COMPETITIVE PAGING AND DUAL-GUIDED ON-LINE
WEIGHTED CACHING AND MATCHING ALGORITHMS

Neal Young

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE, PRINCETON UNIVERSITY

October, 1991

(© Copyright by Neal Young 1991
All Rights Reserved

ii

Abstract

This thesis presents research done by the author on competitive analysis of on-line problems.
An on-line problem is a problem that is given and solved one piece at a time. An on-line

strategy for solving such a problem must give the solution to each piece knowing only the

current piece and preceding pieces, in ignorance of the pieces to be given in the future.

We consider on-line strategies that are competitive (guaranteeing solutions whose costs
are within a constant factor of optimal) for several combinatorial optimization problems:
paging, weighted caching, the k-server problem, and weighted matching.

We introduce variations on the standard model of competitive analysis for paging: al-
lowing randomization, allowing resource-bounded lookahead, and loose competitiveness, in
which performance over a range of fast memory sizes is considered and noncompetitiveness
is allowed provided the fault rate is insignificant. Fach variation leads to substantially
better competitive ratios.

We present a general technique for competitive analysis of linear optimization problems:
competitive analyses are obtained by using linear programming duality to obtain bounds on
the optimal cost. The technique is implicit in previous work on paging, weighted caching,
and weighted matching. We generalize the implicit previous use of the technique, obtaining
the greedy dual algorithm for weighted caching. The strategy generalizes the least-recently-
used and first-in-first-out algorithms for paging and the balance algorithm for weighted
caching. The analysis strengthens a previous analysis of the balance algorithm for weighted
caching.

We explore the linear programming dual of the k-server problem, showing that the
k-server problem is a special case of on-line minimum-weight matching, revealing close
relationships between on-line weighted caching and assignment algorithms, and showing

how duality can yield potential function analyses.

iii

Acknowledgements

Thanks to Lori Ferguson, Rick and Claire Kenyon, and Anthony Tomasic for their friend-
ship.

This research was supported by the Hertz Foundation, by Princeton University, by
Digital Equipment Corporation’s Systems Research Center in Palo Alto, by NSF Grants
DCR-86-05962 and CCR-89-20505, and by the ONR Grant N00014-87-K-0467.

v

Contents

Abstract il
Acknowledgements iv
1 Introduction 1
1.1 On-Line Problems and Competitive Analysis 1
1.2 Summaryo e 2
1.3 Paging 3
1.3.1 Previous Results oo 4

1.32 New Results. o 5

1.3.3 Related Results 6

1.4 The Weighted Caching and K-Server Problems 7
1.4.1 Previous Results oo o 8

142 New Results. o 9

1.4.3 Related Results o 9

1.5 The K-Server Dual 10
1.5.1 Previous Results oo 11

1.5.2 New Results. o o 11

1.6 Duality Analyses of Weighted Matching Strategies 12
1.6.1 Reproduced Results L L. 13

2 Paging 15
2.1 Partitioning a Sequence into K-Phases 15
2.2 Randomized Paging 17

2.3 Resource-Bounded Lookahead oL
2.4 Loose Competitiveness L e e
2.4.1 Upper Bounds for Lru, Firo, Fwr, and MARK
2.4.2 A Lower Bound for Fwro o oL

Deterministic Weighted Caching
3.1 The K-Server Dual: Timings
3.2 The Greedy Dual Strategy L

The K-Server Dual

4.1 The K-Server Problem as Assignment
4.1.1 The Assignment Dual 0oL,
4.1.2 Stretching a Timing

4.2 K-Phase Timings 0 0 o e

4.3 Lru, K-Phase Timings, and BALANCE

4.4 Duality Yields a Potential Function
4.4.1 A Space-Time Formulation of Timings
4.4.2 An Intuitive Analysis of BALANCE
4.4.3 A Potential Function Analysis of BALANCE

4.5 K-Phase Timings, PERM, and Optimal Timings

Duality Analyses of Weighted Matching Strategies

Conclusion

6.1 Remarks oL oL

6.2 Future Work oL
6.2.1 Randomized Weighted Caching
6.2.2 Lookahead
6.2.3 Loose Competitiveness oo
6.2.4 The K-Server Dual

6.3 Summaryo e e e e e e e

Bibliography

vi

34
34
35

39
40
41
41
42
45
47
49
50
52
55

57

60
60
61
61
62
62
62
63

68

Chapter 1

Introduction

In this thesis we present research done by the author on competitive analysis of on-line

problems.

In Section 1.1 of this chapter we introduce on-line problems and competitive analysis.
In Section 1.2 we briefly summarize the thesis. In the succeeding sections we summarize

the concepts and results relevant to the individual chapters.

1.1 On-Line Problems and Competitive Analysis

An on-line problem is a problem that is given and solved one piece at a time. An on-line
strategy for solving such a problem must give the solution to each piece knowing only the
current piece and preceding pieces, in ignorance of the pieces to be given in the future.

We use the following terminology from standard competitive analysis:

o A strategy is c-competitive if the cost of the solution produced by the strategy is
bounded by ¢ - opt + b, where opt is the cost of the optimal solution and b depends

only on the starting configurations of the on-line and optimal (off-line) strategies.
o The competitive ratio, or competitiveness, of the strategy is the infimum of such c.

In this thesis we consider competitive on-line strategies for several combinatorial opti-

mization problems: paging, weighted caching, the k-server problem, and weighted matching.

CHAPTER 1. INTRODUCTION 2

1.2 Summary

In Chapter 2, we introduce new variations on the standard model of competitive analysis for
paging: allowing randomization, allowing resource-bounded lookahead, and loose competi-
tiveness, in which competitive ratios over a range of fast memory sizes are considered and
noncompetitiveness is allowed provided the fault rate is insignificant. All of these variations

lead to substantially reduced competitive ratios.

In the remaining chapters we present and study a general technique for competitive
analysis of linear optimization problems: we obtain competitive analyses by using linear
programming duality to obtain bounds on the optimal cost. The technique, which we refer
to as the dual bounding technique, is implicit in previous work on paging, weighted caching,

and weighted matching.

In Chapter 3, we present and analyze the greedy dual algorithm, a new, deterministic, on-
line strategy for weighted caching. The strategy generalizes the least-recently-used, first-in-
first-out, and marking algorithms for paging and the balance algorithm for weighted caching.
We analyze the strategy with the dual bounding technique. The analysis strengthens and

generalizes a previous analysis of the balance algorithm for weighted caching.

In Chapter 4, we explore the linear programming dual of the k-server problem. We
show that the k-server problem is a special case of the assignment (minimum-cost, perfect,
bipartite matching) problem, so that the dual problem is a special case of the well-studied
assignment dual.

We show how existing paging strategies implicitly use the dual, and how the greedy dual
algorithm generalizes this implicit use of duality.

We present a direct, intuitive interpretation of the k-server dual, and use it to give an
intuitive analysis of the balance algorithm for weighted caching. We discuss how duality
transformations are similar to potential function analyses, and derive a potential function
analysis of the balance algorithm for weighted caching from the duality analysis.

We discuss how the greedy dual algorithm is related to a previously analyzed on-line

assignment algorithm, and we discuss the structure of optimal k-server dual solutions.

In Chapter 5, we use the dual bounding technique to reproduce the analyses of several

existing weighted matching strategies. The purpose is to study the general applicability of

CHAPTER 1. INTRODUCTION 3

the technique.

We conclude the thesis with Chapter 6, in which we make some final comments, consider

directions for future work, and summarize our results.

1.3 Paging

In this section we introduce concepts and results relevant to Chapter 2. We define the
paging problem and relevant terminology, and summarize the pertinent paging strategies.
We summarize old results on deterministic paging strategies, our new results on variations,

and related work by other authors.

e The paging problem is as follows: One is given a collection of items (representing
pages), a fast memory (or equivalently a cache) capable of holding a fixed number k&
of these items, and a sequence of requests for items. In response to each request, the
requested item must be moved into the fast memory if it is not already present. If £
items are already in the fast memory, some item (or items) must be evicted to make
room for the new item. The problem is to choose which items to evict to minimize

the number of evictions.

o A paging strategy is on-line if a strategy chooses which item to evict without knowl-

edge of future requests.
o A schedule satisfying a sequence of requests is an appropriate sequence of evictions.
e The cost of the schedule is the number of evictions.

o The cost of a strategy on a sequence for a given k is the cost of the schedule produced
by the strategy, unless the strategy is randomized. In this case the cost of the schedule
is a random variable, and the cost of the strategy refers to the expected cost of the

schedule.

e C,.(X,k) denotes the cost of strategy X, using a fast memory of size k, on sequence r.

We consider the following paging algorithms:

CHAPTER 1. INTRODUCTION 4

OpPT — Belady’s algorithm [Bel66], which yields an optimal (minimum cost) schedule for

paging by evicting the item whose next request is further in the future.

LrU — Least-recently-used, which evicts the item that has been requested least recently.

Firo — First-in-first-out, which evicts the item that has been in the fast memory the
longest.

Fwr — Flush-when-full, which evicts all items when space is needed.

MaRK — The marking algorithm [FKL*88], which evicts an item chosen uniformly at

random from the set of items not in the fast memory of Fwr when space is needed.

o A conservative paging strategy is one that, with a fast memory of size k.,

e incurs no evictions before k + 1 distinct items have been requested, and

e incurs at most k evictions during any subsequence of requests to at most k

distinct items.

The reader may verify that all of the above strategies except OPT are on-line, and all

are conservative.

Throughout this thesis, X refers to a conservative, on-line paging strategy and r to a
sequence of rqry - - -7y of items, each of which represents a request. If “r;” is used to denote
an item which is the subject of some request, it is intended that the request in question is
the ¢th. For instance, if » = aba, then, in “Let r; denote the last item requested,” ¢ could
(in principle) be taken to be either 0 or 2; it is intended that 7 be taken to be 2.

Generally, k refers to the fast memory size of an on-line strategy, and h to the fast
memory size of OPT. The competitive ratio of a strategy generally depends on k and h.

Generally we assume h < k, sometimes restricting to the special case h = k.

1.3.1 Previous Results

The first competitive analysis for paging, given by Sleator and Tarjan [ST85], showed that
Lru and F1ro have competitive ratio k/(k — h 4+ 1) and that no deterministic, on-line
paging strategy has a better competitive ratio. Sleator and Tarjan also showed that the

least-frequently-used paging strategy, for instance, is not competitive.

CHAPTER 1. INTRODUCTION 5

1.3.2 New Results

Randomization can help on-line algorithms. When h = k, deterministic, on-line strategies
are at best k-competitive, whereas MARK is 2Hj-competitive.! On the other hand, no
randomized, on-line strategy is less than Hy-competitive.

For h < k, MARK is roughly 21n ﬁ—competitive, and no randomized, on-line strategy

is less than roughly In kf—h—competitive.
Resource-bounded lookahead helps on-line algorithms:

o A strategy is on-line with resource-bounded lookahead [if its choices depend only on
the past requests and the maximal prefix of the future requests for which it will incur

[evictions.

A natural adaptation of MARK taking advantage of resource-bounded lookahead [is
2(In(k/1) 4+ 1))-competitive when h = k, while a deterministic version of this algorithm is
in turn max{2k/(k — h + 1), 2}-competitive. These ratios are within a factor of about 2 of
optimal. These results further explore the the trade-off, implicit in Sleator and Tarjan’s

analysis, between knowing the future and having a larger fast memory.

Relaxing the model helps on-line algorithms:

o A strategy X has loose competitive ratio c(k) if, for any sequence r and numbers n

and d, for all but o(n) values of k € {1,...,n},
C.(X,k) <max{c(k)-C,(OpPT,k),c-C,(OPT, 1)} + b,
where € = 1/n% and b depends only on the starting configurations of X and OpT.

Intuitively, if X is loosely c¢(k)-competitive, then, for almost any fast memory size k, the
competitive ratio is at most ¢(k) or the cost is insignificant.

For nondecreasing ¢(k), conservative paging strategies such as LrU, F'1ro, and F'wF have
loose competitive ratio ¢(k) provided ¢(k)/Ink is unbounded and k/c¢(k) is nondecreasing,
while MARK has loose competitive ratio ¢(k) provided ¢(k) — 2Inln k is unbounded and

2Ink — ¢(k) is nondecreasing. F'wF is not loosely ¢(k)-competitive for any c(k) which is
O(lnk).

'Hy=141/24 - +1/kxlnk.

CHAPTER 1. INTRODUCTION 6

1.3.3 Related Results

MARK is similar in spirit to the randomized on-line algorithm given by Borodin, Linial, and
Saks for metrical task systems [BLS87].

The analysis of MARK when h = k, and the corresponding Hj lower bound on compet-
itiveness for randomized paging strategies, were discovered in the summer of 1988 by three
independent groups: Fiat, Karp, and Luby; McGeoch and Sleator; and the author. The
results were published jointly [FKL*8S].

McGeoch and Sleator [MS89] subsequently developed the partitioning algorithm, a ran-

domized, on-line, Hg-competitive paging algorithm.

Kalyanasundaram and Pruhs [KP91] consider a form of lookahead for on-line assignment
(min-cost, bipartite, perfect matching). Instead of receiving the input in individual pieces,
the on-line algorithm receives the pieces in groups. If the assignment problem instance
arrives in t groups, they give an on-line algorithm with competitive ratio 2¢ — 1.

Ron Graham, in his talk “How Much of the Future is Worth Knowing?” at the 2nd
Annual ACM-SIAM Symposium on Discrete Algorithms in January of 1991, mentioned
results concerning lookahead in the k-server problem with excursions. The gist of his talk
was that, in contrast to the k-server problem without excursions, lookahead can sometimes

help the competitive ratio of on-line algorithms with excursions.

Borodin, Irani, Raghavan, and Schieber [BIRS91] considered relaxing the standard
model by restricting request sequences to paths in an “access graph”. Their relaxation
is intended to study locality of reference in paging. They characterize resulting competitive
ratios in terms of the structure of the access graph: if the access graph is a tree of k 4+ 1
nodes, for instance, the competitive ratio of LRU is shown to be the number of leaves in the

tree, minus 1.

Our model for randomized strategies assumes the requests are independent of the spe-
cific random choices of the strategy. This is false in some situations: if the time to service
a request can influence later requests, for instance. More appropriate models for this sit-
uation, and general relations between randomized and deterministic competitiveness, were

considered by Ben-David, Borodin, Karp, Tardos, and Wigderson [BDBK*90].

CHAPTER 1. INTRODUCTION 7

1.4 The Weighted Caching and K-Server Problems

In this section we introduce two generalizations of the paging problem: the weighted caching
and k-server problems, which we study in Chapter 3. We enumerate the weighted caching
strategies that we study in the chapter, and we summarize relevant previous results, our

new results, and related work by other authors.

o The weighted caching problem is a generalization of the paging problem in which the

cost to evict an item r; is a nonnegative function w(r;) of the item.

o The k-server problem is a further generalization in which the cost is a nonnegative
function d(r;,7;) of the item r; evicted and the item r; requested, and in which the
fast memory is assumed to be initially full. Except for the special case of weighted

caching, d is assumed to be metric?.

The k-server problem may be transformed as follows into a network problem: Given n
items, a fast memory of size k, and a request sequence r, form a complete, directed graph
with the n items as vertices and with the length d(r;,r;) of edge (7;,7;) equal to the cost
of evicting item r; from the fast memory and bringing in item r;. Initially, place k servers
on the vertices corresponding to the items initially in the fast memory. Transform each
subsequent request for an item into a request for service at the corresponding vertex of the
graph: when a vertex r; is requested, if no server resides on vertex r;, then a server must
be moved to vertex r; from some vertex r; at a cost of d(r;,r;). This is the standard form

of the k-server problem.

