Encyclopedia of Algorithms, 601-604 (2008) doi: 10.1007/978-0-387-30162-4_267

Online paging and caching
(1985-2002, multiple authors)

Neal E. Young, University of California, Riverside
www.cs.ucr.edu/~neal
entry editor:

INDEX TERMS: paging, caching, weighted caching, weighted paging, file caching, least
recently used (paging algorithm), first in first out (paging algorithm), flush when full (paging
algorithm), the Marking algorithm (paging algorithm), Balance algorithm (weighted caching
algorithm), Greedy Dual (weighted caching algorithm), Landlord (file caching algorithm),
Squid (file caching software), k-server problem, primal-dual algorithms, randomized algo-
rithms, online algorithms, competitive analysis, competitive ratio, loose competitiveness,
access-graph model, Markov paging,

SYNONYMS: paging, caching, weighted caching, weighted paging, file caching

1 PROBLEM DEFINITION

A file-caching problem instance specifies a cache size k (a positive integer) and a sequence
of requests to files, each with a size (a positive integer) and a retrieval cost (a non-negative
number). The goal is to maintain the cache to satisfy the requests while minimizing the
retrieval cost. Specifically, for each request, if the file is not in the cache, one must retrieve
it into the cache (paying the retrieval cost) and remove other files to bring the total size of
files in the cache to k or less. Weighted caching, or weighted paging is the special case when
each file size is 1. Paging is the special case when each file size and each retrieval cost is 1.
Then the goal is to minimize cache misses, or equivalently the fault rate.

An algorithm is online if its response to each request is independent of later requests.
In practice this is generally necessary. Standard worst-case analysis is not meaningful for
online algorithms — any algorithm will have some input sequence that forces a retrieval for
every request. Yet worst-case analysis can be done meaningfully as follows. An algorithm is
c(h, k)-competitive if on any sequence o the total (expected) retrieval cost incurred by the
algorithm using a cache of size k is at most ¢(h, k) times the minimum cost to handle o with
a cache of size h (plus a constant independent of o). Then the algorithm has competitive
ratio c¢(h, k). The study of competitive ratios is called competitive analysis. (In the larger
context of approximation algorithms for combinatorial optimization, this ratio is commonly
called the approzimation ratio.)

Algorithms. Here are definitions of a number of caching algorithms; first is LANDLORD.
LANDLORD gives each file “credit” (equal to its cost) when the file is requested and not in
cache. When necessary, LANDLORD reduces all cached file’s credits proportionally to file
size, then evicts files as they run out of credit.

Encyclopedia of Algorithms, 601-604 (2008)							doi: 10.1007/978-0-387-30162-4_267

File-caching algorithm LANDLORD
Maintain real value credit[f] with each file f (credit[f] = 0 if f is not in the cache).
When a file g is requested:

1. if ¢ is not in the cache:

2. until the cache has room for g:

3 for each cached file f: decrease credit[f] by A - size[f],

4. where A = min ;¢ cqcne credit[f]/size[f].

D. Evict from the cache any subset of the zero-credit files f.
6 Retrieve g into the cache; set credit]g] < cost(g).

7. else Reset credit[g] anywhere between its current value and cost(g).

For weighted caching, file sizes equal 1. GREEDY DUAL is LANDLORD for this special
case. BALANCE is the further special case obtained by leaving credit unchanged in line 7.

For paging, files sizes and costs equal 1. FLUSH-WHEN-FULL is obtained by evicting all
zero-credit files in line 5; FIRST-IN-FIRST-OUT is obtained by leaving credits unchanged in
line 7 and evicting the file that entered the cache earliest in line 5; LEAST-RECENTLY-USED
is obtained by raising credits to 1 in line 7 and evicting the least-recently requested file in
line 5. The MARKING algorithm is obtained by raising credits to 1 in line 7 and evicting a
random zero-credit file in line 5.

2 KEY RESULTS

This entry focuses on competitive analysis of paging and caching strategies as defined above.
Competitive analysis has been applied to many problems other than paging and caching,
and much is known about other methods of analysis (mainly empirical or average-case) of
paging and caching strategies, but these are outside scope of this entry.

Paging. In a seminal paper, Sleator and Tarjan showed that LEAST-RECENTLY-USED,
FIRST-IN-FIRST-OUT, and FLUSH-WHEN-FULL are ——-competitive [12]. Sleator and Tar-
jan also showed that this competitive ratio is the best possible for any deterministic online
algorithm.

