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Abstract. We present e�cient distributed �-approximation algorithms for fractional packing and
maximum weighted b-matching in hypergraphs, where � is the maximum number of packing con-
straints in which a variable appears (for maximum weighted b-matching � is the maximum edge
degree — for graphs � = 2). (a) For � = 2 the algorithm runs in O(log m) rounds in expectation and
with high probability. (b) For general �, the algorithm runs in O(log2 m) rounds in expectation and
with high probability.

1 Background and results

Given a weight vector w 2 IR

m

+ , a coe�cient matrix A 2 IR

n⇥m

+ and a vector b 2 IR

n

+, the fractional

packing problem is to compute a vector x 2 IR

m

+ to maximize
P

m

j=1 w
j

x
j

and at the same time meet all the
constraints

P
m

j=1 A
ij

x
j

 b
i

(8i = 1 . . . n). We use � to denote the maximum number of packing constraints
in which a variable appears, that is, � = max

j

|{i| A
ij

6= 0}|. In the centralized setting, fractional packing

can be solved optimally in polynomial time using linear programming. Alternatively, one can use a faster
approximation algorithm (i.e. [11]).

maximum weighted b-matching on a (hyper)graph is the variant where each A
ij

2 {0, 1} and the solution
x must take integer values (without loss of generality each vertex capacity is also integer). An instance is
defined by a given hypergraph H(V,E) and b 2 ZZ

|V |
+ ; a solution is given by a vector x 2 ZZ

|E|
+ maximizingP

e2E

w
e

x
e

and meeting all the vertex capacity constraints
P

e2E(u) x
e

 b
u

(8u 2 V ), where E(u) is the
set of edges incident to vertex u. For this problem, n = |V |, m = |E| and � is the maximum (hyper)edge
degree (for graphs � = 2).

maximum weighted b-matching is a cornerstone optimization problem in graph theory and Computer
Science. As a special case it includes the ordinary maximum weighted matching problem (b

u

= 1 for all
u 2 V ). In the centralized setting, maximum weighted b-matching on graphs belongs to the “well-solved
class of integer linear programs” in the sense that it can be solved in polynomial time [5, 6, 19]. Moreover,
getting a 2-approximate1 solution for maximum weighted matching is relatively easy, since the obvious
greedy algorithm, which selects the heaviest edge that is not conflicting with already selected edges, gives a
2-approximation. For hypergraphs the problem is NP-hard, since it generalizes set packing, one of Karp’s
21 NP-complete problems [10].

Our results. In this work we present e�cient distributed �-approximation algorithms for the above prob-
lems. If the input is a maximum weighted b-matching instance, the algorithms produce integral solutions.
The method we use is of particular interest in the distributed setting, where it is the first primal-dual
extension of a non-standard local-ratio technique [13, 2].

– For fractional packing where each variable appears in at most two constraints (� = 2), we show a
distributed 2-approximation algorithm running in O(log m) rounds in expectation and with high prob-
ability. This is the first 2-approximation algorithm requiring only O(log m) rounds. This improves the
approximation ratio over the previously best known algorithm [14]. (For a summary of known results see
Figure 1.)
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problem approx. ratio running time where when

max weighted matching on graphs

O(�) O(1) [22] 2000
5 O(log2 n) [23] 2004
2 O(m) [7] 2004
O(1)(> 2) O(log n) [14] 2006
(4 + ") O("�1 log "�1 log n) [18] 2007
(2 + ") O(log "�1 log n) [17] 2008
(1 + ") O("�4 log2 n) [17] 2008
(1 + ") O("�2 + "�1 log("�1n) log n) [20] 2008
2 O(log2 n) [17, 20] (" = 1) 2008
2 O(log n) here 2009

fractional packing with � = 2
O(1)(> 2) O(log m) [14] 2006
2 O(log m) here 2009

max weighted matching on hypergraphs
O(�) > � O(log m) [14] 2006
� O(log2 m) here 2009

fractional packing with general �
O(1) > 12 O(log m) [14] 2006
� O(log2 m) here 2009

Fig. 1. Distributed algorithms for fractional packing and maximum weighted matching.