For simplicity, we assume that all servers start on the first requested node, 79.> When
we consider paging or weighted caching as restrictions of the k-server problem, when we
wish to allow the on-line strategy to start with an empty fast memory, we assume that

request 0 is to an artificial vertex o s.t. d(o,-) = 0.
We consider the following weighted caching and k-server algorithms:

OpPT — The algorithm that produces an optimal k-server or weighted caching schedule.

2Symmetric, satisfying both the triangle inequality and d(ri,ri) = 0.

®This assumption gives the on-line strategy less of a disadvantage than the usual assumption that the
strategy may choose the starting positions of the servers. The assumption is, however, without loss of
generality, in that it increases the cost of OPT by at most an additive constant.

CHAPTER 1. INTRODUCTION 8

BALANCE — The balance algorithm [McG87, MMS88, MMS90, CKPV90] for & servers. In
response to request r, BALANCE moves the server s which minimizes W + d(s,r),
where W, is the distance traveled by s so far, and d(s,r) is the length of the edge

from the node served by s to r.

GREEDYDUAL — The greedy dual algorithm [You91, You] for weighted caching. The al-
gorithm maintains values on the servers. Initially the value of a server is the weight
of the node it serves. When an unserved vertex is requested, the server values are
decreased by the minimum server value, some zero-valued server is moved, and its
value is raised to the weight of its new vertex. When a served vertex is requested, the

server value is reset anywhere between its current value and the weight of its vertex.

1.4.1 Previous Results

The k-server problem is a natural abstraction of a number of on-line scheduling problems
and has been studied a great deal in the past several years. McGeoch [McG87], and by
Manasse, McGeoch, and Sleator [MMS88, MMS90] give a 2-competitive, residue-based 2-
server algorithm. Irani and Rubinfeld [IR] present a 10-competitive variant of BALANCE
for 2 servers. Chrobak and Larmore [CL] present a 2-competitive 2-server algorithm based
on the concept of the closure of a metric space. Berman, Karloff, and Tardos show that
HarMmoONIC (a natural, memoryless, randomized algorithm which moves a server with prob-
ability inversely proportional to the cost of the edge it must traverse) is competitive for 3
servers.

Currently the most general analyses are the following: Coppersmith, Doyle, Raghavan,
and Snir [CDRS90] use properties of random walks to show that HARMONIC is k-competitive
in a large class of graphs. Chrobak and Larmore [CL91a] give a natural, k-competitive, de-
terministic algorithm for k servers on trees.? Both of these analyses show that the respective
algorithms are k-competitive for weighted caching.

Manasse, McGeoch, and Sleator [MMS88, MMS90] show that in any metric space (or
graph with symmetric edge weights satisfying the triangle inequality) with at least & + 1
distinct points, no deterministic, on-line strategy is better than (k/(k—h+ 1))-competitive.

L4On trees” means that the distances in the graph are shortest path distances in some spanning tree of
the graph.

CHAPTER 1. INTRODUCTION 9

BALANCE has been considered previously by a number of authors. McGeoch [McG87],
and Manasse, McGeoch, and Sleator [MMS88, MMS90] show that BALANCE is k-competitive
(when h = k) for the general k-server problem provided the number of distinct vertices
requested is k + 1. Chrobak, Karloff, Payne, and Vishwanathan [CKPV90] show that

BALANCE is k-competitive (when h = k) for weighted caching.

1.4.2 New Results

GREEDYDUAL, a new algorithm that generalizes Lru, FwF, MARK, and BALANCE, is
(k/(k — h + 1))-competitive for weighted caching. This result is the first result we know of

showing reduced competitiveness when h < k for any problem other than paging.

GREEDYDUAL is motivated by the discovery of a general technique, called the dual
bounding technique, implicit in the analyses of the strategies it generalizes.

The technique stems from an answer to the question “How can we obtain a bound on the
optimal cost in order to show competitiveness?” The answer is “Formulate the problem of
finding the optimal solution as a linear program, so that each solution to the problem yields
a feasible solution to the linear program of equal cost. The cost of any feasible solution to
the dual of this linear program is a bound on the optimal cost.” The technique is to produce

such a lower bound and correlate it with the on-line algorithm to show competitiveness.

1.4.3 Related Results

Karlin, Manasse, McGeoch, and Owicki [KMMO90] considered randomized algorithms for
2 servers on isosceles triangles: 3-node graphs with nonnegative symmetric edge weights
1, d, and d, with d > 1/2. Lower and upper bounds on the optimal competitiveness of
randomized, on-line strategies were shown. For integer d > 1 the lower bound exceeds H,.

To see the relevance to weighted caching, note that any server problem with requests to

the vertices of a triangle is equivalent to a 3-node, nonnegatively weighted caching problem.?

®Qiven a triangle with sides of length i, l>, and I, choose w1, ws, and wa to satisfy the 3 linear equations
li = Z]# w; /2 for ¢ = 1,2,3. Then the triangle inequalities [; < Z]# l; for 1 = 1,2,3 are equivalent to
the inequalities w; > 0 for y = 1,2, 3. Instead of charging !; for a server to traverse edge ¢ of the triangle,
imagine charging w;/2 when a server enters or leaves vertex j. The charges are equivalent, and the latter is
equivalent to a 3-node weighted caching problem with nonnegative weights w1, w2, and ws. Note that this
construction may be reversed to obtain a triangular server problem from any 3-node, nonnegatively-weighted
caching problem.

CHAPTER 1. INTRODUCTION 10

Thus, for some server problems, randomized algorithms can not be as competitive as for
the paging problem.
More recently, lower bounds for randomized algorithms for the general k-server problem

have been studied by Karloof, Rabani, and Ravid [KRR91].

GREEDYDUAL appears to be closely related to Chrobak and Larmore’s algorithm for k

servers on trees [CL91a] as the algorithm applies to the weighted caching problem.

Duality has been used to obtain lower bounds in other contexts. Yao [Yao82] observed
that, as a consequence of Von Neumann’s min-max theorem for zero-sum games, a lower
bound on the complexity of a randomized algorithm may be obtained by fixing an input
distribution and showing a lower bound on the expected complexity of any deterministic
algorithm for that distribution. (The min-max theorem may be viewed as a special case of
linear programming duality.)

Lovédsz [Lov89] used duality directly, but in a similar way, to give lower bounds on

randomized communication complexity.

1.5 The K-Server Dual

In this section we introduce the concepts relevant to Chapter 4. We summarize the relevant

k-server strategies, old results, and our new results.

The following k-server strategies are considered:

K-PHase — Roughly, K-PHASE develops a nonoptimal solution to the dual of the k-server

problem on-line and uses complementary slackness conditions to determine its choices.

PERM for k servers — PERM, an on-line assignment algorithm, interpreted as a k-server
strategy via the reduction (see Section 4.1) of the k-server problem to assignment.
PErM for k servers is the following: keep servers on k vertices that could currently

be covered by OpT (with h = k) if the current request were the last.

WoRrK, — The “work” algorithm. In response to the current request r, let S denote the
set of possible states of OPT’s k servers after serving r, let C's; denote the cost incurred

by OpT given that its servers are in state s € 9, let w denote the current state of

CHAPTER 1. INTRODUCTION 11

the on-line algorithm’s servers, and let d(w, s) denote the cost of moving servers from

state w to s. WORK) moves its servers into a state s € S minimizing Ad(w,s)+ Cs.

We mention WORK because WORKg, for the k-server problem, is PERM for k servers.

1.5.1 Previous Results

Chrobak et al. [CKPV90] formulated the problem of finding an optimal k-server schedule as
an integral capacity min-cost max-flow problem, and conversely gave a linear-time reduction
from the assignment (min-cost, bipartite, perfect matching) problem to the off-line k-server

problem.

Kalyanasundaram and Pruhs [KP91] showed that a ¢(k)-competitive (when h = k)
k-server algorithm implies a (2¢(k) — 1)-competitive on-line assignment algorithm for as-
signments in 2k-node bipartite graphs. Kalyanasundaram and Pruhs, and independently
Khuller, Mitchell, and V. Vazirani [KMV90], discovered PErRM, which is (2n—1)-competitive
in 2n-node bipartite graphs.

A number of researchers, including McGeoch and Sleator (stemming from their work
on residues); Chrobak and Larmore; and Karloff, have conjectured that WoORK;y is k-
competitive [McG91]. The generalization to WoRK) is due to Chrobak and Larmore
[CLI1Db].

1.5.2 New Results

An optimal k-server schedule may be found by formulating the problem as an assignment
(minimum-weight bipartite matching) problem. The intuition for this formulation is simple:
each request represents a demand for a server from previous requests and a supply of a server
to later requests; the cost of supplying the jth demand with a server from the ¢th request,
where 7 < 7, is the distance from the ith requested vertex to the jth requested vertex. The
formulation, which is described in detail in Chapter 4, maintains the on-line interpretation

of the problem.

K-PHASE is a new algorithm, invented by generalizing the implicit use of duality in
Lru. For paging, LRU is a special case of K-PHASE. For weighted caching, BALANCE is

obtained from K-PHASE by ignoring served requests, while GREEDYDUAL is essentially a

CHAPTER 1. INTRODUCTION 12

combination of K-PHASE and BALANCE. (GREEDYDUAL generalizes both.) For the general

problem, K-PHASE is not competitive.

Lower bounds obtained from dual solutions are similar to amortized analyses with poten-
tial functions, in that each can be viewed as transforming the costs of the original problem
and then applying simple, “local” lower bounds. BALANCE for weighted caching has a nice,
intuitive analysis using duality which illustrates this similarity, and which leads directly to

a potential function analysis.

K-PHASE may be thought of as an approximation to PERM for k servers, in that each
may be viewed as developing a solution to the dual problem on-line, and using complemen-
tary slackness conditions to guide its choices. The difference is that K-PHASE develops a

nonoptimal dual solution.

The formulation of the k-server problem as an assignment problem, together with the
understanding of dual solutions implicit in the analysis of K-PHASE, provide some suggestive

insight into the structure of optimal solutions to the general k-server dual.

1.6 Duality Analyses of Weighted Matching Strategies

In this section we introduce the weighted matching algorithms considered in Chapter 5, and

summarize their analyses, reproduced in the chapter with the dual bounding technique.

o A matching is a subset of the edges of a graph such that each vertex in the graph

adjoins at most one edge of the subset.
o A perfect matching is a matching such that each vertex adjoins exactly one edge.

o The cost of a matching in a weighted graph is the sum of the weights of the edges in
the matching.

o An assignmentis a perfect matching in a bipartite graph. Abusing terminology, if the
bipartite graph &' = (U, W, I) with vertex set U UW and edge set £ C U x W has
|U| # |W], we also call a matching of size min{|U|, |W|} an assignment.

o A metric graph is a complete, or complete bipartite, graph with symmetric edge

weights satisfying the triangle inequality: the weight of any edge is at most the weight

CHAPTER 1. INTRODUCTION 13

of any path connecting the endpoints.

Matchings and weighted matchings are well-studied.

For maximum-weight matching problems, we assume the edge weights are nonnegative.

We consider the following three off-line matching algorithms:
MIN — An algorithm that produces a min-cost perfect matching.
MAX — An algorithm that produces a max-weight matching.

GREEDYMAX2 — The greedy heuristic for max-weight matching [Avi83], which generates
a matching by starting with the empty matching and repeatedly adding a maximum-

weight edge not adjacent to any edge currently in the matching.

e The on-line assignment problem in a weighted bipartite graph G' = (U, W, U x W) is
as follows. The vertices of U are presented in some order. When a vertex is presented,
costs of all adjoining edges are revealed, and some such edge must be added to the

matching.

We consider the following deterministic, on-line assignment algorithms:

GREEDYMAX3 — The greedy algorithm for on-line, maximum-weight, bipartite matching
[KVV90, KP91], which adds the max-weight edge that adjoins the presented vertex

but is not adjacent to any edge already in the matching.

PERM — The permutation algorithm for on-line assignment [KP91, KMV90], which adds
an edge adjoining the presented vertex to maintain the following invariant: the set of
vertices in W adjoining some edge in the matching may be matched to the set P of

presented vertices by a matching that is minimum-cost among maximum matchings

in Gp = (P,W, P x W).

1.6.1 Reproduced Results

The following results are reproduced using the dual bounding technique:

CHAPTER 1. INTRODUCTION 14

o GREEDYMAX2 produces a matching within a factor of two of maximum in any graph.
This is a result by Avis [Avi83]; a special case of the result is mentioned by Karp,
Vazirani, and Vazirani [KVV90].

¢ GREEDYMAX3 produces an assignment within a factor of three of maximum in any
complete, bipartite, metric graph. This is a result by Kalyanasundaram and Pruhs

[KP91].

o PERM produces an assignment within a factor of 2n — 1 of minimum in any complete,
2n-node, bipartite, metric graph. This is a result by Kalyanasundaram and Pruhs

[KP91] and Khuller, Mitchell, and V. Vazirani [KMV90].

Chapter 2
Paging

In this chapter, we consider three variants on the standard model for competitive analysis of
paging strategies: allowing randomization, allowing resource-bounded lookahead, and loose

competitiveness.

2.1 Partitioning a Sequence into K-Phases

We begin by explaining how to break a sequence of requests into k-phases. K-phases serve
as an intermediate step in our competitive analyses for paging, providing lower bounds on

optimal schedule costs and upper bounds on on-line schedule costs.

o The k-phase partitioning (a partitioning into k-phases, generally NOT a partitioning
of size k) of a paging request sequence r is defined as follows. The first k-phase is
the maximal prefix of r containing requests to at most & distinct items. In general,
the ¢th k-phase is the maximal prefix of r; containing requests to at most k distinct

items, where r; denotes r with the first 7 — 1 k-phases removed.

Thus, the ith k-phase starts exactly with the request that causes F'wF with an (initially

empty) fast memory of size k to flush its memory for the 7 — 1st time.

Generally, “a k-phase”, or “a phase” will refer to one that is nonempty. Thus, each
k-phase (except the last) of a sequence contains requests to k distinct items, and the

last contains requests to at least 1 and at most k£ distinct items.

15

CHAPTER 2. PAGING 16

abacd-EaFeab-CDeb

Figure 1: A 4-phase partitioning, with new requests in capitals.

e The new requests within a k-phase (other than the first) are requests to items that
were not requested yet in this phase or the previous. Note that at least the first

request of every phase (other than the first) is new.
o N.(k) denotes the average number of new requests per k-phase other than the first.

e P.(k) denotes the number of (nonempty) k-phases other than the first.

The following lemma characterizes optimal schedule costs sufficiently for all of our com-

petitive analyses for paging.

Lemma 2.1.1 ([You91, You])

C,(OpT,h)/Pr(k) > k—h+1 (1)
C(OPTh)/P(k) = (k—h+N;(k))/2 (2)
C(OPT,R)/Po(R) < Nilh) (3)

Proof: (1)In the optimal schedule for r with a fast memory of size h, after the first request
of the ith (¢ > 1) k-phase, at most h — 1 of the k distinct items requested in the previous
phase remain in the fast memory. Thus, at least & — h + 1 evictions occur after the first
request of the i — 1st phase and before the second request of the ith.!

(2) Let m; (¢ > 1) denote the number of new requests in the ¢th k-phase. Then, during
that k-phase and the previous, k + m; distinct items were requested. Consequently, any

schedule for r with a fast memory of size h has at least &k — h + m; evictions in these two

!This argument is essentially due to Sleator and Tarjan [STS85].

