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1 PROBLEM DEFINITION

Given a collection S of sets over a universe U , a set cover C ⊆ S is a subcollection of the
sets whose union is U . The set-cover problem is, given S, to find a minimum-cardinality set
cover. In the weighted set-cover problem, for each set s ∈ S a weight ws ≥ 0 is also specified,
and the goal is to find a set cover C of minimum total weight

∑
s∈C ws.

Weighted set cover is a special case of minimizing a linear function subject to a submodular
constraint, defined as follows. Given a collection S of objects, for each object s a non-negative
weight ws, and a non-decreasing submodular function f : 2S → R, the goal is to find a
subcollection C ⊆ S such that f(C) = f(S) minimizing

∑
s∈C ws. (Taking f(C) = | ∪s∈C s|

gives weighted set cover.)

2 KEY RESULTS

The greedy algorithm for weighted set cover builds a cover by repeatedly choosing a set s
that minimize the weight ws divided by number of elements in s not yet covered by chosen
sets. It stops and returns the chosen sets when they form a cover:

greedy-set-cover(S, w)
1. Initialize C ← ∅. Define f(C)

.
= | ∪s∈C s|.

2. Repeat until f(C) = f(S):
3. Choose s ∈ S minimizing the price per element ws/[f(C ∪ {s})− f(C)].
4. Let C ← C ∪ {s}.
5. Return C.

Let Hk denote
∑k

i=1 1/i ≈ ln k, where k is the largest set size.

Theorem 1. The greedy algorithm returns a set cover of weight at most Hk times the min-
imum weight of any cover.
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Proof. When the greedy algorithm chooses a set s, imagine that it charges the price per
element for that iteration to each element newly covered by s. Then the total weight of the
sets chosen by the algorithm equals the total amount charged, and each element is charged
once.

Consider any set s = {xk, xk−1, . . . , x1} in the optimal set cover C∗. Without loss of
generality, suppose that the greedy algorithm covers the elements of s in the order given:
xk, xk−1, . . . , x1. At the start of the iteration in which the algorithm covers element xi of s,
at least i elements of s remain uncovered. Thus, if the greedy algorithm were to choose s
in that iteration, it would pay a cost per element of at most ws/i. Thus, in this iteration,
the greedy algorithm pays at most ws/i per element covered. Thus, it charges element xi at
most ws/i to be covered. Summing over i, the total amount charged to elements in s is at
most wsHk. Summing over s ∈ C∗ and noting that every element is in some set in C∗, the
total amount charged to elements overall is at most

∑
s∈C∗ wsHk = Hkopt.

The theorem was shown first for the unweighted case (each ws = 1) by Johnson [6],
Lovász [9], and Stein [14], then extended to the weighted case by Chvátal [2].

Since then a few refinements and improvements have been shown, including the following:

Theorem 2. Let S be a set system over a universe with n elements and weights ws ≤ 1. The
total weight of the cover C returned by the greedy algorithm is at most [1+ln(n/opt)]opt+1
(compare to [13]).

Proof. Assume without loss of generality that the algorithm covers the elements in order
xn, xn−1, . . . , x1. At the start of the iteration in which the algorithm covers xi, there are at
least i elements left to cover, and all of them could be covered using multiple sets of total
cost opt. Thus, there is some set that covers not-yet-covered elements at a cost of at most
opt/i per element.

Recall the charging scheme from the previous proof. By the preceding observation, el-
ement xi is charged at most opt/i. Thus, the total charge to elements xn, . . . , xi is at
most (Hn − Hi−1)opt. Using the assumption that each ws ≤ 1, the charge to each of
the remaining elements is at most 1 per element. Thus, the total charge to all elements
is at most i − 1 + (Hn − Hi−1)opt. Taking i = 1 + dopte, the total charge is at most
dopte+ (Hn −Hdopte)opt ≤ 1 + opt(1 + ln(n/opt)).

Each of the above proofs implicitly constructs a linear-programming primal-dual pair to
show the approximation ratio. The same approximation ratios can be shown with respect
to any fractional optimum (solution to the fractional set-cover linear program).

Other results. The greedy algorithm has been shown to have an approximation ratio of
ln n− ln ln n + O(1) [12]. For the special case of set systems whose duals have finite Vapnik-
Chervonenkis (VC) dimension, other algorithms have substantially better approximation
ratio [1]. Constant-factor approximation algorithms are known for geometric variants of
the closely related k-median and facility location problems (see the K-median and Facility
Location entry of this text).

The greedy algorithm generalizes naturally to many problems. For example, for minimiz-
ing a linear function subject to a submodular constraint (defined above), the natural exten-
sion of the greedy algorithm gives an Hk-approximate solution, where k = maxs∈S f({s})−
f(∅), assuming f is integer-valued [10].
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The set-cover problem generalizes to allow each element x to require an arbitrary number
rx of sets containing it to be in the cover. This generalization admits a polynomial-time
O(log n)-approximation algorithm [8].

The special case when each element belongs to at most r sets has a simple r-approximation
algorithm [15, §15.2]. When the sets have uniform weights (ws = 1), the algorithm reduces
to the following: select any maximal collection of elements, no two of which are contained
in the same set; return all sets that contain a selected element.

The variant “Max k-coverage” asks for a set collection of total weight at most k covering
as many of the elements as possible. This variant has a (1− 1/e)-approximation algorithm
[15, Problem 2.18] (see [7] for sets with non-uniform weights).

For a general discussion of greedy methods for approximate combinatorial optimization,
see [5, Ch. 4].

Finally, under likely complexity-theoretic assumptions, the ln n approximation ratio is
essentially the best possible for any polynomial-time algorithm [3, 4].

3 APPLICATIONS

Set Cover and its generalizations and variants are fundamental problems with numerous
applications. Examples include:

• selecting a small number of nodes in a network to store a file so that all nodes have a
nearby copy,

• selecting a small number of sentences to be uttered to tune all features in a speech-
recognition model [11],

• selecting a small number of telescope snapshots to be taken to capture light from all
galaxies in the night sky,

• finding a short string having each string in a given set as a contiguous sub-string.

4 OPEN PROBLEMS [optional]

None to report.

5 EXPERIMENTAL RESULTS

None to report.
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