– For fractional packing where each variable appears in at most � constraints, we give a distributed
�-approximation algorithm running in O(log2 m) rounds in expectation and with high probability, where
m is the number of variables. For small �, this improves over the best previously known constant factor
approximation [14], but the running time is slower by a logarithmic-factor.

– For maximum weighted b-matching on graphs we give a distributed 2-approximation algorithm running
in O(log n) rounds in expectation and with high probability. maximum weighted b-matching generalizes
the well studied maximum weighted matching problem. For a 2-approximation, our algorithm is faster by
at least a logarithmic factor than any previous algorithm. Specifically, in O(log n) rounds, our algorithm
gives the best known approximation ratio. The best previously known algorithms compute a (1 + ")-
approximation in O("�4 log2 n) rounds [17] or in O("�2 + "�1 log("�1n) log n) rounds [20]. For a 2-
approximation both these algorithms need O(log2 n) rounds.

– For maximum weighted b-matching on hypergraphs with maximum hyperedge degree � we give a dis-
tributed �-approximation algorithm running in O(log2 m) rounds in expectation and with high prob-
ability, where m is the number of hyperedges. Our result improves over the best previously known
O(�)-approximation ratio by [14], but it is slower by a logarithmic factor.

Related work for Maximum Weighted Matching. There are several works considering distributed
maximum weighted matching on edge-weighted graphs. Uehara and Chen present a constant time O(�)-
approximation algorithm [22], where � is the maximum vertex degree. Wattenhofer and Wattenhofer improve
this result, showing a randomized 5-approximation algorithm taking O(log2 n) rounds [23]. Hoepman shows
a deterministic 2-approximation algorithm taking O(m) rounds [7]. Lotker, Patt-Shamir and Rosén give a
randomized (4+")-approximation algorithm running in O("�1 log "�1 log n) rounds [18]. Lotker, Patt-Shamir
and Pettie improve this result to a randomized (2 + ")-approximation algorithm taking O(log "�1 log n)
rounds [17]. Their algorithm uses as a black box any distributed constant-factor approximation algorithm
for maximum weighted matching which takes O(log n) rounds (i.e. [18]). Moreover, they mention (without
details) that there is a distributed (1+")-approximation algorithm taking O("�4 log2 n) rounds, based on the
parallel algorithm by Hougardy and Vinkemeier [8]. Nieberg presents a (1 + ")-approximation algorithm in
O("�2 +"�1 log("�1n) log n) rounds [20]. The latter two results give randomized 2-approximation algorithms
for maximum weighted matching in O(log2 n) rounds.

Related work for Fractional Packing. Kuhn, Moscibroda and Wattenhofer show e�cient distributed
approximation algorithms for fractional packing [14]. They first show a (1+")-approximation algorithm for
fractional packing with logarithmic message size, but the running time depends on the input coe�cients.
For unbounded message size they show a constant-factor approximation algorithm for fractional packing

which takes O(log m) rounds. If an integer solution is desired, then distributed randomized rounding ([15])



can be used. This gives an O(�)-approximation for maximum weighted b-matching on (hyper)graphs with
high probability in O(log m) rounds, where � is the maximum hyperedge degree (for graphs � = 2). (The
hidden constant factor in the big-O notation of the approximation ratio can be relative large compared to a
small �, say � = 2) .

Lower bounds. The best lower bounds known for distributed packing and matching are given by Kuhn,
Moscibroda and Wattenhofer [14]. They prove that to achieve a constant or even a poly-logarithmic approxi-
mation ratio for fractional maximum matching, any algorithms requires at least ⌦(

p
log n/ log log n) rounds

and ⌦(log�/ log log�), where � is the maximum vertex degree.

Other related work. For unweighted maximum matching on graphs, Israeli and Itai give a random-
ized distributed 2-approximation algorithm running in O(log n) rounds [9]. Lotker, Patt-Shamir and Pettie
improve this result giving a randomized (1 + ")-approximation algorithm taking O("�3 log n) rounds [17].
Czygrinow, Hańćkowiak, and Szymańska show a deterministic 3/2-approximation algorithm which takes
O(log4 n) rounds [4]. A (1 + ")-approximation for maximum weighted matching on graphs is in NC [8].