CHAPTER 2. PAGING 17

phases. Thus one can argue that the total number of evictions is at least

max {Z(k —h+maipn),) (k—h+ m2i)} > (k— h+ N, (k))P(k)/2.

i>1 i>1

(3) Any (off-line) schedule that chooses to evict any item that will not be requested

during the current phase incurs a cost of at most m; in the ¢th phase. 0

With this lemma, the problem of finding a competitive schedule for r is essentially
reduced to the sub-problem of finding a competitive schedule for each k-phase of r. For

example:

Lemma 2.1.2 ([You91, You]) For any conservative paging strategy X, sequence r, and
k> h,

C(X.k) < ¢.(0PT, h).

k
E—h+1
Proof: Any schedule produced by a conservative paging strategy has no evictions in the

first phase and at most k evictions in each subsequent phase, while, by (1) of lemma 2.1.1,

for each subsequent phase the optimal schedule incurs? a cost of at least k — h + 1. 0

Corollary 2.1.3 ([ST85]) Lru, I'tro, and FwF are k/(k — h + 1)-competitive.

Recall that Sleator and Tarjan [ST85] showed such strategies are optimally competitive:

Lemma 2.1.4 ([ST85]) No deterministic paging strateqy is better than (k/(k — h + 1))-

competitive.

2.2 Randomized Paging

The proof of bound (3) essentially shows that the (off-line) strategy that evicts items that
will not be requested during the current phase, thus incurring an eviction only in response

to a new request, is 2-competitive.

?Note that the ¥ — A + 1 evictions might not be incurred during the phase. Let a; denote the number of
evictions incurred by the on-line strategy in the sth phase, and let b =k — h + 1 for 1 < ¢ < Pr(k). Then
the on-line cost is >, a;, the optimal cost is at least >, b; (by lemma 2.1.1), and a; < bsk/(k—h+1). Thus,
the on-line cost is at most k/(k — h + 1) times the optimal cost.

CHAPTER 2. PAGING 18

This suggests that the goal of an on-line algorithm should be, to the extent possible, to
evict the items that will not be requested during the phase. Deterministic algorithms such
as LRU attempt this by distinguishing between items in the fast memory that have been
requested this phase, and items that have not, and evicting the latter. Of course, items
that have not yet been requested this phase may be requested later during the phase, so
this strategy is imperfect. Nonetheless, with each eviction, any on-line algorithm following
this strategy gets hold of one more of the items that will be requested in the phase, thus
incurring at most k evictions before it has all of the items that will be requested during the
phase in the fast memory.

Consider the two request sequences ABCA and ABCB (each with 2-phase partitioning
of the form AB-CX). If an on-line strategy using a fast memory of size 2 is deterministic,
it will incur 2 evictions on one of these sequences and 1 on the other. The optimal schedule
will incur 1 eviction. Thus, no deterministic strategy can be better than 2-competitive on
these two sequences. From the standpoint of the discussion in the previous paragraph, the
deterministic algorithm pays 2 in the worst case because it must commit to a guess about
which item will not be requested during the phase, and in the worst case it will be wrong.

From this perspective, a natural thing to try is not committing to either guess, instead
choosing randomly. If, after receiving requests AB, the strategy evicts A or B with equal
probability in response to request C, the strategy will incur an expected cost of 1.5 on either

sequence. Thus a randomized strategy can be 1.5-competitive on the two sequences.

MARK, the randomized paging strategy, may be described as follows:

—— MaARK
Maintain phases explicitly. When room for a new item is required, evict an item that

has not yet been requested during the current phase uniformly at random.

Next we show the following:
Lemma 2.2.1 ([FKL"88]) MARK is 2H-competitive when h = k.

Proof: We show that in a k-phase with m new requests, the expected number of evictions
by MARK is bounded by m(Hy — H,, + 1). Bound (2) of lemma 2.1.1, applied with h =k,

implies that the optimal schedule incurs a cost of at least m/2 for the phase, so this shows

CHAPTER 2. PAGING 19

the result.?

An old request is a request to an item requested in the previous phase but not yet in this
phase. A repeat request is a request to an item requested previously in this phase. There
are k — m old requests, and an arbitrary number of repeat requests.

Just before the ith old request, at most m + ¢ — 1 distinct items have been requested
this phase, so at least k — m — ¢+ 1 of the k — ¢ + 1 items requested in the previous phase
but not yet in this phase remain in the fast memory. Each such item is in the memory
with equal probability, so the probability that the ¢th old request will cause an eviction is
at most m/(k—1i41).

Thus the expected number of evictions in response to old requests is at most

m m m
N I H,— H,).
k+k_1+ + il m(Hy,)

In addition, each of the m new requests causes an eviction, while none of the repeat

requests causes an eviction. This gives the result. 0

For h < k, one can show

Lemma 2.2.2 ([You91]) When h < k, MARK is

2(1 k Inl k —I—l) titi
ne— —lnln—+ 2 competitive

if k/(k —h) > e and 2-competitive otherwise.

Proof: The previous proof showed that the expected number of evictions in a phase with
m new requests is at most m(Hy — H,, + 1).

The bound Hy — H,,, <In % follows from an integration argument:
dx kd k

PR S -y
1= m—l—l [z m

By (2) of lemma 2.1.1, the optimal schedule with a fast memory of size h incurs a cost

of at least (kK — h 4+ m)/2 for the phase. Thus the competitiveness is bounded by 2x

m(lnk —Inm + 1)
k+m—h)

max f(m) =

? Again, note that the cost is not necessarily incurred during the phase. See the footnote in the proof of
lemma 2.1.2.

CHAPTER 2. PAGING 20

Next we use elementary analytic techniques to bound f(m).

First, f'(m) ﬁ (ln % - kT_”—h), so f has a single maximum at m = m* with
=(k—h)ln=
From f(m) =]H_Tﬂzi_h(ln £ 1) and m* = (k — h)In £ we derive the equality:

fm') = k—h+a—hﬁn$
= In k*
m
= lnkﬁ —lnln::*
= lnp In f(m") (4)

Applying (4), the monotonicity of In, and assuming WLOG that f(m*) > 1, yields

fm*) = ln% —In (hlkfh —In (lnkﬁh —lnf(m*)))

k k
< _r
< In — In (hlk lnlnk_h)
k k

h
< Ih— 1l L
T L A ML

The last inequality follows from the general inequality (for ¢ > 1) In(z —Inz) —Inz =

In(1—122)>n(1-1)> -1]

In fact, MARK is within approximately a factor of two of optimally competitive:

Lemma 2.2.3 ([You91]) The competitive ratio of any randomized, on-line paging strategy

is at least Hy when h = k,* and at least

when h < k and k/(k—h) >

(Note that when k/(k — h) < e the analysis of MARK shows that its competitive ratio is at
most 2.)

*An alternate proof of the lower bound when h = k is given by Fiat et al. [FKLT88]. The advantage of
this proof is that it generalizes nicely to h < k.

CHAPTER 2. PAGING 21

Proof: We adapt Sleator and Tarjan’s [ST85] lower bound on deterministic, on-line paging
strategies.

Let X denote the on-line strategy, fix € > 0 arbitrarily small, and let m denote a positive
integer to be determined later.

We generate a sequence of requests in segments. Fach segment is generated as follows.

—— Generating an Adversarial Segment

Mark the & items currently in OPT’s fast memory.

Request and mark £ — i 4+ m items not previously requested.
Unmark the last such item requested.

Fori=1,...,h—1

(a) While some unmarked® item has probability less than 1 — ¢ of being in X’s
fast memory, request such an item.

[

(b) Request and unmark a marked item least likely to be in X’s fast memory.

If X is competitive, only a bounded number of requests can be generated in step (4a),
otherwise X incurs an unbounded cost on a subsequence of requests to less than h items.
Thus, if X is competitive, the above method in fact generates a finite length segment of
requests.

OPT can service the segment, incurring at most k& — h + m evictions, by choosing to
evict any item except the at most A items that will be unmarked by the end of the segment.
By following such a strategy, after the k — h + m requests in step (2), the fast memory will
contain the h items that will be unmarked by the end of the segment; no others will be
subsequently requested.

X, in addition to the cost of kK — h + m incurred in response to step (2), will incur an
expense for each of the h — 1 requests to marked items. Before the request to a marked
item in the ¢th iteration of the loop, the expected number of unmarked items in the X’s
memory is at least i(1 —€), so the expected number of the marked items in the fast memory
is at most k — (1 — ¢€). Since there are k + m — i of these, some marked item is not in the
fast memory with probability at least 1 — (k — (1 —€))/(k + m — 7). Thus, the probability

of an eviction in the ith iteration of the loop is at least (m — i€)/(k + m —).

®By “unmarked”, we mean previously marked during the segment, but not currently marked.

CHAPTER 2. PAGING 22

It follows that the expected number of evictions can be made arbitrarily close to

k—htmg g
TRt m—o1 T hrm—2 Ft+m—h+1

= k—h+m+ m(Hk—I—m—l - Hk—l—m—h)7

and a lower bound on the competitiveness is given by

m
o L+ e hemet = Hipm)- (5)

When h = k, expression (5) is maximized at Hy when m = 1. It remains only to prove

that expression (5) is at least In £~ —Inln £ — 2 when h < k and £+ > e.
Letz =In£-.s02 > 1,and m = [y = (k- h)(z — 1) + 1], so m > 1. Then

1+ . ?+m(Hk+m—1 — Hpypop)
z 1+ (1 - %) X (Hk = Hitm—h—2 = W)
> 1—|—<1—g)x<ln b S)
- k—h+m k+m—-h—-1 k—-h
RPN S S A S
= F_hty_1 Fty—h-1 %—h
1 k 2
- 1+<1_5) (hl(k—h)x_k—h)
R
1+ 11 . x ne -
> x—lnx—i.
k—nh

The first inequality follows from the expansion of Hyy,, and Hpipm—p41. The second follows
from H, — Hp, > In((a+ 1)/(b+ 1)) (which follows from an integration argument) and from
m > 1. The third follows from y — 1 < m < y. The rest are relatively straightforward.

2.3 Resource-Bounded Lookahead

It is easy to see that allowing the on-line algorithm to see the next [requests in deciding
which item to evict does not help it in the worst case: for any on-line algorithm with
lookahead [, construct an equally competitive on-line algorithm with lookahead 1 as follows.

On request sequence ryrgrs---, simulate the algorithm with lookahead [on the request

CHAPTER 2. PAGING 23

sequence rirh ... (where z! represents z repeated [times), and have the algorithm with

lookahead 1 mimic the actions of the simulated algorithm on the first request of each r!.

Instead, we consider resource-bounded lookahead.

In this model, the paging strategy is given a lookahead queue, the contents of which
it knows. The strategy may either service the request at the head of the queue (provided
there is one) or add an additional request (if there is one) to the end of the queue.

At a given moment, the contents of the queue form a subsequence of the entire request
sequence. The strategy is on-line with resource-bounded lookahead [provided it never incurs
more than [evictions on any such subsequence.®

A more intuitive description of resource-bounded lookahead is as follows: Imagine that
the resource being measured by the cost to the on-line algorithm is time. Specifically, if the
algorithm incurs cost ¢ to handle a request given at time ¢, then the next request is given
at time ¢t + ¢. In this interpretation, the on-line algorithm is allowed to look ahead into the

future as many requests as it wants; it is on-line with resource-bounded lookahead of [if it

never looks more than [time units into the future.

MARK[Z], the marking algorithm with resource-bounded lookahead of [, is an adaptation of
MARK that uses resource-bounded lookahead. MaRKY mimics MARK but, at the beginning
of each phase, adds requests to the end of the queue until either k distinct items or [new
requests are in the queue (or there are no more requests). Subsequently, instead of marking
all items in the fast memory, it marks only those items not requested in the lookahead
queue. Finally, when an item must be evicted during the phase, a marked item is evicted

uniformly at random.

Lemma 2.3.1 When h =k, Markll is 2(In(k/1) + 1)-competitive.”

5This is not a very realistic notion of lookahead, but it is theoretically interesting — it leads to reduced
competitive ratios. The challenge, of course, is to find a model which is both realistic and interesting in this
sense; we present resource-bounded lookahead as a small step in that direction.

More realistic alternatives might be considering loose competitiveness of strategies with regular lookahead,
assuming an average (rather than consistent) resource-bounded lookahead of I, or assuming that the sequence
is fixed by an adversary but the lookahead is stochastic. None of these alternatives seems very promising on
preliminary consideration.

"When h < k, essentially the proof of the lemma shows that the competitive ratio is bounded by
max{2, max m(Hr—Hpn+1)/(k—h+m)}.
m=1,l4+1,...
The ratio in the expression (see the proof of lemma 2.2.3) is unimodal, with a single maximum around
m* = (k— h)In(k/(k — h)). For [larger than m™, the ratio is maximized when m = I. For [smaller, the

CHAPTER 2. PAGING 24

Proof: Consider the k-phase partitioning of an arbitrary request sequence. At the begin-
ning of a given phase, if m, the number of new requests in the phase, is less than [, then all
items requested in the phase will be in the lookahead queue. Thus, m items will be marked
and subsequently evicted during the phase, while (from lemma 2.1.1) the optimal schedule
has at least m/2 evictions for the phase.

Otherwise, an analysis essentially the same as for MARK shows that the expected number
of faults in the phase is at most m(Hy — H,, + 1). Again the optimal schedule has at least
m/2 evictions for the phase. Since m > [, and H, — Hy <In(a/b), this gives the result.

Let DMaARKY denote any deterministic version of Mark: Mark with the random

choices replaced by arbitrary deterministic choices.
Lemma 2.3.2 DMarkl! is max{2k/(k — h + 1), 2}-competitive.

Proof: As in the previous proof, either m < [, in which case at most m evictions are
incurred, while the optimal schedule incurs a cost of (k — h + m)/2 for the phase, or m > [,
in which case at most k evictions are incurred, while the optimal schedule has at least

(k — h +1)/2 evictions for the phase.]

These upper bounds seem weak, in that the algorithms seem not to take full advantage
of the lookahead. Yet the following lemma shows that they are roughly within a factor of

2 of optimally competitive:

Lemma 2.3.3 A (randomized) on-line paging strategy with resource-bounded lookahead [
using a fast memory of size k can be simulated by a (randomized) on-line paging strategy
using a fast memory of size k + 1 — 1, so that on any sequence the cost of the standard

strateqy is no more than the cost of the simulated strategy.

Proof: The simulated strategy cannot ask for an item to be added to the queue if there
are currently [distinct items in the queue and not in the fast memory, as it risks having a
request to an item not in the fast memory or in the queue added to the queue, which would
cause [+ 1 distinct items to be in the queue and not in the fast memory, which would in

turn violate the assumption that it is resource-bounded lookahead /.

ratio is maximized independently of [at m = m™. It seems likely that a better analysis, either of MarkH
or a variant, could be given when h < k and [< m™.

CHAPTER 2. PAGING 25

Thus, at most k + [— 1 distinct items are either in the fast memory or in any but the
final spot of the queue. Simulate the strategy by keeping these items in our fast memory:
service each request at the instant it ceases to be the final request in the queue, evicting an

item when the simulated strategy evicts it. 0

Corollary 2.3.4 No randomized, on-line strategy with resource-bounded lookahead of | is
better than

—1 T

(E+1-1 E4+1-1 2) .
In —— — competitive

when h = k.