Fiat et al. showed that the MARKING algorithm is 2 H,-competitive and that no random-
ized online algorithm is better than Hy-competitive [6]. Here H, =1+ 1/2+ -+ 1/k ~
b8 + In k. McGeoch and Sleator gave an optimal Hj-competitive randomized online paging
algorithm [11].

Weighted caching. For weighted caching, Chrobak et al. showed that the deterministic
online BALANCE algorithm is k-competitive [4]. Young showed that GREEDY DUAL is %}LH—
competitive, and that GREEDY DUAL is a primal-dual algorithm — it generates a solution
to the linear-programming dual which proves the near-optimality of the primal solution [13].

File caching. When each cost equals 1 (the goal is to minimize the number of retrievals),
or when each file’s cost equals the file’s size (the goal is to minimize the total number of
bytes retrieved), Irani gave O(log” k)-competitive randomized online algorithms [7].

For general file caching, Irani and Cao showed that a restriction of LANDLORD is k-
k

competitive [3]. Independently, Young showed that LANDLORD is ;——-competitive [14].
Other theoretical models. Practical performance can be better than the worst case
studied in competitive analysis. Refinements of the model have been proposed to increase
realism. Borodin et al. [2], to model locality of reference, proposed the access-graph model
(see also [8, 9]). Koutsoupias and Papadimitriou proposed the comparative ratio (for com-
paring classes of online algorithms directly) and the diffuse-adversary model (where the
adversary chooses requests probabilistically subject to restrictions) [10]. Young showed that
any %M—competitive algorithm is also loosely O(1)-competitive: for any fixed ,0 > 0, on
any sequence, for all but a Jd-fraction of cache sizes k, the algorithm either is O(1)-competitive
or pays at most ¢ times the sum of the retrieval costs [14].

Analyses of deterministic algorithms. Here is a competitive analysis of GREEDY DUAL
for weighted caching.

Theorem 1. GREEDY DUAL s %M—competitive for weighted caching.

Proof. Here is an amortized analysis (in the spirit of Sleator and Tarjan, Chrobak et al., and
Young; see [13] for a different primal-dual analysis). Define potential

®=(h—1)- Y creditf] + k- »_ (cost(f>—credit[f]>,

reGD feOPT

where GD and OPT denote the current caches of GREEDY DUAL and OpPT(the optimal off-line
algorithm that manages the cache to minimize the total retrieval cost), respectively. After
each request, GREEDY DUAL and OPT take (some subset of) the following steps in order.

OPT evicts a file f: Since credit[f] < cost(f), ¢ cannot increase.
OPT retrieves requested file g: OPT pays cost(g); ® increases by at most k cost(g).

GREEDY DUAL decreases credit[f] for all f € aD: The cache is full and the requested
file is in OPT but not yet in GD. So |GD| = k and |oPT N GD| < h — 1. Thus, the total
decrease in @ is A[(h — 1)|GD| — k|opTNaD|] > A[(h — 1)k — k(h —1)] = 0.

GREEDY DUAL evicts a file f: Since credit[f] = 0, ® is unchanged.

GREEDY DUAL retrieves requested file g and sets credit[g] to cost(g): GREEDY
DUAL pays ¢ = cost(g). Since g was not in GD but is in OPT, credit[g] = 0 and ® decreases

by —(h—1)c+kec=(k—h+1)c

GREEDY DUAL resets credit[g] between its current value and cost(g): Since g € OPT
and credit[g] only increases, ® decreases.

So, with each request: (1) when OPT retrieves a file of cost ¢, ® increases by at most kc;
(2) at no other time does ® increase; and (3) when GREEDY DUAL retrieves a file of cost ¢,
® decreases by at least (k — h + 1)c. Since initially & = 0 and finally ® > 0, it follows that
GREEDY DUAL’s total cost times k — h + 1 is at most OPT’s cost times k.]

Extension to file caching. Although the proof above easily extends to LANDLORD, it is
more informative to analyze LANDLORD via a general reduction from file caching to weighted
caching:

Corollary 1. LANDLORD is %Hl—competz’tive for file caching.

Proof. Let W be any deterministic c-competitive weighted-caching algorithm. Define file-
caching algorithm Fy, as follows. Given request sequence o, Fy, simulates W on weighted-
caching sequence o’ as follows. For each file f, break f into size(f) “pieces” {f;} each of size
1 and cost cost(f)/size(f). When f is requested, give a batch (fy, fa, ..., fs)N ! of requests
for pieces to W. Take N large enough so W has all pieces {f;} cached after the first sN
requests of the batch.