The rest of the paper is organized as follows. In Section 2 we describe a non-standard primal-dual
technique to get a �-approximation algorithm for fractional packing and maximum weighted b-matching.
In Section 3 we present the distributed implementation for � = 2. Then in Section 4 we show the distributed
�-approximation algorithm for general �. We conclude in Section 5.

2 Covering and packing

Koufogiannakis and Young show sequential and distributed �-approximation algorithms for general covering
problems [13, 12], where � is the maximum number of covering variables on which a covering constraint
depends. As a special case their algorithms compute �-approximate solutions for fractional covering

problems of the form min{
P

n

i=1 b
i

y
i

:
P

n

i=1 A
ij

y
i

� w
j

(8j = 1..m), y 2 IR

n

+}. The linear programming dual
of such a problem is the following fractional packing problem: max{

P
m

j=1 w
j

x
j

:
P

m

j=1 A
ij

x
j

 b
i

(8i =
1 . . . n), x 2 IR

m

+ }. For packing, � is the maximum number of packing constraints in which a packing variable
appears, � = max

j

|{i| A
ij

6= 0}|.
Here we extend the distributed approximation algorithm for fractional covering by [12] to compute

�-approximate solutions for fractional packing using a non-standard primal-dual approach.

Notation. Let C
j

denote the j-th covering constraint (
P

n

i=1 A
ij

y
i

� w
j

) and P
i

denote the i-th packing
constraint (

P
m

j=1 A
ij

x
j

 b
i

). Let Vars(S) denote the set of (covering or packing) variable indexes that
appear in (covering or packing) constraint S. Let Cons(z) denote the set of (covering or packing) constraint
indexes in which (covering or packing) variable z appears. Let N(x

s

) denote the set of packing variables
that appear in the packing constraints in which x

s

appears, that is, N(x
s

) = {x
j

|j 2 Vars(P
i

) for some i 2
Cons(x

s

)} = Vars(Cons(x
s

)).

Fractional Covering. First we give a brief description of the �-approximation algorithm for fractional
covering by [13, 12]2. The algorithm performs steps to cover non-yet-satisfied covering constraints. Let yt be
the solution after the first t steps have been performed. (Initially y0 = 0.) Given yt, let wt

j

= w
j

�
P

n

i=1 A
ij

yt

i

be the slack of C
j

after the first t steps. (Initially w0 = w.) The algorithm is given by Alg. 1.
There may be covering constraints for which the algorithm never performs a step because they are

covered by steps done for other constraints with which they share variables. Also note that increasing y
i

for
all i 2 Vars(C

s

), decreases the slacks of all constraints which depend on y
i

.

Our general approach. [13] shows that the above algorithm is a �-approximation for covering, but they
don’t show any result for matching or other packing problems. Our general approach is to recast their analysis
as a primal-dual analysis, showing that the algorithm (Alg. 1) implicitly computes a solution to the dual
packing problem of interest here. To do this we use the tail-recursive approach implicit in previous local-ratio
analyses [3].

2 The algorithm is equivalent to local-ratio when A 2 {0, 1}n⇥m and y 2 {0, 1}n [1, 2]. See [13] for a more general
algorithm and a discussion on the relation between this algorithm and local ratio.



greedy �-approximation algorithm for fractional covering [13, 12] alg. 1
1. Initialize y0  0, w0  w, t 0.
2. While there exist an unsatisfied covering constraint C

s

do a step for C
s

:
3. Set t = t + 1.
4. Let �

s

 wt�1
s

·min
i2Vars(Cs) b

i

/A
is

. . . . OPT cost to satisfy C
s

given the current solution
5. For each i 2 Vars(C

s

):
6. Set yt

i

= yt�1
i

+ �
s

/b
i

. . . . increase y
i

inversely proportional to its cost
7. For each j 2 Cons(y

i

) update wt

j

= wt�1
j

�A
ij

�
s

/b
i

. . . . new slacks

8. Return y = yt.

After the t-th step of the algorithm, define the residual covering problem to be min{
P

n

i=1 b
i

y
i

:
P

n

i=1 A
ij

y
i

�
wt

j

(8j = 1..m), y 2 IR

n

+} and the residual packing problem to be its dual, max{
P

m

j=1 wt

j

x
j

:
P

m

j=1 A
ij

x
j


b
i

(8i = 1 . . . n), x 2 IR

m

+ }. The algorithm will compute �-approximate primal and dual pairs (xt, yT�t) for
the residual problem for each t. As shown in what follows, the algorithm increments the covering solution x
in a forward way, and the packing solution y in a “tail-recursive” manner.