No deterministic, on-line strategy with resource-bounded lookahead of | is better than

E4+1-1 it
E— competitive.
Proof: Follows directly from lemmas 2.1.4, 2.2.3, and 2.3.3. 0

2.4 Loose Competitiveness

Figure 2 shows graphs of C,(X, k)/C,.(OPT, k) versus k for a number of paging strategies X

on a typical sequence® r. For large k, the ratio is not near k or even Hj,.

Such simulations led us to consider loose competitiveness. Recall that a paging strategy
X is loosely c(k)-competitive if, for any d, as n — oo, for any request sequence r, the number

of k € {1,...,n} such that
C.(X, k) > max{e(k)C,(OpPT, k),C,(OPT, 1)/n%} + b

is o(n), where b depends only on k and the initial server locations in the schedules produced

by OpT and X for k servers serving r.

In this section we show that conservative paging strategies (including Lru, Firo, and

Fwr) are loosely ¢(k)-competitive provided ¢(k)/Ink — oo and both ¢(k) and k/c(k) are

8The input sequence, traced by Dick Sites [SA88], consists of 692,057 requests to 642 distinct pages of
1024 bytes each. The sequence was generated by two X-windows network processes, a “make” (program com-
pilation), and a disk copy running concurrently. The requests include data reads and writes and instruction
fetches.

CHAPTER 2. PAGING 26

Conpetitiveness

fwf
rand
fifo
2T nmark

lru

opt

+ + + + + + Cache Size
0 100 200 300 400 500

Figure 2: Typical competitiveness vs. fast memory size.

nondecreasing. We show that MARK is loosely ¢(k)-competitive provided ¢(k) — 2Inln k —
oo and both ¢(k) and 2In k — ¢(k) are nondecreasing. We also give a tight lower bound for
Fwr: FwrF is not loosely ¢(k)-competitive if ¢(k) is O(In k).

2.4.1 Upper Bounds for LruU, Firo, FwWF, and MARK

First, we summarize the bounds useful for the analysis:

Lemma 2.4.1 ([You91, You]) Let X denote any conservative paging strategy. Then

Pok) > Co(X,k)/k (6)
Ntk < o) (7)
N (k) < kexp (1—%67é£?/éi?j}£)) (8)

(Recall that P,(k) and N, (k) are, respectively, the number of k-phases of (other than the
first) and the average number of new requests per k-phase (other than the first) of r.)
Proof: (6) Follows directly from the definition of conservativeness.

(7) Follows from the definition of conservativeness and bound (2) of lemma 2.1.1.

CHAPTER 2. PAGING 27

Fault Rate
Iru
0. 02
0.015+
opt
0. 01+
0. 005+
t + + + + t +Cache Size
0 100 200 300 400 500 600

Figure 3: Typical fault rate vs. fast memory size.

(8) Follows from bound (2) and from the proof in lemma 2.2.1 that, in a k-phase with

m new requests, MARK incurs a cost of at most m(Hy — H,, + 1). 0

Note that, for the on-line paging strategies we consider, high cost in an absolute sense
implies high P,(k), while high cost relative to the optimal schedule implies low N, (k).
The essential observation for the analysis is that if A,(k) is low, then a small increase

in k will result in a large decrease in the number of phases:
Lemma 2.4.2 ([You91, You]) Fiz a sequence r. For any k, and any k' > k 4+ 2/N,(k),
3
P.(K) < ZPT(IC).

Proof: Let po,...,pp,(x) denote the k-phase partitioning of r.

At least half (and thus at least [P,(k)/2]) of the P.(k) k-phases pi, ..., pp (x) have a
number of new nodes not exceeding 2N, (k). Denote these by p;,, .. > Pitpoinyar -

If we modify the k-phase partitioning of r by joining p;;_1 and p;, for odd j, we obtain a
coarser partitioning of r into at most P,(k) — [P,(k)/4] pieces. In the coarser partitioning,
pieces resulting from a join reference at most k + 2N, (k) < k' distinct nodes, while the

other pieces reference at most &k distinct nodes.

CHAPTER 2. PAGING 28

If we now consider the &’-phase partitioning, we find that each &’-phase must contain
the final request of at least one of the pieces in the coarser partition, because if a k’-phase
begins at or after the beginning of a subsequence of requests to at most k4 2N, (k) distinct
nodes, it will continue at least through the end of the subsequence.

Thus P,(k') < Pr(k) = [P(k)/4] < 3P(k). 0
Thus, there are few k with high P, (k) and low N, (k):

Theorem 2.4.3 For any ¢ > 0, M > 0, and any sequence r, the number of k = 1,2,...
such that
N (k) < M and P.(k) > €P,(1) (9)

is O(MIn1).

Proof:

Let s be the number of k violating the condition.

We can choose [= [s/[2M]] such k so that each is at distance 2M from the preceding.
Then we have 1 < ky < ky < ... <k such that for each ¢

No(ks) < M, (10)
kix1 — ki > 2M, and (11)
Po(ki) > €P(1). (12)

Then for any ¢, by (10) and (11), k41 > k; + 2N, (k;), so, by lemma 2.4.2, P, (ki11) <
(3/4)P.(k;). Inductively, P,(k;) < (3/4)'P.(1).
This, and (12), imply (3/4)" > ¢, so
1
[8/[2M-‘-‘ =1 S 1114/3 E
This implies the bound on s. 0

Recall that high absolute cost implies high P,(k), while high relative cost implies low
N, (k). The preceding theorem thus implies that there are few &k such that both absolute

and relative costs are high, which shows loose competitiveness:

CHAPTER 2. PAGING 29

Corollary 2.4.4 Let X denote any conservative paging strateqy and C' : Nt — Rt a
nondecreasing function.

X s loosely c(k)-competitive provided that k/c(k) is nondecreasing and

c(k)

H — 00, (13)

while MARK is loosely c(k)-competitive provided 21n k — c(k) is nondecreasing and
c(k)—2Inlnk — . (14)

Proof: Let X denote either any conservative paging strategy, in which case we assume
condition (13) and that k/c(k) is nondecreasing, or MARK, in which case we instead assume
condition (14) and that 2Ink — ¢(k) is nondecreasing.

We show that, for any d > 0, n > 0, and request sequence r, the number of violators

ke {l,...,n}is o(n), where a violator is a k such that
C.(X, k) > max{c(k)C,(OpPT, k),C,(OPT, 1)/n}.

Let k be a violator. Then bound (6) implies

C.(X,k) _ C.(OpT,1) 1
Pr(k) > p > e Pr(1). (15)

Bound (7) and the monotonicity of k/c(k) imply

2kC,(OpT, k) _ 2k 2n
M) S =X S S qy

(16)

Since each violator k satisfies (15) and (16), by theorem 2.4.3, the number of violators is

0 ((ln nd"'l) n/c(n)) This is o(n
If X = MARK, then bound (8) and the monotonicity of 2Ink — ¢(k) imply, for each

— ~—

by assumption (13).

violator k,

No()

IN

C,(MARK, k)
kexp (1 B 2C,(OPT, k))
< kexp(l—c(k)/2)

< nexp(l - e()/2),
so that by theorem 2.4.3 the number of violators is O ((ln nd"'l) nexp(l — c(n)/Q)) This
is o(n) by assumption (14).

O

CHAPTER 2. PAGING 30

2.4.2 A Lower Bound for Fwr
In the remainder of this section, we show that corollary 2.4.4 is tight for Fw¥r.

First, we prove theorem 2.4.5, which shows that lemma 2.4.2 is qualitatively tight in a
very strong sense: for any n > 0 and appropriately monotonic and smooth a : N’ — N,
there exists a request sequence r such that, for any k& < n, the average number of new
requests per k-phase of r is at most 5a(k), while the number of (k4 a(k))-phases is at least
1/8 the number of k-phases.

A consequence of this theorem is that the bound provided by theorem 2.4.3 is tight in

the worst case.

Since the costs of FwWF and OPT for a given k on a given sequence are essentially captured
by the average number of new requests per phase and the number of phases, as a corollary

we show the lower bound for FwrF.

Theorem 2.4.5 Fiz any n > 0, and any function a : N' — N such that, for all k € N,
a(k) <alk+ a(k)) <2a(k) and 1 < a(k) < k.

Then there exists a request sequence v such that for k=1,...,n
Pk +alk) _ 1
(k) < ba(k d ———2 > —,
N (k) <5a(k) an k) >3

Proof: Fix n and a as described above.
Let ko =1, and k41 = k; + a(k;) for e = 0,1,. ...

The proof is in two parts:

I. We inductively construct sequences sg, s1, ... such that, for 7 <1,
Py (ki) = 2079 -1, and
Noi(kj) = alk;).

II. We show that for any k,4,7 s.t. kK < k; < k;

Pk + a(k))/Po(k) > 1/4=27771 and
N, (k) < 5a(k).

IN

CHAPTER 2. PAGING 31

Any s; such that k;_o > n then proves the theorem, since k < n implies k& < k;_o < k;,
which in turn implies Pg,(k + a(k))/Ps, (k) > 1/4 —1/8 = 1/8.

(I.) Each request in each s; is to a member of A/, but may be represented either by the
member itself or by the special symbol 'x’, which represents a unique request to a new
item. To interpret such a sequence as a request sequence per. se., for instance in order to
perform a k-phase partitioning, replace each special symbol with a request to a unique item:

a member of N not requested anywhere else in the sequence.

—— Inductively Constructing s;

1. Let sg = x.
2. Fori=20,1,2,...
(a) Let s; —s;.
(b) Scan s from left to right. After a(k;11) — a(k;) special symbols have been
scanned, continue scanning, replacing each occurrence of the special symbol

with a request to the smallest element of A" not requested anywhere else in
the sequence.

(¢) Let sjy1 = s;, 55

Inductively, one can verify the following for j < ¢:
e Fach s; consists of 2¢ requests to k; distinct items and has a(k;) special symbols.
o The first subsequence of 27 requests of s; is a copy of 5.

e Bach subsequent (nonoverlapping) subsequence of length 27 is a copy of s;, except that
each special symbol might be replaced by a request to an item that is not requested

in the preceding subsequence of length 27.

Now, considering the successive nonoverlapping subsequences of length 27 in s;, each re-
quests k; distinct items, and each but the first begins with a request to an item not in
the preceding subsequence. Thus, the successive subsequences exactly form the k;-phase
partitioning of s;. Thus, 1 4+ P, (k;) = 2:77. (Recall that P,(k) is the number of nonempty
k-phases in r other than the first.)

Furthermore, the new requests in each k;-phase consist exactly of the a(k;) requests

which correspond to special symbols in s;. Thus, N, (k;) = a(k;).

CHAPTER 2. PAGING 32

(II.) Fix k and @ s.t. k < k1 < k;.
Find j s.t. k]‘_l <k< k]‘ = k]‘_l + Oz(k]‘_l).

First we bound P,,(k + a(k))/Pr,(k): Note that k + a(k) < k; + a(k;) = kj41, s0

Pkt a(k) | Pl _ 29701 1y
Psz‘(k) B Pm(kj—l) 2t -1 7 4

Next we bound A, (k): Consider any k-phase (other than the first) with m new requests.
The number of distinct items requested in the k-phase and the previous is k + m. Since
the 2 k-phases are contained in a subsequence formed by at most 3 consecutive k;-phases,
and there are at most k; 4+ 2a(k;) distinct items requested in any 3 consecutive k;-phases,
it follows that m < k; — k 4+ 2a(k;). Since k; — k < k; — kj_1 = a(k;j—1) and a(k;) =
a(kj—1 +a(k;j_1)) < 2a(k;_q), it follows that m < ba(k;_1) < ba(k).

0]

Corollary 2.4.6 Fwr is not loosely c(k)-competitive for any c(k) which is O(In k).

Proof: We show that for any fixed b > 0 and even n, there exists a sequence r with

C,(OpT, n) arbitrarily large such that for k& between n/2 and n,

C.(Fwr, k) > (1/n)**3.C,(OpT,1), and (17)
C.(Fwr, k) > (blnk/10)-C,.(OPT,k). (18)

Thus, for any ¢(k) which is O(In k), and any n, there is a sequence 7 and a d such that,

for all k£ between n/2 and n,
C,(Fwr, k) — max{c(k)C,(OPT, k),C,(OPT, 1)/n}

is arbitrarily large. (Take b s.t. 2¢(k) < blnk and take d > 3b+ 4.)

Next we exhibit the sequence satisfying (17) and (18) for k between n/2 and n. Note
that C,(k, Fwr) = kP, (k) and C,(k, OpT) < N, (k)P,(k), so to show (17) and (18) it suffices

to show

kP, (k)
k

v

(1/n)**3.P.(1), and (19)
(clnk/10) - N (k). (20)

vV

CHAPTER 2. PAGING 33

Applying theorem 2.4.5 with a(k) = min{k,a}, where a = n/(clnn), we obtain a
sequence r such that for & < n, M.(k) < 5min{k,a} and P,(k + min{k,a}) > P.(k)/8.
The former implies (20) for k between n/2 and n.

It remains only to show that the latter implies (19) for k between n/2 and n. We omit the
details, noting that first one shows P,(a) > (1/8)1°82%P,(1), and then P,(k) > (1/8)¥/*P,(a)
for k > a, and the result follows. 0

Chapter 3

Deterministic Weighted Caching

Section 3.1 of this chapter introduces timings, which are useful for obtaining lower bounds
on k-server schedule costs, much as k-phases were useful for paging.
Section 3.2 introduces GREEDYDUAL, a weighted caching algorithm, and presents a

competitive analysis of GREEDYDUATL using timings.

3.1 The K-Server Dual: Timings

o A timing for a k-server request sequence r = rory---ry is a real value B, a real
value Ap, and a pair of real values {A;, B;} for ¢ = 1,..., N such that
d(TZ',T]‘) 0<i<j <N

AZ'—B]‘S
0 0<i<N,j=o0

e The cost of the timing for k serversis
N
k(Ao — BOO) + ZAZ - B;.
=1

Timings seem a bit mysterious as introduced in this chapter; Chapter 4 discusses how
timings represent the linear programming dual of a natural formulation of the k-server
problem as an assignment problem, and presents a more intuitive interpretation of timings.

For the purposes of this chapter, think of a timing as a transformation of the original

k-server problem specified by r. Any schedule for r is still a schedule for the transformed

34

CHAPTER 3. DETERMINISTIC WEIGHTED CACHING 35

problem, but the costs associated with the various server movements are transformed, so
that the cost of the schedule is also changed. Specifically, when a server leaves a node r;, or
remains on r; after the final request, the schedule is credited (has its cost reduced) by A;,
when a server enters a node r;, the schedule is charged an additional B;, and when a server
remains on any node after the final request, the schedule is charged an additional B..

In this manner, the cost of any schedule for & servers will be decreased by exactly the
cost of the timing for k servers. For instance, when a server enters and leaves a node r;, the
transformation results in an additional charge of — A;+ B; to the schedule, which contributes
one term to the cost of the timing.

On the other hand, it is not hard to see that the transformation leaves the cost of
the schedule nonnegative. This is because the individual charges to the schedule in the
transformed cost (either d(r;,r;) — A; + B; to move a server from r; to r; or —A; + By to
leave a server on r; after the final request) remain nonnegative due to the constraints on
the values of the timing.

Thus, the cost of the schedule is at least the cost of the timing. This shows the following

lemma.

Lemma 3.1.1 ([You91, You]) The cost of the optimal schedule for k servers satisfying a

request sequence v is at least the cost for k servers of any timing for r.

It will follow as a consequence of results in Section 4.1 that the lower bound provided

by the lemma can, with the right timing, always be made tight.

3.2 The Greedy Dual Strategy

GREEDYDUAL, the greedy dual strategy for weighted caching described in the introductory

chapter, may be described more carefully as follows.

