant, or the competitive ratio for some k is less thanc.

CHAPTER 6. CONCLUSION 63general k-server problem. A proof of this might follow similar lines as the analysis ofK-Phase, if the structure of the optimal timings discussed in Section 4.5 were betterunderstood. For instance, the monotonicity of the Bj, an essential property of k-phasetimings, seems to hold for the optimal timing implicit in Perm for k servers providedw(r0) = 0.� We know that the cost for h servers of the optimal timing for k servers discussed inSection 4.5 may be expressed(k � h+ 1)Cr(Opt; k)� (k� h)A0:A better understanding of the A0 term might yield bounds on the relative costs ofoptimal schedules for di�erent numbers of servers on a given sequence.It would be nice if some connection could be made between the combinatorial ap-proach we have taken for competitive analysis and the residue-based approach (see McGeoch[McG87] and Manasse, McGeoch, and Sleator [MMS90]) or if further relations could be es-tablished with potential functions. A starting point for investigating further the connectionswith potential functions might be Chrobak and Larmore's [CL91a] potential function anal-ysis of their algorithm for k servers on trees, particularly the case when the tree is a \star,"(A tree with one nonleaf | this special case corresponds to weighted caching) because ofthe similarity of the tree-based algorithm when the tree is a star and GreedyDual.The relations between duality and potential functions are preliminary and warrant fur-ther investigation. As of this writing we have not attempted to transform the other uses ofthe dual bounding technique into potential function analyses; this would be a natural thingto attempt.We wonder if the partitioning paging strategy of McGeoch and Sleator [MS89] can beviewed as a dual-guided algorithm.6.3 SummaryWe have seen a number of variations on the standard model for competitive analysis ofpaging strategies: allowing randomized strategies, allowing resource-bounded lookahead,

CHAPTER 6. CONCLUSION 64and loose competitiveness. Each led to substantially reduced, but not constant, competitiveratios.The dual bounding technique | using a dual solution to bound the optimal cost andobtain a competitive analysis | was introduced and shown to be implicit in the work onpaging; by recognizing this, a new, optimally competitive, deterministic, on-line algorithmwas given for weighted caching, a more general problem. The algorithm subsumes well-known existing algorithms, and the analysis strengthens a previous analysis.The structure of the linear programming dual of the k-server problem was explored.The k-server problem was seen to be a special case of the assignment problem, and on-linealgorithms for weighted caching and paging were shown to be related, via duality, to anon-line assignment algorithm. An intuitive analysis, using duality, of a weighted cachingstrategy was given, and duality considerations were shown to lead to a potential function.The dual bounding technique was applied to analyze an existing heuristic and an existingon-line algorithm for maximum-cost matching, and an on-line assignment algorithm.Many fundamental topics remain to be explored:� Practical and interesting models for lookahead.� Lower bounds on loose competitiveness for Lru, Fifo, and Mark.� Reduced competitiveness for weighted caching and k-server problems through loosecompetitiveness and/or randomization.� The structure of optimal weighted caching and k-server dual solutions.� The general applicability of the dual bounding technique and its relation to potentialfunctions and residues.� Models yielding better analyses of typical behavior when worst-case behavior is farfrom typical.

Bibliography[AACS89] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. A modelfor hierarchical memory. Research report RC 15118 (#67337), IBM ResearchDivision, T.J. Watson Research Center, Yorktown Heights, NY, October 1989.[ALM90] Sanjeev Arora, Tom Leighton, and Bruce Maggs. On-line algorithms for pathselection in a nonblocking network. In Proc. 22nd Annual ACM Symp. onTheory of Computing, pages 149{158, May 1990. Baltimore, MD.[Avi83] D. Avis. A survey of heuristics for the weighted matching problem. Networks,13:475{493, 1983.[BDBK+90] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On thepower of randomization in on-line algorithms. In Proc. 22nd Annual ACMSymp. on Theory of Computing, pages 379{386, May 1990. Baltimore, MD.Algorithmica, to appear.[Bel66] L. A. Belady. A study of replacement algorithms for virtual storage computers.IBM Systems Journal, 5:78{101, 1966.[BGRS90] M. Bern, D. H. Greene, A. Raghunathan, and M. Sudan. On-line algorithmsfor locating checkpoints. In Proc. 22nd Annual ACM Symp. on Theory ofComputing, pages 359{368, May 1990. Baltimore, MD.[BIRS91] Allan Borodin, Sandy Irani, Prabhaker Raghavan, and Baruch Schieber. Com-petitive paging with locality of reference. In Proc. 23rd Annual ACM Symp.on Theory of Computing, pages 249{259, May 1991. New Orleans, LA.[BKT90] P. Berman, H. Karlo�, and G. Tardos. A competitive 3-server algorithm. InProc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, pages 280{290,January 1990. San Francisco, CA.[BLS87] A. Borodin, M. Linial, and M. Saks. An optimal online algorithm for metricaltask systems. In Proc. 19th Annual ACM Symp. on Theory of Computing,pages 373{382, May 1987. New York, NY. JACM, to appear.[BM85] J. L. Bentley and C. C. McGeoch. Amortized analyses of self-organizing se-quential search heuristics. Comm. ACM, 28(4):404{411, April 1985.65