Standard Primal-Dual approach does not work. For even simple instances, generating a �-approximate
primal-dual pair for the above greedy algorithm requires a non-standard approach. For example, consider
min{y1+y2+y3 : y1+y2 � 1, y1+y3 � 5, y1, y2 � 0}. If the greedy algorithm (Alg. 1) does the constraints in
either order and chooses � maximally, it gives a solution of cost 10. In the dual max{x12 +5x13 : x12 +x13 
1, x12, x13 � 0}, the only way to generate a solution of cost 5 is to set x13 = 1 and x12 = 0. A standard primal-
dual approach would raise the dual variable for each covering constraint when that constraint is processed
(essentially allowing a dual solution to be generated in an online fashion, constraint by constraint). That
can’t work here. For example, if the constraint y1 + y2 � 1 is covered first by setting y1 = y2 = 1, then the
dual variable x12 would be increased, thus preventing x13 from reaching 1.

Instead, assuming the step to cover y1 + y2 � 1 is done first, the algorithm should not increase any
packing variable until a solution to the residual dual problem is computed. After this step the residual
primal problem is min{y01 + y02 + y03 : y01 + y02 � �1, y01 + y03 � 4, y01, y

0
2 � 0}, and the residual dual problem

is max{�x012 + 4x013 : x012 + x013  1, x012, x
0
13 � 0}. Once a solution x0 to the residual dual problem is

computed (either recursively or as shown later in this section) then the dual variable x012 for the current
covering constraint should be raised maximally, giving the dual solution x for the current problem. In detail,
the residual dual solution x0 is x012 = 0 and x013 = 1 and the cost of the residual dual solution is 4. Then the
variable x012 is raised maximally to give x12. However, since x013 = 1, x012 cannot be increased, thus x = x0.
Although neither dual coordinate is increased at this step, the dual cost is increased from 4 to 5, because
the weight of x13 is increased from w0

13 = 4 to w13 = 5. (See Figure 2 in the appendix.) In what follows we
present this formally.

Fractional Packing. We show that the greedy algorithm for covering creates an ordering of the covering
constraints for which it performs steps, which we can then use to raise the corresponding packing variables.
Let t

j

denote the time3 at which a step to cover C
j

was performed. Let t
j

= 0 if no step was performed for
C

j

. We define the relation “C
j

0 � C
j

” on two covering constraints C
j

0 and C
j

which share a variable and
for which the algorithm performed steps to indicate that constraint C

j

0 was done first by the algorithm.

Definition 1. Let C
j

0 � C
j

if Vars(C
j

0) \ Vars(C
j

) 6= ; and 0 < t
j

0 < t
j

.

Note that the relation is not defined for covering constraints for which a step was never performed by
the algorithm. Then let D be the partially ordered set (poset) of all covering constraints for which the
algorithm performed a step, ordered according to “�”. D is partially ordered because “�” is not defined for
covering constraints that do not share a variable. In addition, since for each covering constraint C

j

we have
a corresponding dual packing variable x

j

, abusing notation we write x
j

0 � x
j

if C
j

0 � C
j

. Therefore, D is
also a poset of packing variables.

3 In general by “time” we mean some reasonable way to distinguish in which order steps were performed to satisfy
covering constraints. For now, the time at which a step was performed can be thought as the step number (line 3
at Alg. 1). It will be slightly di↵erent in the distributed setting.



Definition 2. A reverse order of poset D is an order C
j1 , Cj2 , . . . , Cjk (or equivalently x

j1 , xj2 , . . . , xjk)

such that for l > i either we have C
jl � C

ji or the relation “�” is not defined for constraints C
ji and C

jl

(because they do not share a variable).