CHAPTER 3. DETERMINISTIC WEIGHTED CACHING 36

—— GREEDYDUAL
Each server has a varying amount of credit. In response to request 0, all servers are

placed on r¢ with no credit. In response to each subsequent request j to node r;,
1. If node r; has no server:

(a) Each server’s credit is increased equally until some server has enough credit
to move to r;. (If a server is currently on r;, it must have d(r;,r;) = w(r;)
credit to move to 7;.)

(b) One such server serves request j, giving up all its credit.
2. If node r; has at least one server:

(a) One such server serves request j.

(b) Unless the server has not yet moved, it gives up an arbitrary amount (possibly
none) of its credit.

We have the following lemma

Lemma 3.2.1 ([You91, You]) GREEDYDUAL is ﬁ-competz’tive:

E—h+1
C,(OpPT,h) > T—I_CT(GREEDYDUAL, k) — (k= h)w(ro).
Proof: Let P, forz=0,1,..., N, denote the amount credited to each server in response
to request 7. Let Pyyq = 0.
For i = 0,...,N, let ¢/ = min{j > i : r; served by server of r;} if the minimum is

well-defined, otherwise let ¢/ = N + 1.
Fori=0,...,Nand j=1,..., N+ 1, let

B = Po+---+ P,

Let Boo = Bny1-
We prove the lemma in three parts:
I. The on-line cost is at most kB.,.
II. {4p, Boo} U{A;,B;:i=1,...,N}is a timing.

III. The cost of the timing simplifies to (k+ 1 — h)Bs — (K — h)w(rg).

CHAPTER 3. DETERMINISTIC WEIGHTED CACHING 37

From these and lemma 3.1.1, the on-line algorithm is ﬁ—competitive.

(I.) The distance moved by servers is bounded by the total amount credited to servers,

which is £B.

(IL.) The quantity A;— B, is nonpositive if j > i, and otherwise may be written P;+---+Py.
Thus it suffices to verify
w(r;) for0<i<j<N,ri#rj,

0 for0<i<j<N,r=r;i=7j,
P]‘I‘ "‘I’leg

0 fOT0§i<j§Nari:Tj7i/7£jv

0 for 0<i<N,j=N+1.

The first case holds because the amount credited to the server of request ¢ in response to
requests ¢ + 1 through ¢/, inclusive, is at most w(r;).

The second case holds because, since r; = r; and ¢/ = j, nothing was credited to servers
in response to request j, so P; = 0.

In the third case, the server of request ¢ was on node r; = r; at request j but some other
server served it. Since no server is ever moved to a node that is served, this happens only if
the two requests are to node rp and the two servers have not yet moved. Since the server of
r; is never credited after the ith request until it moves (which can’t happen before request
i') we have Pj+---+ Py < P14+ ---+ Py = 0.

In the final case, since ¢/ > j, P; + -+ Py = Pngyq = 0.

(III.) Note that A; — B; — P; = Pix1+---+ Py, which is the amount credited to the server of
request ¢ in response to requests ¢+ 1 through ¢, inclusive. Let Ry denote the set of requests

(other than request 0) served by the server s, and let ¢; = min R,. The total credited to a

server s is
Po+--+ Pvp
= P+ P+ > Pyt + P
i€R,
= w(ro)+ >, Ai—Bi— P,
i€R,

so the total, kB, credited to all servers may also be written

N
Fu(ro) + 30 Ai=Bi= Pi= ku(ro) + (Z Ai- Bi) _B..
{€ULR. P

CHAPTER 3. DETERMINISTIC WEIGHTED CACHING 38

(Note that Py = Pnyy = 0.) Thus, Y2, A; — B; = (k + 1)Bo, — kw(rg), which gives the
desired simplification.

O

Note that if we wish to allow the on-line strategy to start with an empty fast memory,
so that rg is an artificial vertex of weight 0, the algorithm and analysis simplify slightly.

The reader may verify that Firo and LRU, and BALANCE as it applies to weighted
caching, are special cases of GREEDYDUAL. Also, MARK is a special case of GREEDYDUAL
in the sense that it is obtained by breaking ties in step (1b) uniformly at random and having

the server give up all its credit in step (2b).

Chapter 4

The K-Server Dual

Preceding chapters have concentrated on presenting results and their proofs. This chapter
is a more intuitive exploration of the relationships between the results, via timings. The
goal of the chapter is to gain insight into the general k-server problem, and to record some
suggestive partial or preliminary results.

In section 4.1 of this chapter, we show how the k-server problem is a special case of the
assignment problem, so that the problem of finding a maximum-cost timing is a special case
of the dual of assignment, and we discuss how nonoptimal timings may be improved.

In Section 4.2 we define k-phase timings, which generalize k-phases, and work an exam-
ple.

In Section 4.3, we introduce K-PHASE, a k-server strategy which uses k-phase timings
explicitly in the way that LRU uses k-phases implicitly. K-PHASE is central to this thesis,
in that it relates LrU, BALANCE, and PERM (the on-line assignment algorithm), and is a
stepping stone to GREEDYDUAL.

In Section 4.4, we present an intuitive interpretation of timings, an intuitive analysis
of BALANCE for weighted caching obtained therewith, and a potential function analysis
obtained from the intuitive analysis.

Finally, in Section 4.5, we discuss how PERM may be interpreted as a k-server strategy,
and how PERM relates to K-PHASE. We also discuss the structure of the optimal timings

implicit in PERM.

39

CHAPTER 4. THE K-SERVER DUAL 40

4.1 The K-Server Problem as Assignment

The k-server problem is a special case of the assignment problem.

Intuitively, each k-server request represents a demand for one server from previous
requests and a supply of up to one server to later requests, with the exception that the
first request represents no demand and a supply of up to k servers for later requests. If the
server of request 7 next serves request j, this corresponds to the ¢th supply being assigned
to the jth demand, at a cost of d(r;,r;). To balance the supply and demand, an artificial
demand, oo, is added, which costs nothing to supply. Specifically,

o N = (UN, wh, UNXWN), given a k-server request sequence r = rory - --and N > 0,

is the supply-demand graph for r: a complete, bipartite graph with edge lengths d,

where
UN = {0,...,N} are the supply vertices,
WN = {1,...,N, o} are the demand vertices, and
00 12>
d(i,j) = {dlrir) 0<i<j<N
0 0<i<N,j=oc.

e [} is the function

1 1¢{0,00}
Fk(l)_{k i€ {0,00}.

o An Fj-factor of GV is any subset of the edges of GV such that nodes 0 and oc have

degree at most k in the subset, and every remaining node has degree 1 in the subset.

e The cost of an Fj-factor is the sum of the lengths of its edges.

We leave it to the reader to verify that the schedules of k servers satisfying the first
N requests of r correspond one-to-one with the finite-cost Fj-factors in GV, and that
the correspondence preserves cost. In this chapter we identify the problems of optimally

scheduling the k servers and finding the minimum-cost Fi-factor.

CHAPTER 4. THE K-SERVER DUAL 41

4.1.1 The Assignment Dual

The problem of finding a minimum-cost Fj-factor of GV is an instance of the Hitchcock
problem [PS82, p.143].! The standard form of the dual problem is to find a maximum-cost

potential (assignment of weights to the vertices) of G such that
y + B < d(u,w) for (u,w) e U X W,

where a,, is the weight of u € UY and 3, is the weight of w € W/ and the cost of the
potential is
N
=1
The essential properties of the dual are that the cost of any potential is a lower bound
on the cost of any Fj-factor, and equality is achieved if both are optimal. Potentials for
GN are trivially isomorphic to timings for r: from a potential we can obtain an equal cost
timing, or vice versa, by negating the weights of the supply vertices. Thus, in the remainder

of this chapter we consider only timings, and we refer to “timings for G,

4.1.2 Stretching a Timing

Given a timing, when and how can it be improved? Here we summarize the necessary
technique, obtained by considering the equivalent Hitchcock problem as described in Pa-

padimitriou and Steiglitz [PS82]. Given a timing,
o The slack of an edge (u,w)is d(u,w) — A, + B.
o The admissible edges are the edges with slack 0.

o The admissible neighbors of a vertex are the neighbors of the vertex along admissible

edges.

o The weight, |v|, of a vertex v in GV is 1, unless the vertex is 0 or oo, in which case

the weight is k.

e The weight, |5, of a subset S of the vertices is the sum of the weights of the vertices

in the subset.

'It is straightforward to transform a minimum-cost Fy-factor problem into an assignment problem by
splitting the nodes 0 and oo each into & identical nodes. We use the “nonsplit” form for syntactic simplicity.

CHAPTER 4. THE K-SERVER DUAL 42

o To stretch a subset U* of the supply vertices by € > 0, given a timing, is to increase

the weight of each vertex that is in U™, or is an admissible neighbor of U*, by .

o To stretch a subset U™ of the supply vertices is to stretch U* by the largest ¢ > 0

possible without violating any constraints.

Stretching a timing corresponds to a step of the primal-dual algorithm (see the alpha-
beta procedure in Papadimitriou and Steiglitz [PS82]) for finding a maximum-cost potential.

If an Fj-factor exists among the admissible edges, the cost of the Fj-factor equals the
cost of the timing, so both are optimal. Otherwise, some subset of UV exists such that
the weight of the subset is greater than the weight of the admissible neighbors of the
subset.? That is, if U* is the subset of UV, and W* is the set of admissible neighbors of
U*, then |U*| > |W*|. In that case, stretching U* by ¢ increases the cost of the timing,
k(Ao = Boo) + 0Ly Ai = By, by «(|U| = [WH)).

How does stretching change the set of admissible edges? Stretching U™ as much as
possible adds at least one admissible edge from U* to a vertex not in W*. Any admissible
edges from vertices not in W* to U™ become inadmissible. The admissibility of any other

edge is unchanged.

4.2 K-Phase Timings
To reproduce and generalize k-phases with timings, we introduce some new terminology.

o The zero timing for any G is the timing for GV with all values 0.

o The pending nodes of a timing are the supply nodes whose only admissible neighbor
is the demand node oo. Intuitively, these are the nodes that complementary slackness
conditions suggest are currently covered (that is, the supply corresponding to the

request is not used by a demand other than oo) in the optimal schedule.

e Extending a timing for GV yields a timing for GN1!'. Extending {Ag, B1, ..., An, Bso}
yields {Ag, By, ..., AN, BN1+1, AN+1, Boo }, Wwhere By gy and Axyq are taken to be B.

Extending violates no constraints and leaves the cost unchanged. Newly admissible

2This is a consequence of the alpha-beta procedure of Papadimitriou and Steiglitz [PS82].
We review in Section 4.5 how to find such a U*.

CHAPTER 4. THE K-SERVER DUAL 43

rr o A B A C D E A F EA B .- C D FE B
A0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2
B 0 0 0 0 O 0 1 1 1 1 1 1 2 2 2 2

Figure 4: The 4-phase timing for cABACDEAFEABCDEB

edges in GN*t!are (N 41, 00) and edges of the form (u, N +1) such that d(r,,rn41) = 0
and (u,00) is admissible. Admissibility of other edges is unchanged. The new supply
node N + 1 is pending, and all other pending nodes continue to pend, except pending

nodes 7 s.t. d(r;,7n41) = 0.

o The k-phase timing for a request sequence rory - - -7 is defined inductively (and on-
line) as follows. The k-phase timing for rg is the zero timing. Given a k-phase timing
for rg---rny_1, in response to request ry, the timing is extended, and if the weight
of the pending nodes exceeds k (the weight of demand node oo, the only admissible
neighbor of the pending nodes), the pending nodes are stretched. This yields the

k-phase timing for ro---ry.

An important invariant satisfied by the k-phase timing for any request sequence ro---ryn

is that the cost for k servers simplifies:

N
k(Ao — Boo) + > A — B; = B (21)

=1
This invariant is easily proved by induction; the key observation is that each stretch oper-
ation raises equally B., and the cost for k servers. From (21), the cost for h servers of a

k-phase timing simplifies to
(k—=h+4+1)Bs — (k= h)Ag. (22)

Next we try an example: we develop the 4-phase timing for paging request sequence
ABACDEAFEABCDEB. Prepend to the sequence the artificial request o with d(o,-) =

0, and assume that all servers start on o.

Begin with the timing {4y = 0, Bo, = 0} for G°. The weight of supply node 0 (corre-
sponding to the artificial request o) is k.

In response to the first request A, extend the timing. The new (zero-cost) edge (0,1) is
admissible, so supply node 0, of weight k, ceases to pend, but supply node 1, of weight 1,

is now pending.

CHAPTER 4. THE K-SERVER DUAL 44

In response to the second request B, extend the timing again. The timing is still a zero
timing. Supply nodes 1 and 2 are now pending, with combined weight 2.

In response to the third request A, extend the timing a third time. Since the length of
edge (1,3) is 0, supply node 1 ceases to pend. Supply nodes 2 and 3 are now pending.

In response to each of the fourth and fifth requests CD, extend the timing again without
stretching. This yields the zero timing for G°. Supply nodes 2, 3, 4, and 5 are now pending,
with net weight 4.

In response to the sixth request E, again extend the timing. The new supply node 6
is now pending, so the combined weight of the pending nodes is 5, which exceeds k by 1.
Stretch the timing, increasing Ay through Ag, B..,, and the cost of the timing by 1. This
yields the timing {49 = 0,4, = 0,By = 0,4, = 1,B; = 0,43 =1,B3 =0,4, = 1, By =
0,As = 1,B5 = 0,46 = 1, B¢ = 0, B, = 1}. Supply nodes 2 through 5 cease to pend, as
their respective edges to demand node 6 have their slack reduced to 0. This timing is of

cost 1 for 4 servers.

Continuing this example reveals the following general pattern. After request 1, or after
any stretch, one weight-1 supply node is pending. Subsequently, with each request, the
corresponding supply node is added to the set of pending nodes. If a supply node corre-
sponding to a request to the same node was pending, that node ceases to pend, otherwise
the number (and weight) of the pending nodes increases by 1. If the number is k£ + 1, a
stretch occurs, and all nodes except the node corresponding to the last request cease to
pend.

Each stretch raises the cost of the timing for k servers by 1. More generally, each stretch
raises the cost of the timing for h servers by k — h + 1.

Thus, the k-phase timing, for a paging request sequence, corresponds to the k-phase
partitioning of the sequence, and gives a proof that the optimal schedule for h servers costs

at least k — h 4+ 1 times the number of k-phases. (See lemma 2.1.1.)

The complete 4-phase timing for the example is shown in figure 4.

CHAPTER 4. THE K-SERVER DUAL 45

4.3 LrU, K-Phase Timings, and BALANCE

The essential property of LrRU, from the point of view of the proof of lemma 2.1.2, is the
following: once a node is requested within a phase, it remains for the duration of the phase.

To restate this property in terms of timings, we need to clarify our terminology a bit.
Specifically, for the following discussion we imagine that, as requests come in, we maintain
the k-phase timing on-line as discussed above: extending and possibly stretching the timing
in response to each request. Then a node (in the original graph?) r; is pending provided the
supply node ¢ is pending in the current timing.

From the point of view of the k-phase timing, this property may now be restated simply

as follows: keep the pending nodes served.

For definiteness, we describe K-PHASE, an on-line algorithm that keeps the pending

nodes served:

—— K-PHASE
Maintain a timing (in fact the k-phase timing) for the current request sequence on-line.

In response to each request r;,
1. Extend the timing. (The pending nodes r; s.t. d(r;,7;) = 0 cease to pend.)