BIBLIOGRAPHY 66[BS89] D. L. Black and D. D. Sleator. Competitive algorithms for replication andmigration problems. Tech. Rep. CMU-CS-89-201, Department of ComputerScience, Carnegie Mellon University, 1989.[CCF85] A. Calderbank, E. Co�man, and L. Flatto. Sequencing problems in two-serversystems. Math. Operations Research, 10:585{598, 1985.[CDRS90] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks onweighted graphs, and applications to on-line algorithms. In Proc. 22nd AnnualACM Symp. on Theory of Computing, pages 369{378, May 1990. Baltimore,MD.[CGJ83] E. G. Co�man, M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAMJournal of Computing, 12:227{258, 1983.[CKPV90] M. Chrobak, H. Karlo�, T. Payne, and S. Vishwanathan. New results on serverproblems. In Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms,pages 291{300, January 1990. San Francisco, CA.[CKPV91] M. Chrobak, H. Karlo�, T. Payne, and S. Vishwanathan. New results on serverproblems. SIAM Journal on Discrete Mathematics, 4(2):172{181, May 1991.[CL] Marek Chrobak and Lawrence L. Larmore. A new approach to the serverproblem. SIAM J. Discrete Math. To appear.[CL91a] M. Chrobak and L. Larmore. An optimal on-line algorithm for k-servers ontrees. SIAM J. Computing, 20(1):144{148, February 1991.[CL91b] Marek Chrobak and Lawrence L. Larmore. Server problems and on-line games.In Lyle A. McGeoch and Daniel D. Sleator, editors, DIMACS Series in Dis-crete Mathematics and Theoretical Computer Science, volume 7, pages 11{64.American Mathematical Society, 1991.[FKL+88] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.Young. Competitive paging algorithms. Tech. Rep. CMU-CS-88-196, Com-puter Science Department, Carnegie Mellon University, 1988. J. Algorithms,to appear.[FRR90] Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms.In Proc. 31st Annual Symp. on Foundations of Comp. Sci., volume II, pages454{469, October 1990. St. Louis, MO.[GL88] A. Gyarfas and J. Lehel. On-line �rst �t colorings of graphs. Journal of GraphTheory, 12(2):217{227, 1988.[Gro91] Eddie Grove. The harmonic on-line server algorithm is competitive. In Proc.23rd Annual ACM Symp. on Theory of Computing, pages 260{266, May 1991.New Orleans, LA.

BIBLIOGRAPHY 67[GS53] D. Gale and F. M. Stewart. In�nite games with perfect information. In W. H.Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games Vol.II, Annals of Mathematical Studies, volume 28, pages 245{266. Princeton Uni-versity Press, 1953.[Hen76] W. J. Hendricks. An account of self-organizing systems. SIAM Journal ofComputing, 5(4):715{723, December 1976.[IR] Sandy Irani and Ronitt Rubinfeld. A competitive 2-server algorithm. Infor-mation Processing Letters. To appear.[IRWS91] S. Irani, N. Reingold, J. Westbrook, and D. Sleator. Randomized competitivealgorithms for the list update problem. In Proc. 2nd Annual ACM-SIAMSymp. on Discrete Algorithms, pages 251{260, January 1991. San Francisco,CA.[Kah91] S. Kahan. A model for data in motion. In Proc. 23rd Annual ACM Symp. onTheory of Computing, pages 267{277, May 1991. New Orleans, LA.[KMMO90] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki. Competitiverandomized algorithms for non-uniform problems. In Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, pages 301{309, January 1990. San Fran-cisco, CA.[KMRS88] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitivesnoopy caching. Algorithmica, 3(1):79{119, 1988.[KMV90] S. Khuller, S. Mitchell, and V. Vazirani. On-line algorithms for weightedmatching and stable marriages. Tech. Rep. TR 90-1143, Department of Com-puter Science, Cornell University, 1990.[KP91] Bala Kalyanasundaram and Kirk Pruhs. On-line weighted matching. In Proc.2nd Annual ACM-SIAM Symp. on Discrete Algorithms, pages 234{240, Jan-uary 1991. San Francisco, CA.[KRR91] H. Karlo�, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-serverand motion planning algorithms. In Proc. 23rd Annual ACM Symp. on Theoryof Computing, pages 278{288, May 1991. New Orleans, LA.[KVV90] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm foron-line bipartite matching. In Proc. 22nd Annual ACM Symp. on Theory ofComputing, pages 352{358, May 1990. Baltimore, MD.[Lov89] L�aszl�o Lov�asz. Communication complexity: A survey. Tech. Rep. CS-TR-204-89, Computer Science Department, Princeton University, February 1989.[McG87] L. A. McGeoch. Algorithms for Two Graph Problems. PhD thesis, CarnegieMellon University, 1987.[McG91] Lyle McGeoch. Personal communication. 1991.