Then the following figure (Alg. 2) shows the sequential �-approximation algorithm for fractional pack-

ing.

greedy �-approximation algorithm for fractional packing alg. 2
1. Run Alg. 1, recording the poset D.
2. Let T be the number of steps performed by Alg. 1.
3. Initialize xT  0, t T . . . . note that t will be decreasing from T to 0
4. Let ⇧ be some reverse order of D. . . . any reverse order of D works, see Lemma 1
5. For each variable x

s

2 D in the order given by ⇧ do:
6. Set xt�1 = xt.
7. Raise xt�1

s

until a packing constraint that depends on xt�1
s

is tight, that is, set xt�1
s

= max
i2Cons(xj)(bi

�P
m

j=1 A
ij

xt�1
j

) .
8. Set t = t� 1.
9. Return x = x0.

The algorithm simply considers the packing variables corresponding to covering constraints that Alg. 1
did steps for, and raises each variable maximally without violating the packing constraints. The order in
which the variables are considered matters: the variables should be considered in the reverse of the order in

which steps were done for the corresponding constraints, or an order which is “equivalent” (see Lemma 1).
(This flexibility is necessary for the distributed setting.)

The solution x is feasible at all times since a packing variable is increased only until a packing constraint
gets tight.

Lemma 1. Alg. 2 returns the same solution x using (at line 4) any reverse order of D.

Proof. Let ⇧ = x
j1 , xj2 , . . . , xjk and ⇧ 0 = x

j1 , xj2 , . . . , xjk be two di↵erent reverse orders of D. Let x⇧,1...m

be the solution computed so far by Alg. 2 after raising the first m packing variables of order ⇧. We prove
that x⇧,1...k = x⇧

0
,1...k.

Assume that ⇧ and ⇧ 0 have the same order for their first q variables, that is j
i

= j
i

for all i  q.
Then, x⇧,1...q = x⇧

0
,1...q. The first variable in which the two orders disagree is the (q + 1)-th one, that is,

j
q+1 6= j0

q+1. Let s = j
q+1. Then x

s

should appear in some position l in ⇧ 0 such that q + 1 < l  k. The
value of x

s

depends only on the values of variables in N(x
s

) at the time when x
s

is set. We prove that for
each x

j

2 N(x
s

) we have x⇧,1...q

j

= x⇧

0
,1...l

j

, thus x⇧,1...q

s

= x⇧

0
,1...l

s

. Moreover since the algorithm considers
each packing variable only once this implies x⇧,1...k

s

= x⇧,1...q

s

= x⇧

0
,1...l

s

= x⇧

0
,1...k

s

.
(a) For each x

j

2 N(x
s

) with x
s

� x
j

, the variable x
j

should have already been set in the first q steps,
otherwise ⇧ would not be a valid reverse order of D. Moreover each packing variable can be increased only
once, so once it is set it maintains the same value till the end. Thus, for each x

j

such that x
s

� x
e

, we have
x⇧,1...q

j

= x⇧

0
,1...q

j

= x⇧

0
,1...l

j

.
(b) For each x

j

2 N(x
s

) with x
j

� x
s

, j cannot be in the interval [j0
q+1, . . . , j

0
l�1) of ⇧ 0, otherwise ⇧ 0

would not be a valid reverse order of D. Thus, for each x
j

such that x
j

� x
s

, we have x⇧,1...q

j

= x⇧

0
,1...q

j

=
x⇧

0
,1...l

j

= 0.
So in any case, for each x

j

2 N(x
s

), we have x⇧,1...q

j

= x⇧

0
,1...l

j

and thus x⇧,1...q

s

= x⇧

0
,1...l

s

.
The lemma follows by induction on the number of edges. ut

The following lemma and weak duality prove that the solution x returned by Alg. 2 is �-approximate.

Lemma 2. For the solutions y and x returned by Alg. 1 and Alg. 2 respectively,

P
m

j=1 w
j

x
j

� 1/�
P

n

i=1 b
i

y
i

.

Proof. Lemma 1 shows that any reverse order of D produces the same solution, so w.l.o.g. here we assume
that the reverse order ⇧ used by Alg. 2 is the reverse of the order in which steps to satisfy covering constraints
were performed by Alg. 1.