2. If the request was to a nonpending node and the weight of the pending supply
nodes is now k + 1, stretch the pending supply nodes. (This causes at least one
pending node 7; to cease pending, so that 4; — B;» = d(r;,r;/), for some j' s.t.
1< j/ < _] with d(m’,?“]'/) 75 0)

3. If the request was to a nonserved node, move a server from a nonpending node.

For paging, K-PHASE simplifies as follows:

*The terminology is awkward, since there are two types of nodes in context: nodes in the original graph
in which requests occur, and nodes in the supply-demand graph. In general, we refer to the latter type as
supply or demand nodes to disambiguate.

CHAPTER 4. THE K-SERVER DUAL 46

—— K-PHASE for Paging
Maintain marks on the nodes. (Pending nodes are those that are not marked.) Initially,

the first k distinct nodes requested are served and not marked.* Other nodes are marked.
In response to each subsequent request,

1. If the request was to a marked node, unmark the requested node.
2. If k + 1 nodes are unmarked, mark all the nodes except the requested node.

3. If the request was to a nonserved node, move a server from a marked node.?

Note that in order to implement K-PHASE for paging, it suffices to maintain marks on

the servers of the marked nodes.

For weighted caching, we also obtain some simplification. Since the B; are nondecreasing
with j in a k-phase timing, if a node r; ceases to pend as the result of a stretch, for weighted
caching, it must be that the edge (7,74 1) became admissible in the stretched timing. Thus,
in order to keep track of the pending nodes, it suffices to maintain, for each pending node
ri, the slack in the current timing of the edge (7,7 + 1) (if it exists) in the supply-demand
graph. If and only if this slack is reduced to 0 or node r; is again requested does supply
node ¢ cease to pend.

Thus, to implement K-PHASE for weighted caching, it suffices to keep track of the slack
on the edge (7,7 + 1) for each node i:

—— K-PHASE for Weighted Caching
Maintain values on the nodes. Initially, all servers reside on node rg, which has value

w(rg). In response to each request,

1. If the request was to a node with value 0, and & other nodes have positive value,
reduce all the positive values by the minimum positive value.

2. Raise the value of the requested node to its weight.

3. If the request was to a nonserved node, move a server from a node with value 0.

Note that in order to implement K-PHASE for weighted caching, it suffices to maintain the
(nonnegative) values of the served nodes with the servers.
It is not hard to verify that K-PHASE is ﬁ—competitive for weighted caching. The

essential observation is that the cost in moving a server from a node r; is bounded by

*As in the example, we assume 7o is to an artificial vertex o s.t. d(o,-) = 0.

®Note that MARK is obtained by breaking ties uniformly at random in this step. The lower bound (2)
used for the analysis of MARK is slightly different; to reproduce that lower bound using timings, stretch at
the beginning of each phase by 1/2 rather than 1.

CHAPTER 4. THE K-SERVER DUAL 47

A; — Bi41, so that the net cost is bounded by k(Aq — B1) + Zf\;l A; — Biy1. One then
uses equation (21), By = 0, and Ay = Bs to simplify this bound to kB.; with the
simplification (22) of the cost for a k-phase timing, this gives the result. (We omit the
details; this algorithm is a special case of GREEDYDUAL, which is analyzed in full in lemma
3.2.1)

If one modifies K-PHASE for weighted caching by ignoring requests to served nodes, one

obtains the following algorithm:

—— K-PHASE for Weighted Caching, Ignoring Served Requests
Maintain values on the nodes. Initially, all servers reside on node rg, which has value

w(rg). In response to each request to a nonserved node,

1. If & nodes have positive value, reduce all the positive values by the minimum
positive value.

2. Move a server from a node with value 0 and raise the value of the node to its
weight.

In fact, this is BALANCE. To see this, imagine associating the values of served nodes
with the servers. Then the values of servers are always decreased uniformly; the value of a
server is otherwise changed only when it moves to a new node, at which point it is increased
by the weight of the node. Thus, the value of one server minus the value of another is
exactly the net work that would have been done by the former server if it were to serve the
next request minus the corresponding quantity for the latter. By moving a minimum-value
server one is thus moving the server that will have done the least work.

Note that Firo is a special case of BALANCE.

Algorithm GREEDYDUAL is obtained from K-PHASE by relaxing step (2), so that, if the
node requested is served, the value of the server may be reset anywhere between its current
value (obtaining BALANCE) and the weight of the node (obtaining K-PHASE). For paging,
BALANCE generalizes Firo, while K-PHASE generalizes LRU. LRU is considered the better

paging strategy, so perhaps for weighted caching K-PHASE is preferable to BALANCE.

4.4 Duality Yields a Potential Function

In this section, we give an intuitive formulation of timings, use it implicitly to give a direct

analysis of BALANCE for weighted caching, and finally show how this analysis may be recast

®Note that if w(rg) = 0, the additive term may be taken to be 0.

CHAPTER 4. THE K-SERVER DUAL 48

as a potential function analysis.

An amortized analysis, or more specifically a potential function analysis, (see [Tar85,
BMS85, ST85, CL91a]), bounds the cost of a sequence of operations. Usually, such an analysis
is in contrast with a worst-case analysis, which bounds the cost of the sequence by summing
the worst-case costs of the individual operations.

A typical competitive analysis with a potential function is of the following form:

—— Competitive Analysis with a Potential Function
Given X producing a solution in response to r = rgry - - -7TN:

1. Define a potential ® which is a function of the states of X and of OpT.

2. Show that, in response to each request r;,
a-x2; <b- o+ — Py,

where a > 0, #; and o; are the costs incurred by X and OPT, respectively, in
response to the ith request, and ®; is the value of the potential function after X
and OPT have responded.

3. Sum the inequalities, showing that the cost incurred by X is bounded by
(b-opt+ @y — ®p)/a

where “opt” is OPT’s cost.

4. Show that & — &g is appropriately bounded.

One may think of a potential function analysis as transforming OPT’s costs: In response
to the ith request, OPT’s cost is changed to o} = o; + (®; — ®;_1)/b. The analysis then
shows that OpT’s overall cost is not substantially increased under the transformation, and
gives a worst-case (per operation) bound on the transformed costs. That is, b- 0} > a - 2; is

shown for each <.

Linear programming duality may be viewed similarly. The bound obtained by exhibiting
a dual solution may often be viewed as follows: The dual solution gives a dual transformation
of any primal solution. The dual transformation changes any primal solution’s cost by an
amount independent of the primal solution. The lower bound on the primal solution is
then obtained by giving a simple, “localized” lower bound on the cost of the transformed
primal solution, and taking into account the amount by which the transformation changed

the cost.”

"For examples, consider the proof of lemma 3.1.1 or the discussion of the duals of weighted matching
problems in Chapter 5.

CHAPTER 4. THE K-SERVER DUAL 49

The intuitive analysis of BALANCE for weighted caching which we give in this section
uses duality in a manner very similar to a potential function argument: OPT’s cost is
transformed by a dual transformation, and it is shown that under the transformed cost, the
cost incurred by OPT’s server after it serves the ith request is at least the cost incurred by
BALANCE’s server after it serves the same request. The difference is that the transformation
on OPT’s cost increases OPT’s overall cost, but by a predictable amount, and the subsequent

bound correlates the costs of OPT and BALANCE to move from, rather than respond to, r;.

Generally a dual solution can be interpreted as yielding any of a number of dual transfor-
mations. For instance, the proof of lemma 3.1.1 and the space-time formulation of timings
present two different transformations for the k-server dual.

If we can view the dual problem via a dual transformation which does not increase OPT’s
overall cost, and which gives a “localized” lower bound of the form “in response to the ith
request, OPT’s cost is bounded by a (positive) constant times the on-line algorithm’s cost,”
then we have obtained a duality transformation which is essentially a potential function.

It would seem that one can always find such a transformation; the question is how simple

it and the resulting potential function are.

4.4.1 A Space-Time Formulation of Timings
Next we describe an intuitive interpretation of the k-server dual.

Let T : {0,...,N} — R be an arbitrary function. Imagine that the requests of a
sequence 7 = rory - - -y occur at specified times: request ¢ occurs at time 7'(7).

Now, instead of charging the servers only to move through space (i.e. in the graph),
imagine that the servers, except for the one about to service the next request, are also
charged to move through time. Specifically, if the server of request ¢ next services request

J > 1, then imagine that instead of incurring a cost d(r;,;), the server incurs a cost of
dy(i,j) = d(ri;rj) + T(5 = 1) = T(i).

Additionally, if a server last services request ¢, then imagine that instead of incurring no

cost to remain on the node until the final request, the server incurs a cost of

dT(i,N + 1) =Tn-T,.

CHAPTER 4. THE K-SERVER DUAL 50

In charging to move through time as well as space, the cost of any given schedule® for
h servers is increased by exactly (h — 1)(T(N)—1(0)).

Next, let M; = min;. ;< j<n41 dr(i,7), so M; is a lower bound on the cost in time and
space incurred by the server of the ith request until serving another request, if it serves
another one, or until time T(N), if not. Then the net cost, in space and time, of any

schedule for h servers is at least hMy 4+ ST, M;, and the cost in space alone is at least

N
(h—1)(T(0) = T(N))+ hMy + Y M.

=1
T is an alternate representation of a timing for r, and the above quantity is the cost of
the timing for h servers. The correspondence between this representation of the timing and
that given in lemma 3.1.1 is given by B; = T(j — 1) — 17(0), A; = T(:) — T(0) + M;, and
Bs =T(N)-T(0).

4.4.2 An Intuitive Analysis of BALANCE

The space-time view of timings gives a nice analysis of BALANCE for weighted caching:
Lemma 4.4.1 BALANCE is ﬁ-competz’tz’ve for weighted caching.

Proof: Consider the schedule produced by BALANCE for a weighted caching request se-
quence r = rq ---rx. Assume for simplicity that no request is to a node served by BALANCE
(such requests are ignored by BALANCE and can be omitted without increasing the cost to
OPT), and that BALANCE handles the first & requests by placing successive servers on the
requested nodes at no cost. (This decreases the cost of BALANCE by at most an additive
constant.)

The schedule assigns a path in the request graph to each server. Imagine that the servers
simultaneously start at their respective initial vertices and begin traversing their paths at
unit speed (so that the time to traverse an edge is its length), not pausing at vertices.
When a server finishes traversing its path, imagine that it continues moving (anywhere) in
the graph until all servers have finished traversing their paths. Call the distance traveled

by the servers, including this extra movement, the cost in space of BALANCE.

8Recall that all servers are assumed to begin on rg.

CHAPTER 4. THE K-SERVER DUAL 51

Let T(0) be the starting time, and let 7'(7) denote the time that a server arrives at r;
in response to request ¢, so that 7'(7) is also the net distance traveled by the server by the
time it arrives.

The definition of BALANCE implies that for weighted caching 7" is monotonic: if T'(i +
1) < T(7) then the server of request ¢ + 1 would have been chosen as the server of request
¢ instead, since the net distance traveled by the server after serving the ith request would

have been less than that of the server actually chosen to serve the request.

Next, consider changing the charges for any schedule to service r by charging servers to
move through space (in the graph) and, in addition, from time 7'(0) until 7'(N), charging
each server, except the one which will next service a request, at a unit rate to exist in time.

Specifically, for moving a server from r; to r;, imagine charging dr(7,j) = d(r;,r;) +
T(j—1)—1T(¢), instead of d(r;,r;), and for leaving a server on r; for the remainder of the

schedule, imagine charging dr(i, N + 1) =T(N)— T(7).

Clearly the cost in time and space (i.e. the cost under dr) of any schedule for h servers
is exactly (h — 1)(T(N)—1T(0)) plus the cost in space alone (i.e. the cost under d).
Since k servers are moving at each time from 7'(0) until T'(N), the cost in space of

BaLaNce is k(T(N) —1(0)).

Let B, denote the set of k requests which have servers remaining on them after the nth

request. We claim that for any ¢ and 7, with 0 <: < j < N+ 1

w(r;) i ¢ By and

Ar(5)2 {T(N) ~T(i) i€ By. (23)

(We postpone the verification of this claim until the end of the proof.)

Thus, the cost in space and time incurred by OPT’s server in the interval between serving
the ith request and serving its next request (if any, and otherwise until time T'(N)) is at
least the cost in space incurred by the corresponding server of BALANCE.

Consequently, the cost in space and time of OPT is at least the cost in space of BALANCE,
and the cost in space of OPT is at least the cost in space of BALANCE, minus the cost in
time of OPT. Thus,

C.(OpT,h) > (k—h—1)(T(N)-T(0)). (24)

Since C,(BALANCE, k) is bounded by the cost in space of BALANCE, this gives the result.

CHAPTER 4. THE K-SERVER DUAL 52

It remains only to verify the claim (23). Recall that 0 <i < j < N 41, T is monotonic,
and we have assumed there are no requests nodes served by BALANCE.

There are four cases:

i. Ifi¢ By, j <N, (23) becomes d(rq,7;) +1(j — 1) —T(¢) > w(r;).
This is clear if d(r;, ;) = w(r;). Otherwise, r; = r;, so the server of 7; moved at time

i’ < j to service a request. Thus, T(j — 1) > T(¢') = T(3) + w(r;).

ii. fi¢ Bn,j=N+1,(23) becomes T(N) - T'(i)> w(r;).
Since ¢ ¢ By, the server of r; moved at time ¢/ < N to service a request. Thus,

T(N) > T(i') = T(i) + w(r).

ili. If ¢ € By, j < N, (23) becomes d(r;,r;)+1T(j—1)—T() > T(N)—T(2).

)z
Since ¢ € By, request j is not to r;. Thus, d(r;,7;) = w(r;) and this case reduces
to w(r;)+T(j—1) > T(N). This follows from w(r;) + T(i) > T(N), which is true

because otherwise the server of r; would have served ry.

iv. Ifi € By, j =N +1,(23) becomes T(N)—T(¢) > T(N)—T(3).

4.4.3 A Potential Function Analysis of BALANCE

Next we sketch how to transform the analysis in lemma 4.4.1 of BALANCE for weighted

caching into a potential function analysis.

Consider the schedule produced by BALANCE for weighted-caching request sequence
r = rire---, assuming that BALANCE handles the first & requests by placing successive
servers on the requested nodes at no cost. Assume also that BALANCE receives no requests
to served nodes.

Let T'(¢) be defined as in the the proof of lemma 4.4.1: T'(7) is distance traveled by the
server of the i¢th request from its first request until serving the ¢th request.

The fundamental bound (case (i) of claim (23)) from that analysis is

d(ri,r;) > w(r) + T(E) —T(j—1) for0<i<j.

CHAPTER 4. THE K-SERVER DUAL 53

What we want is a series of values @y, ®341,...such that, for j =k + 1,k +2,..., the
quantity ®; — @, is bounded, and

(k =R+ 1)d(rj-,r;) < kd(rje,rj) + @5 = @5y, (25)

where 77 and j* denote, respectively, the requests last served by the servers of BALANCE
and OpPT that served request j.

Observing that d(r;-,7;) = w(r;-) and d(r;x,7;) > w(r;«) + T(5*) = T(j — 1), we try
¢, =0 and (for j > k)

bj=®j 1+ (k—h+ Dw(rj-) = kw(ry) =T = 1)+ 1)

We know this satisfies (25); if we can show it is appropriately bounded we will have the
desired potential function.

Next we simplify ®,,. O, denotes the set of ¢ such that OpT’s server of the ¢th request
does not serve another request until after request n, so |0,| = h. Similarly, B,, denotes the
corresponding set for BALANCE.