BIBLIOGRAPHY 68[MMS88] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms foron-line problems. In Proc. 20th Annual ACM Symp. on Theory of Computing,pages 322{333, May 1988. Chicago, IL.[MMS90] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithmsfor server problems. Journal of Algorithms, 11:208{230, 1990.[MS89] L. A. McGeoch and D. D. Sleator. A strongly competitive randomized pag-ing algorithm. Tech. Rep. CMU-CS-89-122, Computer Science Department,Carnegie Mellon University, 1989. Algorithmica, to appear.[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithmsand Complexity. Prentice-Hall, Englewood Cli�s, NJ, 1982.[Riv76] R. Rivest. On self-organizing sequential search heuristics. Comm. ACM,19(2):63{67, February 1976.[RS89] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms.In 16th International Colloquium on Automata, Languages, and Programming,volume 372 of Lecture Notes in Computer Science, pages 687{703. Springer-Verlag, July 1989. Revised version available as an IBM Research Report.[RT81] E. Reingold and R. Tarjan. On a greedy heuristic for complete matching.SIAM Journal of Computing, 10:676{681, 1981.[RW90] N. Reingold and J. Westbrook. Randomized algorithms for the list updateproblem. Tech. Rep. YALEU/DCS/TR-804, Department of Computer Science,Yale University, June 1990.[SA88] R. L. Sites and A. Agarwal. Multiprocessor cache analysis using ATUM. InProc. 15th IEEE Int. Symp. on Computer Architecture, pages 186{195, 1988.Honolulu, HI.[Sch90] Baruch Schieber. Personal communication. 1990.[ST85] D. D. Sleator and R. E. Tarjan. Amortized e�ciency of list update and pagingrules. Comm. ACM, 28(2):202{208, February 1985.[Tar85] R. E. Tarjan. Amortized computational complexity. SIAM J. Alg. Disc. Math.,6:306{318, 1985.[Yao82] A. C. Yao. Probabilistic computations: Towards a uni�ed measure of complex-ity. In Proc. 17th Annual Symp. on Foundations of Computer Science, pages80{91, November 1982. Chicago, IL.[You] Neal Young. The k-server dual and loose competitiveness for paging. Algo-rithmica, to appear in a special issue on on-line algorithms.[You91] Neal Young. On-line caching as cache size varies. In Proc. 2nd Annual ACM-SIAM Symp. on Discrete Algorithms, pages 241{250, January 1991. San Fran-cisco, CA.

Indexadmissible edges and neighbors 41alternating path 55amortized analysis 48assignment 12{13augment 55augmenting path 55Bn 51, 53Balance 7for weighted caching 47c-competitive 1competitive analysis 1loose 5dT (i; j) 49, 51d�(i; j) 54dual bounding technique 9dual transformation 35, 48, 49, 51, 54, 57extending a timing 42Fk , Fk-factor 40Fifo 4Fwf 4GN 40graph, access 6graph, metric 12GreedyDual 8, 35GreedyMax2 13, 58GreedyMax3 13, 58h 4k 4k-phase partitioning 15k-phase timing 43k-server problem 7{10K-Phase 10, 45for paging 45for weighted caching 46lookahead, resource-bounded 5, 23loose competitiveness 5Lru 4

Mark 4, 18matching 12{13Max 13Min 13Nk(r) 16new requests 15On 53on-line problem 1Opt for paging 3Opt for weighted caching 7Pk(r) 16paging 3{4pending nodes 42Perm 13, 59for k servers 10, 56potential function 48for Balance for weighted caching 54potential 41slack 41stretching 41timings 34{35k-phase 43extending 42optimal 55as k-server dual 34stretching 41zero 42vertex weight 41weighted caching 7Work� 10X 469