When Alg. 1 does a step to satisfy the covering constraint C
s

(by increasing y
i

by �
s

/b
i

for all i 2
Vars(C

s

)), the cost of the covering solution
P

i

b
i

y
i

increases by at most ��
s

, since C
s

depends on at most �
variables (|Vars(C

s

)|  �). Thus the final cost of the cover y is at most
P

s2D ��s

.
Define  t =

P
j

wt

j

xt

j

to be the cost of the packing xt. Recall that xT = 0 so  T = 0, and that the
final packing solution is given by vector x0, so the the cost of the final packing solution is  0. To prove the
theorem we have to show that  0 �

P
s2D �s

. We have that  0 =  0� T =
P

T

t=1  
t�1� t so it is enough

to show that  t�1 �  t � �
s

where C
s

is the covering constraint done at the t-th step of Alg. 1.
Then,  t�1 �  t is

X

j

wt�1
j

xt�1
j

� wt

j

xt

j

(1)

= wt�1
s

xt�1
s

+
X

j 6=s

(wt�1
j

� wt

j

)xt�1
j

(2)

= wt�1
s

xt�1
s

+
X

i2Cons(xs)

X

j2{Vars(Pj)�s}

A
ij

�
s

b
i

xt�1
j

(3)

= �
s

xt�1
s

max
i2Cons(xs)

A
is

b
i

+
X

i2Cons(xs)

X

j2{Vars(Pj)�s}

A
ij

�
s

b
i

xt�1
j

(4)

� �
s

1
b
i

mX

j=1

A
ij

xt�1
j

(for i s.t. constraint P
i

becomes tight after raising x
s

) (5)

= �
s

(6)

In equation (2) we use the fact that xt

s

= 0 and xt�1
j

= xt

j

for all j 6= s. For equation (3), we use the
fact that the residual weights of packing variables in N(x

s

) are increased. If x
j

> 0 for j 6= s, then x
j

was
increased before x

s

(x
s

� x
j

) so at the current step wt�1
j

> wt

j

> 0, and wt�1
j

�wt

j

=
P

i2Cons(xs) A
ij

�s

bi
. For

equation (4), by the definition of �
s

we have wt�1
s

= �
s

max
i2Cons(xs)

Ais
bi

. In inequality (5) we keep only the
terms that appear in the constraint P

i

that gets tight by raising x
s

. The last equality holds because P
i

is
tight, that is,

P
m

j=1 A
ij

x
j

= b
i

. ut

The following lemma shows that Alg. 2 returns integral solutions if the coe�cients A
ij

are 0/1 and the
b
i

’s are integers, thus giving a �-approximation algorithm for maximum weighted b-matching.

Lemma 3. If A 2 {0, 1}n⇥m

and b 2 ZZ

n

+ then the returned packing solution x is integral, that is, x 2 ZZ

m

+ .

Proof. Since all non-zero coe�cients are 1, the packing constraints are of the form
P

j2Vars(Pi)
x

j

 b
i

(8i).
We prove by induction that x 2 ZZ

m

+ . The base case is trivial since the algorithm starts with a zero solution.
Assume that at some point we have xt 2 ZZ

m

+ . Let x
s

2 D, be the next packing variable to be raised by the
algorithm. We show that xt�1

s

2 ZZ+ and thus the resulting solution remains integral. The algorithm sets
xt�1

s

= min
i2Cons(xs){bi

�
P

m

j=1 xt�1
j

} = min
i2Cons(xs){bi

�
P

m

j=1 xt

j

} � 0. By the induction hypothesis, each
xt

j

2 ZZ+, and since b 2 ZZ

n

+, then xt�1
s

is also a non-negative integer. ut

3 Distributed Fractional Packing with � = 2

3.1 Distributed model for � = 2

We assume the network in which the distributed computation takes place has vertices for covering variables
(packing constraints) and edges for covering constraints (packing variables). So, the network has a node
u

i

for every covering variable y
i

. An edge e
j

connects vertices u
i

and u
i

0 if y
i

and y
i

0 belong to the same
covering constraint C

j

, that is, there exists a constraint A
ij

y
i

+ A
i

0
j

y
i

0 � w
j

(� = 2 so there can be at most
2 variables in each covering constraint). We assume the standard synchronous communication model, where
in each round, nodes can exchange messages with neighbors, and perform some local computation [21]. We
also assume no restriction on message size and local computation. (Note that a synchronous model algorithm
can be transformed into an asynchronous algorithm with the same time complexity [21].)