The simplification is a consequence of the following three equations:

J=k+1 j€Bn
Z w(rp) = Zw(r])— Z w(r;)
=kl i=1 J€EOy
= Y TG +wlry)— Y wlry), and
7€Bn i€0,
> TG- DTG = (> T(])_T(]*)) — T(n)
J=k+1 j=k+1

- (Z T(j)) ~T(n).
JEOn
From these equations it is straightforward to show

n

®, = D (k=h+Duw(rj-)—=k(w(ryq) =T = 1)+ T(j%))
7=k+1
= > (h=1)(T(n) = T(j) = w(rj)) = (k = b + Dw(r;)
JEB

= D K(T(n) = T(5) - w(r))).

J€O0n

CHAPTER 4. THE K-SERVER DUAL 54

This gives the desired potential function. This isn’t too bad: Consider fixing a j and
letting n = j,j+ 1,.... The quantity T(5) 4+ w(r;) — T(n) is w(r;) when BALANCE’s server
serves r;, and, as n increases, the term decreases uniformly with the corresponding terms

for other j. When it becomes 0, the server leaves the node to serve its next request.

To see that ®,, is nonpositive, rewrite it:

®, = — Y, (k=h+1)(T(n)-T())

JEBnNOy,

+ Y (h=1)(T(n) = T(j) = w(r;))

JEBn—0yp

— > KT(n) = T(5) — w(r;))

J€On—By

= > (k=h+1w(r;)

JEBn—0yp

< - Z (k—h+ Dw(r;).

i€Bn—0n
The inequality follows because for j < n, T'(n) > T(j), T(n) > T(j) + w(r;) (if j € B,),
and T'(n) <T(j)+w(r;) (if j & B,).

Is this potential function analysis in fact a duality transformation, as discussed at the

beginning of this subsection? Yes. Briefly, we have

(k—h+ 1)d(Tj_,T]‘) < kd(rj*,rj) + &, - &, with
;- = (k=h+1)d(r;-,rj) = k(w(ry) =T —-1)+T(7)),

and we want a duality transformation dg on the edge costs so that
(k= h+ L)d(rj-,r;) < kda(i, j).

It is straightforward to derive

k—h+1

do(i,j) = d(rirj) = T(i) = w(ri) + T(j = 1) + ————w(r;-)

. k—h+1
= drig) () + T e
as the desired duality transformation. We can view this as the transformation dr modified
so that a little bit of the increase in the overall cost of OPT under dr is given back at each

step, so that the overall cost is not increased by the modified transformation.

CHAPTER 4. THE K-SERVER DUAL 55

In sum, dg¢ is a duality transformation, analogous to dr, for interpreting the lower
bound given by a dual solution. The interpretation corresponding to dg is as follows.
Given an arbitrary server schedule for r for h servers, imagine changing the cost of serving
r; with the server which last served r; from d(r;,r;) to de(7,j). This transformation does
not increase the overall cost for h servers, and the transformed costs satisfy kde(7,5) >
(k—=h+1)d(r;-,r;). Thus, BALANCE is k/(k — h + 1)-competitive. The transformation dg

is in some sense equivalent to a potential function analysis with &.

4.5 K-Phase Timings, PERM, and Optimal Timings

In this section we briefly describe how PERM, the on-line assignment algorithm, yields an on-
line k-server algorithm closely related to K-PHASE. In doing so, we also describe a method
for generating optimal timings which produces timings with some suggestive structure.

The transformation of the k-server problem to an Fj-factor problem in Section 4.1
preserves the on-line nature of the problem: in response to request r; with (¢ > 0), the costs
of edges adjacent to demand vertex i in GV are revealed, and if edge (i,) is added to the
F-factor, a server is moved from r; to r;.

This on-line Fj-factor problem reduces (by splitting supply vertex 0 into k identical
vertices) to the on-line assignment problem as defined in Section 1.6. PERM, the on-line
assignment algorithm, reduces in this way to PERM for k servers, which, in response to each
request, moves a server so that the servers cover vertices that would be covered by OPT
after the request if it was the last request.

To describe this algorithm more constructively, we define alternating paths: Given a
partial Fj-factor (a subset of edges so that each vertex ¢ has degree at most Fj(7) in the

subset) among the admissible edges of a timing for GV,

o An alternating path is a path in GV whose odd edges are admissible and whose even

edges are in the partial Fy-factor.

o An augmenting path is an odd-length alternating path, with each endpoint ¢ of degree
less than Fj(7) in the partial factor.

o To augment the factor by an augmenting path is to remove the even edges of the path

from the factor and add the odd edges, so that the degree of each endpoint in the

CHAPTER 4. THE K-SERVER DUAL 56

partial factor is increased by 1.

Now the algorithm may be described more constructively as follows:

—— PERM for K-Servers -
Maintain an optimal timing and Fj-factor in the current G7. In response to request r;,

1. Extend the timing. (The timing ceases to be optimal; the factor becomes partial.)

2. While there is no augmenting path (necessarily from demand node j to supply
node j),

(a) Let U* denote the set of supply vertices reachable from supply node j by
alternating paths.

(b) Stretch U*.

3. Augment the partial factor by the augmenting path. (The timing and the factor
are now optimal.)

4. Move a server from r; such that (¢,00) is not an edge in the current Fj-factor.

It is fairly easy to show that in each stretch operation, |U*| = |W*|+1, so that invariant
(21) and the simplification of the cost (22) also hold for the optimal dual solution produced

in the above algorithm, so that the cost for L servers of the solution is
(k—h+1)C.(k,OpPT)— (k= h)Ao.

Note the relation between this algorithm and K-PHuaAske. K-PHASE may be viewed
as maintaining a nonoptimal timing (the k-phase timing) and a (very) partial Fj-factor
consisting of the & admissible edges (¢, 00) such that oo is the only admissible neighbor of
. In response to each request, the timing is stretched just enough so that the partial factor
may be maintained, and a server is moved from r; such that (i, 00) is no longer an edge in

the partial factor.

Chapter 5

Duality Analyses of Weighted
Matching Strategies

In this chapter we use the dual bounding technique to analyze the maximum-weight match-
ing heuristic GREEDYMAX2, the on-line weighted matching algorithm GREEDYMAX3, and
the on-line assignment algorithm PERM. The purpose is to explore the general applicability

of the dual bounding technique.

The dual problem of finding an assignment in a weighted, bipartite graph with edge
weights is to find a maximum-cost potential (weighting of the vertices) such that the weight
of any edge is at least the sum of the weights of its endpoints. The cost of the potential is
the sum of the weights. (If we are abusing the term “perfect matching”, and the bipartite
graph has one part larger than the other, then the weights on the larger part must be
nonnegative in the dual problem.) Again, by duality, the cost of any potential is a lower
bound on the cost of any perfect matching.

To see the lower bound directly in terms of a dual transformation, imagine that the edge
weights d(¢,) are modified to d(¢,j) — m; — 7;, where 7, denotes the weight of vertex z.

This reduces the cost of the matching by (at least) >~ 7, but leaves the cost nonnegative.

The dual problem of finding a maximum-cost matching in a weighted, bipartite graph
with nonnegative edge weights is to find a minimum-cost nonnegative potential such that
such that the length of any edge is at most the sum of the weights of its endpoints. The

cost of any such potential is an upper bound on the cost of any matching.

57

CHAPTER 5. DUALITY ANALYSES OF WEIGHTED MATCHING STRATEGIES 58

To see this upper bound directly, again imagine that the edge weights d(¢, j) are modified
to d(i,7) — m; — m;. This reduces the cost of the matching by >, 7, and leaves the cost

nonpositive.

For nonbipartite graphs, the above bounds also hold, and are useful, even though they

cannot necessarily be made tight.!
The remainder of this chapter consists simply of the three analyses.

Lemma 5.0.1 ([Avi83]) The cost of the matching produced by GREEDYMAX2 in an ar-

bitrary, nonnegatively weighted graph is within a factor of 2 of mazimum.

Proof: If GREEDYMaX2 adds an edge (¢,7) to the matching, let 7; = m; = d(4, j). Let all
other w; = 0.

For any edge (7,7), d(¢,7) < max{m;, 7;} < m; + 7;: clearly this holds for any matched
edge, and the only reason an edge remains unmatched is some adjacent edge, say (i, k), was
matched first, in which case d(¢,7) < d(i,k) = ;.

The cost of the matching is >°; 7;/2. Since Y, 7; is an upper bound on the maximum

cost of a matching, the cost of the matching is within a factor of 2 of maximum. 0

Lemma 5.0.2 ([KP91]) In any metric, bipartite graph, the cost of the matching produced

by GREEDYMAX3 is within a factor of 3 of mazimum.

Proof: When GREEDYMAX3 adds an edge (7, j) to the matching as a result of the pre-
sentation of vertex j, let m; = 2d(¢,7) and 7; = d(4, 7).

For any edge (7,7), d(i,j) < m + m;: If (4,7) is matched this is clear. Otherwise,
suppose j was presented and matched to k. If ¢+ was not yet matched at that point, then
d(i,7) < d(j,k) = m;. Otherwise, suppose ¢ was already matched to h. When h was
presented, k was not yet matched, so d(k,h) < d(i,h). Thus,

d(i,7) < d(i,h)+d(h, k) + d(k,7) < 2d(i,h)+ d(k,j) = 7 + 7;.

The cost of the matching is >, 7;/3. Since Y. 7; is an upper bound on the maximum

cost of a matching, the cost of the matching is within a factor of 3 of maximum. 0

!The primal problems require more constraints in the nonbipartite case to ensure there are optimal
solutions corresponding to matchings. Thus, the dual problems allow a larger class of solutions, and possibly
tighter bounds. See [PS82, p.255].

CHAPTER 5. DUALITY ANALYSES OF WEIGHTED MATCHING STRATEGIES 59

The next analysis is a bit more complicated, and uses terminology (“stretching” a dual

solution, “alternating” and “augmenting” paths) from Section 4.5.

Lemma 5.0.3 ([KP91]) In any 2n-node, metric, bipartite graph, the assignment produced

by PERM is within a factor of 2n — 1 of minimal.

Proof: PERM, when given the graph G = (U, W, U x W), may be described as follows:

—— PERM
At any given time, let P denote the subset of W presented so far. Imagine maintaining

an optimal potential and a minimum-cost matching? in the subgraph Gp = (U, P,U x
P). Initially, the potential is the zero potential. In response to the presentation of a
vertex j,

1. P—PuU{j}.

2. Extend the potential by adding m; = 0, and consider the previous minimum-cost
matching as a partial matching in the new Gp.

3. While there is no augmenting path (necessarily from node j) in Gp,
(a) Let S denote the set of vertices reachable from vertex j by alternating paths.

(b) Stretch S. (Modify the potential by increasing the weights on vertices in
SN P, and decreasing those on vertices in SNU, by €, where € > 0 is as large
as possible so that no constraints are violated.)

4. Augment the partial matching by the augmenting path. (The matching and the
factor are now optimal.)

5. Assign ¢ to j in the assignment, where 7 is the other endpoint of the augmenting
path.

To bound the cost of the resulting assignment, note that the cost of edge (¢, j), where 1,
the other endpoint of the augmenting path, is assigned to j after j is presented, is bounded
by the cost of the augmenting path. The even edges of the path (if any) form a subset of
the previous minimum cost assignment, of cost no more than the previous potential. The
odd edges of the path form a subset of the current minimum cost assignment, of cost no
more than the current potential.

Since the cost of the potential is only increased during the course of the algorithm,
and the first augmenting path consists of one edge, after j < n vertices are presented and
assigned, the cost of the assignment is bounded by 27 — 1 times the cost of the current

potential. 0

2To distinguish between this minimum-cost matching and the assignment being produced by PERM, we
refer to the former as a matching and the latter as the assignment.

Chapter 6

Conclusion

We conclude with some remarks, directions for future work, and a summary of the thesis.

6.1 Remarks

Competitive analysis for on-line problems is not a new area. For instance, competitive ratios
of on-line bin-packing strategies have been considered for years (e.g. Coffman, Garey, and

Johnson [CGJ83]).

Can competitive analyses be made more realistic and practical? Existing models are
useful in that they provide a theoretical framework for judging on-line algorithms. For a
problem for which empirical data is not extensive, for instance in designing multi-processors
or configuring network communication, competitive analysis can provide guidelines, or even
guarantees of good performance [KMRS88]. Nonetheless, competitive ratios are worst-
case estimates, and, if high, may not be representative of typical behavior. An analogue
exists here to NP-completeness, which is evidence that a problem is hard in the worst
case, but not necessarily in the typical case. In other words, the worst-case pessimism that
existing models for competitive analysis sometimes suffer from is representative of a more
fundamental problem in current theoretical computer science: how to (when possible) obtain
theoretically rigorous models for analyzing typical rather than worst-case or average-case

behavior. Perhaps on-line problems are a good arena in which to explore this issue.

'Omne alternative model for paging might be the following: Assume the input sequence is generated by a
finite-state markov process. When the process enters a state, it requests an item depending only on the state.

60

CHAPTER 6. CONCLUSION 61

How useful is the dual-bounding technique? Generally, duality helps understand struc-
ture, so it is not surprising duality is useful for analyzing optimization heuristics. Further,
half of obtaining a competitive analysis is (at least implicitly) obtaining a useful bound on
the optimal cost; the other half is correlating this bound with an on-line solution. At the
very least, explicitly using duality can simplify the former: for linear optimization problems,
unlike more general problems, obtaining a bound on all instances is simply a dual problem
of exhibiting a single instance.

Perhaps the interesting refinement of the question is whether the latter — correlating the
lower bound with an on-line algorithm — is made easier by considering duality. Perhaps
on-line algorithms use duality in a consistent way. Competitive algorithms always have
potential function analyses, the problem is finding and analyzing the potential function;
perhaps, for linear optimization problems, the class of interesting potential functions is
essentially a subset of the duality transformations, as discussed in Section 4.4, and the

special structure of these problems can aid the search for potential functions.

6.2 Future Work

6.2.1 Randomized Weighted Caching

Currently no randomized weighted caching algorithm with competitiveness below k/(k—h+
1) is known, nor is a lower bound suggesting there is not room for substantial improvement
with randomized strategies. MARK may be viewed as using randomization to take advantage
of degeneracy in k-phase timings to reduce competitiveness. For weighted caching, optimal
timings have a somewhat simpler structure than for the general k-server problem. Perhaps
a better understanding of this structure could lead to progress on randomized weighted

caching.

This might be appropriate for analyzing adaptive deterministic algorithms; from preliminary consideration,
it would seem that such algorithms could in this model be as competitive as barely random algorithms:
algorithms that use a number of random bits bounded independently of the length of the input. (MARK
can be made barely random by randomly ordering the k servers, and breaking ties according to the random
ordering instead of uniformly at random each time.)

Prabhakar Raghavan spoke at the DIMACS Workshop on On-Line Algorithms (hosted by Lyle McGeoch
and Danny Sleator at Rutgers University in February 1991) of a model for analyzing investment strategies.
The assumption was that the input would satisfy certain characteristics (e.g. certain investments would be
more volatile than others, but all would, in the long run, have similar net growth), but, subject to that
restriction, the worst-case input would be considered.

CHAPTER 6. CONCLUSION 62

6.2.2 Lookahead

The obvious practical notion of lookahead does not yield reduced competitiveness, while
resource-bounded lookahead yields reduced competitiveness but is obviously not practical.
The challenge here is to find a compromise: a notion of lookahead for paging which yields

some advantage yet is arguably realistic.?

6.2.3 Loose Competitiveness

Lower bounds on the loose competitiveness of LrU, Firo, and MARK are open, and might
require only a clever modification of the lower bound to Fwr.
No work has yet been done on loose competitiveness for general k-server or the weighted

caching algorithms.?