Assume that W respects equivalence: after each batch, for every file f, all or none of f’s
pieces are in W’s cache. After each batch, make Fy, update its cache correspondingly to
{f : fi € cache(W)}. Fy’s retrieval cost for o is at most W’s retrieval cost for ¢’, which is
at most ¢ OpT(0’), which is at most ¢ OpT (o). Thus, Fy is c-competitive for file caching.

Now, observe that GREEDY DUAL can be made to respect equivalence. When GREEDY
DUAL processes a batch of requests (fi, fo, ..., fs)V ! resulting in retrievals, for the last s
requests, make GREEDY DUAL set credit[f;] = cost(f;) = cost(f)/s in line 7. In general,
restrict GREEDY DUAL to raise credits of equivalent pieces f; equally in line 7. After each
batch the credits on equivalent pieces f; will be the same. When GREEDY DUAL evicts a
piece f;, make GREEDY DUAL evict all other equivalent pieces f; (all will have zero credit).

With these restrictions, GREEDY DUAL respects equivalence. Finally, taking W to be
GREEDY DUAL above, Fjy is LANDLORD. m

Analysis of the randomized MARKING algorithm. Here is a competitive analysis of
the MARKING algorithm.

Theorem 2. The MARKING algorithm is 2H}-competitive for paging.

Proof. Given a paging request sequence o, partition o into contiguous phases as follows.
Each phase starts with the request after the end of the previous phase and continues as long
as possible subject to the constraint that it should contain requests to at most & distinct
pages. (Each phase starts when the algorithm runs out of zero-credit files and reduces all
credits to zero.)

Say a request in the phase is new if the item requested was not requested in the previous
phase. Let m; denote the number of new requests in the ¢th phase. During phases i — 1 and
1, k + m, distinct files are requested. OPT has at most k of these in cache at the start of the
1 — 1st phase, so it will retrieve at least m,; of them before the end of the ith phase. So OPT’s
total cost is at least max{) , mo;, >, maiy1} > D>, m;/2.

Say a non-new request is redundant if it is to a file with credit 1 and non-redundant
otherwise. Each new request costs the MARKING algorithm 1. The jth non-redundant
request costs the MARKING algorithm at most m;/(k — j + 1) in expectation because, of the
k — j + 1 files that if requested would be non-redundant, at most m; are not in the cache
(and each is equally likely to be in the cache). Thus, in expectation MARKING pays at most

m; + Zf;{m m;/(k — j+ 1) < m;Hy, for the phase, and at most Hy,). m; total. O

3

APPLICATIONS

Variants of GREEDY DUAL and LANDLORD have been incorporated into file-caching software
such as Squid [5].

4

OPEN PROBLEMS [optional]

None to report.

5

EXPERIMENTAL RESULTS

For a study of competitive ratios on practical inputs, see for example [13, 3, 5].

6

CROSS REFERENCES

EDITOR PLEASE FORMAT
Algorithm DC-Tree for k-Servers on Tree (Entry 00212)
Online List Update (Entry 00041)
Performance Measures in Online Algorithms (Entry 00325)
Price of Anarchy (Entry 00368)
Work-Function Algorithm for K-servers (Entry 00219)

7
1]

2]

RECOMMENDED READING

Alan Borodin and Ran El-Yaniv, Online computation and competitive analysis. Cam-
bridge University Press, New York, NY, USA.

Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive
paging with locality of reference. Journal of Computer and System Sciences, 50(2):244—
258, 1995.

Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In USENIX
Symposium on Internet Technologies and Systems, December 1997.

Marek Chrobak, Howard Karloff, Thomas H. Payne, and Sundar Vishwanathan. New
results on server problems. SIAM Journal on Discrete Mathematics, 4(2):172-181,
1991.

John Dilley, Martin Arlitt, and Stephane Perret. Enhancement and validation of
Squid’s cache replacement policy. Hewlett-Packard Laboratories Technical Report
HPL-1999-69, May 1999.

Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and
Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685-699,
1991.

[10]

[11]

[12]

Sandy Irani. Page replacement with multi-size pages and applications to Web caching.
Algorithmica, 33(3):384-409, 2002.

Sandy Irani, Anna R. Karlin, and Steven Phillips. Strongly competitive algorithms for
paging with locality of reference. SIAM Journal on Computing, 25(3):477-497, 1996.

Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov paging. STAM
Journal on Computing, 30(3):906-922, 2000.

Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis. SIAM
Journal on Computing, 30(1):300-317, 2000.

Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6:816-825, 1991.

Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging
rules. Comm. ACM, 28(2):202-208, 1985.

Neal E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11(6):525-541, 1994.

Neal E. Young. On-line file caching. Algorithmica, 33(3):371-383, 2002.