3.2 Distributed algorithm for � = 2

Koufogiannakis and Young show a distributed implementation of Alg. 1, for (fractional) covering with � = 2
that runs in O(log n) rounds in expectation and with high probability [12]. In this section we augment
their algorithm to distributively compute 2-approximate solutions to the dual fractional packing problem
without increasing the time complexity. The high level idea is similar to that in the previous section: run
the distributed algorithm for covering to get a partial order of the covering constraints for which steps were
performed, then consider the corresponding dual packing variables in “some reverse” order raising them
maximally. The challenge here is that the distributed algorithm for covering can perform steps for many
covering constraints in parallel. Moreover, each covering constraint, has just a local view of the ordering,
that is, it only knows its relative order among the covering constraints with which it shares variables.

Distributed Fractional Covering with � = 2. Here is a short description of the distributed 2-approximation
algorithm for fractional covering (Alg. 5 in appendix from [12]). In each round, the algorithm does steps on a
large subset of remaining edges (covering constraints), as follows. Each vertex (covering variable) randomly
chooses to be a leaf or a root. A not-yet-satisfied edge e

j

= (u
i

, u
r

) between a leaf u
i

and a root u
r

with
b
i

/A
ij

 b
r

/A
rj

is active for the round. Each leaf u
i

chooses a random star edge (u
i

, u
r

) from its active
edges. These star edges form stars rooted at roots. Each root u

r

then performs steps (of Alg. 1) on its star
edges (in any order) until they are all satisfied.

Note that in a round the algorithm performs steps in parallel for edges not belonging to the same star.
For edges belonging to the same star, their root performs steps for some of them one by one. There are edges
for which the algorithm never performs steps because they are covered by steps done for adjacent edges.

In the distributed setting we define the time at which a step to satisfy C
j

is done as a pair (tR
j

, tS
j

), where
tR
j

denotes the round in which the step was performed and tS
j

denotes that within the star this step is the
tS
j

-th one. Let tR
j

= 0 if no step was performed for C
j

. Overloading Definition 1, we redefine “�” as follows.

Definition 3. Let C
j

0 � C
j

(or equivalently x
j

0 � x
j

) if Vars(C
j

0) \ Vars(C
j

) 6= ; (j0 and j are adjacent

edges in the distributed network) and ([0 < tR
j

0 < tR
j

] or [tR
j

0 = tR
j

and tS
j

0 < tS
j

]).

The pair (tR
j

, tS
j

) is enough to distinguish which of two adjacent edges had a step to satisfy its covering
constraint performed first. Adjacent edges can have their covering constraints done in the same round only
if they belong to the same star (they have a common root), thus they di↵er in tS

j

. Otherwise they are done
in di↵erent rounds, so they di↵er in tR

j

. Thus the pair (tR
j

, tS
j

) and relation “�” define a partially ordered
set D of all edges done by the distributed algorithm for covering.

Lemma 4. ([12]) Alg. 5 (for fractional covering with � = 2) finishes in T = O(log m) rounds in expec-

tation and with high probability. Simultaneously, Alg. 5 sets (tR
j

, tS
j

) for each edge e
j

for which it performs a

step (0 < tR
j

 T ), thus defining a poset of edges D, ordered by “�”.

Distributed Fractional Packing with � = 2. Alg. 3 implements Alg. 2 in a distributed fashion. First, it
runs Alg. 1 using the distributed implementation by [12] (Alg. 5) and recording D. Meanwhile, as it discovers
the partial order D, it begins the second phase of Alg. 2, raising each packing variable as soon as it can.
Specifically it waits to set a given x

j

2 D until after it knows that (a) x
j

is in D, (b) for each x
j

0 2 N(x
j

)
whether x

j

� x
j

0 , and (c) each such x
j

0 is set. In other words, (a) a step has been done for the covering
constraint C

j

, (b) each adjacent covering constraint C
j

0 is satisfied and (c) for each adjacent C
j

0 for which
a step was done after C

j

, the variable x
j

0 has been set. Subject to these constraints it sets x
j

as soon as
possible. Note that some nodes will be executing the second phase of the algorithm (packing) while some
other nodes are still executing the first phase (covering). This is necessary because a given node cannot know
when distant nodes are done with the first phase.