The key to showing loose competitiveness for paging was the idea of k-phases, partic-
ularly the more general lower bound on the optimal solution in terms of the number of
new requests per phase. Of course we speculate that linear programming duality might be
useful in developing the more general lower bounds needed to show loose competitiveness

for k-server problems more general than paging.

6.2.4 The K-Server Dual

The structure of optimal timings should be explored. In particular,

e We conjecture that PErRM for k servers (WORKg) is k-competitive, or even ﬁ—

competitive, for weighted caching, although it is easily shown not competitive for the

20mne should keep in mind that in practice on-line paging strategies may have costs close enough to
optimal that the improvement from lookahead is marginal, or at least impossible to model in a realistic
and reasonably general way. In that case, we can only hope that our theoretical model provides heuristic
evidence about the relative merits of various algorithms, or suggestions or guidelines about how to design
good algorithms. In this light, resource-bounded lookahead is not so bad.

?One might want to focus first on k_kT_I_l—competitive strategies, where they exist. For any such strategy,
and any k, the cost of the schedule for k servers produced by the on-line strategy is within a factor of 2 of
the cost of the optimal schedule for k/2 servers. Thus if the cost of the on-line schedule for k servers is high
in comparison to the cost of the optimal schedule with & servers, then the cost of the optimal schedule with
k servers is low in comparison to the cost of the optimal schedule with k/2 servers. Thus one can show, for
instance, that if, for every k in some range, the cost of the on-line schedule for k servers is at least ¢ > 2
times the cost of the optimal schedule for &k servers, then the cost of the optimal schedule with &k servers
shrinks by a factor of 2/c every time k is doubled. This can show a weak variant of loose competitiveness:
either the cost of the strategy rapidly becomes insignificant, or the competitive ratio for some k is less than
c.

CHAPTER 6. CONCLUSION 63

general k-server problem. A proof of this might follow similar lines as the analysis of
K-PHASE, if the structure of the optimal timings discussed in Section 4.5 were better
understood. For instance, the monotonicity of the B;, an essential property of k-phase
timings, seems to hold for the optimal timing implicit in PERM for k servers provided

w(ro) = 0.

o We know that the cost for i servers of the optimal timing for k servers discussed in

Section 4.5 may be expressed
(k—=h+1)C.(OPT, k) — (k— h)Ao.

A better understanding of the Ag term might yield bounds on the relative costs of

optimal schedules for different numbers of servers on a given sequence.

It would be nice if some connection could be made between the combinatorial ap-
proach we have taken for competitive analysis and the residue-based approach (see McGeoch
[McG87] and Manasse, McGeoch, and Sleator [MMS90]) or if further relations could be es-
tablished with potential functions. A starting point for investigating further the connections
with potential functions might be Chrobak and Larmore’s [CL91a] potential function anal-
ysis of their algorithm for k servers on trees, particularly the case when the tree is a “star,”
(A tree with one nonleaf — this special case corresponds to weighted caching) because of

the similarity of the tree-based algorithm when the tree is a star and GREEDYDUAL.

The relations between duality and potential functions are preliminary and warrant fur-
ther investigation. As of this writing we have not attempted to transform the other uses of
the dual bounding technique into potential function analyses; this would be a natural thing

to attempt.

We wonder if the partitioning paging strategy of McGeoch and Sleator [MS89] can be
viewed as a dual-guided algorithm.
6.3 Summary

We have seen a number of variations on the standard model for competitive analysis of

paging strategies: allowing randomized strategies, allowing resource-bounded lookahead,

CHAPTER 6. CONCLUSION 64

and loose competitiveness. Each led to substantially reduced, but not constant, competitive
ratios.

The dual bounding technique — using a dual solution to bound the optimal cost and
obtain a competitive analysis — was introduced and shown to be implicit in the work on
paging; by recognizing this, a new, optimally competitive, deterministic, on-line algorithm
was given for weighted caching, a more general problem. The algorithm subsumes well-
known existing algorithms, and the analysis strengthens a previous analysis.

The structure of the linear programming dual of the k-server problem was explored.
The k-server problem was seen to be a special case of the assignment problem, and on-line
algorithms for weighted caching and paging were shown to be related, via duality, to an
on-line assignment algorithm. An intuitive analysis, using duality, of a weighted caching
strategy was given, and duality considerations were shown to lead to a potential function.

The dual bounding technique was applied to analyze an existing heuristic and an existing

on-line algorithm for maximum-cost matching, and an on-line assignment algorithm.

Many fundamental topics remain to be explored:
e Practical and interesting models for lookahead.
e Lower bounds on loose competitiveness for Lru, Firo, and MARK.

¢ Reduced competitiveness for weighted caching and k-server problems through loose

competitiveness and/or randomization.
e The structure of optimal weighted caching and k-server dual solutions.

e The general applicability of the dual bounding technique and its relation to potential

functions and residues.

e Models yielding better analyses of typical behavior when worst-case behavior is far

from typical.

Bibliography

[AACSS9]

[ALMO90]

[Avi83]

[BDBK+90]

[Bel66]

[BGRS90]

[BIRS91]

[BKT90]

[BLS87]

[BMS5]

Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. A model
for hierarchical memory. Research report RC 15118 (#67337), IBM Research
Division, T.J. Watson Research Center, Yorktown Heights, NY, October 1989.

Sanjeev Arora, Tom Leighton, and Bruce Maggs. On-line algorithms for path
selection in a nonblocking network. In Proc. 22nd Annual ACM Symp. on
Theory of Computing, pages 149-158, May 1990. Baltimore, MD.

D. Avis. A survey of heuristics for the weighted matching problem. Networks,
13:475-493, 1983.

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the
power of randomization in on-line algorithms. In Proc. 22nd Annual ACM
Symp. on Theory of Computing, pages 379-386, May 1990. Baltimore, MD.
Algorithmica, to appear.

L. A. Belady. A study of replacement algorithms for virtual storage computers.
IBM Systems Journal, 5:78-101, 1966.

M. Bern, D. H. Greene, A. Raghunathan, and M. Sudan. On-line algorithms
for locating checkpoints. In Proc. 22nd Annual ACM Symp. on Theory of
Computing, pages 359-368, May 1990. Baltimore, MD.

Allan Borodin, Sandy Irani, Prabhaker Raghavan, and Baruch Schieber. Com-
petitive paging with locality of reference. In Proc. 23rd Annual ACM Symp.
on Theory of Computing, pages 249-259, May 1991. New Orleans, LA.

P. Berman, H. Karloff, and G. Tardos. A competitive 3-server algorithm. In
Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, pages 280-290,
January 1990. San Francisco, CA.

A. Borodin, M. Linial, and M. Saks. An optimal online algorithm for metrical
task systems. In Proc. 19th Annual ACM Symp. on Theory of Computing,
pages 373-382, May 1987. New York, NY. JACM, to appear.

J. L. Bentley and C. C. McGeoch. Amortized analyses of self-organizing se-
quential search heuristics. Comm. ACM, 28(4):404-411, April 1985.

65

BIBLIOGRAPHY 66

[BS89)]

[CCFS5]

[CDRS90]

[CGIS3]

[CKPV90]

[CKPVOI1]
[CL]
[CL91a]

[CLI1D]

[FKL*88]

[FRR90]

[GLSS]

[Gro9l]

D. L. Black and D. D. Sleator. Competitive algorithms for replication and
migration problems. Tech. Rep. CMU-CS-89-201, Department of Computer
Science, Carnegie Mellon University, 1989.

A. Calderbank, E. Coffman, and L. Flatto. Sequencing problems in two-server
systems. Math. Operations Research, 10:585-598, 1985.

D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on
weighted graphs, and applications to on-line algorithms. In Proc. 22nd Annual
ACM Symp. on Theory of Computing, pages 369-378, May 1990. Baltimore,
MD.

E. G. Coffman, M. R. Garey, and D. S. Johnson. Dynamic bin packing. STAM
Journal of Computing, 12:227-258, 1983.

M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server
problems. In Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms,
pages 291-300, January 1990. San Francisco, CA.

M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server
problems. SIAM Journal on Discrete Mathematics, 4(2):172-181, May 1991.

Marek Chrobak and Lawrence L. Larmore. A new approach to the server
problem. STAM J. Discrete Math. To appear.

M. Chrobak and L. Larmore. An optimal on-line algorithm for k-servers on
trees. SIAM J. Computing, 20(1):144-148, February 1991.

Marek Chrobak and Lawrence L. Larmore. Server problems and on-line games.
In Lyle A. McGeoch and Daniel D. Sleator, editors, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, volume 7, pages 11-64.
American Mathematical Society, 1991.

A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.
Young. Competitive paging algorithms. Tech. Rep. CMU-CS-88-196, Com-
puter Science Department, Carnegie Mellon University, 1988. J. Algorithms,
to appear.

Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms.
In Proc. 31st Annual Symp. on Foundations of Comp. Sci., volume II, pages
454-469, October 1990. St. Louis, MO.

A. Gyarfas and J. Lehel. On-line first fit colorings of graphs. Journal of Graph
Theory, 12(2):217-227, 1988.

Eddie Grove. The harmonic on-line server algorithm is competitive. In Proc.
23rd Annual ACM Symp. on Theory of Computing, pages 260-266, May 1991.
New Orleans, LA.

BIBLIOGRAPHY 67

[GS53]

[Hen76]

[IR]

[TRWSO1]

[Kah91]

[KMMO90]

[KMRSSS]

[KMV90]

[KP91]

[KRRO1]

[KVV90]

[Lov89]

[McG87]

[McG91]

D. Gale and F. M. Stewart. Infinite games with perfect information. In W. H.
Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games Vol.
1, Annals of Mathematical Studies, volume 28, pages 245-266. Princeton Uni-
versity Press, 1953.

W. J. Hendricks. An account of self-organizing systems. SIAM Journal of
Computing, 5(4):715-723, December 1976.

Sandy Irani and Ronitt Rubinfeld. A competitive 2-server algorithm. Infor-
mation Processing Letters. To appear.

S. Irani, N. Reingold, J. Westbrook, and D. Sleator. Randomized competitive
algorithms for the list update problem. In Proc. 2nd Annual ACM-SIAM
Symp. on Discrete Algorithms, pages 251-260, January 1991. San Francisco,
CA.

S. Kahan. A model for data in motion. In Proc. 23rd Annual ACM Symp. on
Theory of Computing, pages 267-277, May 1991. New Orleans, LA.

A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki. Competitive
randomized algorithms for non-uniform problems. In Proc. 1st Annual ACM-
SIAM Symp. on Discrete Algorithms, pages 301-309, January 1990. San Fran-
cisco, CA.

A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive
snoopy caching. Algorithmica, 3(1):79-119, 1988.

S. Khuller, S. Mitchell, and V. Vazirani. On-line algorithms for weighted
matching and stable marriages. Tech. Rep. TR 90-1143, Department of Com-
puter Science, Cornell University, 1990.

Bala Kalyanasundaram and Kirk Pruhs. On-line weighted matching. In Proc.
2nd Annual ACM-SIAM Symp. on Discrete Algorithms, pages 234-240, Jan-
uary 1991. San Francisco, CA.

H. Karloff, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-server
and motion planning algorithms. In Proc. 28rd Annual ACM Symp. on Theory
of Computing, pages 278-288, May 1991. New Orleans, LA.

R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proc. 22nd Annual ACM Symp. on Theory of
Computing, pages 352-358, May 1990. Baltimore, MD.

Laszl6 Lovasz. Communication complexity: A survey. Tech. Rep. CS-TR-204-
89, Computer Science Department, Princeton University, February 1989.

L. A. McGeoch. Algorithms for Two Graph Problems. PhD thesis, Carnegie
Mellon University, 1987.

Lyle McGeoch. Personal communication. 1991.

BIBLIOGRAPHY 68

[MMS8S]

[MMS90]

[MS89]

[PS82]

[Riv76]

[RSS9]

[RTS1]

[RW90]

[SASS]

[Sch90]
[ST85]

[Tar85]

[Yao82]

[You]

[You91]

M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for
on-line problems. In Proc. 20th Annual ACM Symp. on Theory of Computing,
pages 322-333, May 1988. Chicago, IL.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms
for server problems. Journal of Algorithms, 11:208-230, 1990.

L. A. McGeoch and D. D. Sleator. A strongly competitive randomized pag-
ing algorithm. Tech. Rep. CMU-CS-89-122, Computer Science Department,
Carnegie Mellon University, 1989. Algorithmica, to appear.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complezity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

R. Rivest. On self-organizing sequential search heuristics. Comm. ACM,
19(2):63-67, February 1976.

P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms.
In 16th International Colloguium on Automata, Languages, and Programming,
volume 372 of Lecture Notes in Computer Science, pages 687-703. Springer-
Verlag, July 1989. Revised version available as an IBM Research Report.

E. Reingold and R. Tarjan. On a greedy heuristic for complete matching.
SIAM Journal of Computing, 10:676-681, 1981.

N. Reingold and J. Westbrook. Randomized algorithms for the list update
problem. Tech. Rep. YALEU/DCS/TR-804, Department of Computer Science,
Yale University, June 1990.

R. L. Sites and A. Agarwal. Multiprocessor cache analysis using ATUM. In
Proc. 15th IEEF Int. Symp. on Computer Architecture, pages 186-195, 1988.
Honolulu, HI.

Baruch Schieber. Personal communication. 1990.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Comm. ACM, 28(2):202-208, February 1985.

R. E. Tarjan. Amortized computational complexity. STAM J. Alg. Disc. Math.,
6:306-318, 1985.

A. C. Yao. Probabilistic computations: Towards a unified measure of complex-
ity. In Proc. 17th Annual Symp. on Foundations of Computer Science, pages
80-91, November 1982. Chicago, IL.

Neal Young. The k-server dual and loose competitiveness for paging. Algo-
rithmica, to appear in a special issue on on-line algorithms.

Neal Young. On-line caching as cache size varies. In Proc. 2nd Annual ACM-
SIAM Symp. on Discrete Algorithms, pages 241-250, January 1991. San Fran-
cisco, CA.

Index

admissible edges and neighbors 41
alternating path 55
amortized analysis 48
assignment 12-13
augment 55
augmenting path 55
B, 51,53
BALANcE 7
for weighted caching 47
c-competitive 1
competitive analysis 1
loose 5
dr(i.j) 49,51
dslirg) 54
dual bounding technique 9
dual transformation 35, 48, 49, 51, 54, 57
extending a timing 42
Fy., Fy-factor 40
Firo 4
Fwr 4
GN 10
graph, access 6
graph, metric 12
GREEDYDUAL 8, 35
GREEDYMAX2 13, 58
GREEDYMAX3 13, 58
h 4
k4
k-phase partitioning 15
k-phase timing 43
k-server problem 7-10
K-Prase 10, 45
for paging 45
for weighted caching 46
lookahead, resource-bounded 5, 23
loose competitiveness 5
Lru 4

69

Marxk 4,18

matching 12-13

Max 13

Min 13

Nk(r) 16

new requests 15

0, 53

on-line problem 1

Opt for paging 3

OpT for weighted caching 7

Pr(r) 16

paging 3-4

pending nodes 42

PerMm 13, 59
for k servers 10, 56

potential function 48
for BALANCE for weighted caching 54

potential 41

slack 41

stretching 41

timings 34-35
k-phase 43
extending 42
optimal 55
as k-server dual 34
stretching 41
zero 42

vertex weight 41

weighted caching 7

WoRrK, 10

X 4