All x
j

’s will be determined in 2T rounds by the following argument. After round T , D is determined.
Then by a straightforward induction on t, within T + t rounds, every constraint C

j

for which a step was
done at round T � t of the first phase, will have its variable x

j

set.

Theorem 1. For fractional packing where each variable appears in at most two constraints there is a

distributed 2-approximation algorithm running in O(log m) rounds in expectation and with high probability,

where m is the number of packing variables.



Distributed 2-approximation Fractional Packing with � = 2 alg. 3
input: Graph G = (V, E) representing a fractional packing problem instance with � = 2 .
output: Feasible x, 2-approximately minimizing w · x.

1. Each edge e
j

2 E initializes x
j

 0.
2. Each edge e

j

2 E initializes done
j

 false. . . . this indicates if x
j

has been set to its final value

3. Until each edge e
j

has set its variable x
j

(done
j

== true), perform a round:
4. Perform a round of Alg. 5. . . . covering with � = 2 augmented to compute (tR

j

,tS

j

)
5. For each node u

r

that was a root (in Alg. 5) at any previous round, consider locally at u
r

all stars St

r

that were rooted by u
r

at any previous round t. For each star St

r

perform IncreaseStar(St

r

).

IncreaseStar(star St

r

):
6. For each edge e

j

2 St

r

in decreasing order of tS

j

:
7. If IncreasePackingVar(e

j

) == UNDONE then BREAK (stop the for loop).

IncreasePackingVar(edge e
j

= (u
i

, u
r

)):
8. If e

j

or any of its adjacent edges has a non-yet-satisfied covering constraint return UNDONE.

9. If tR

j

== 0 then:
10. Set x

j

= 0 and done
j

= true.
11. Return DONE.

12. If done
j

0 == false for any edge e
j

0 such that x
j

� x
j

0 then return UNDONE.
13. Set x

j

= min
�
(b

i

�
P

j

0 A
ij

0x
j

0)/A
ij

, (b
r

�
P

j

0 A
rj

0x
j

0)/A
rj

 
and done

j

= true.
14. Return DONE.

Proof. By Lemma 4, Alg. 5 computes a covering solution y in T = O(log m) rounds in expectation and with
high probability. At the same time, the algorithm sets (tR

j

, tS
j

) for each edge e
j

for which it performs a step
to cover C

j

, and thus defining a poset D of edges. In the distributed setting the algorithm does not define
a linear order because there can be edges with the same (tR

j

, tS
j

), that is, edges that are covered by steps
done in parallel. However, since these edges must be non-adjacent, we can still think that the algorithm
gives a linear order (as in the sequential setting), where ties between edges with the same (tR

j

, tS
j

) are broken
arbitrarily (without changing D). Similarly, we can analyze Alg. 3 as if it considers the packing variables in
a reverse order of D. Then, by Lemma 1 and Lemma 2 the returned solution x is 2-approximate.

We prove that the x can be computed in at most T extra rounds after the initial T rounds to compute y.
First note that within a star, even though its edges are ordered according to tS

j

they can all set their packing
variables in a single round if none of them waits for some adjacent edge packing variable that belongs to
a di↵erent star. So in the rest of the proof we only consider the case were edges are waiting for adjacent
edges that belong to di↵erent stars. Note that 1  tR

j

 T for each x
j

2 D. Then, at round T , each x
j

with
tR
j

= T can be set in this round because it does not have to wait for any other packing variable to be set.
At the next round, round T + 1, each x

j

with tR
j

= T � 1 can be set; they are dependent only on variables
x

j

0 with tR
j

0 = T which have been already set. In general, packing variables with tR
j

= t can be set once all
adjacent x

j

0 with tR
j

� t + 1 have been set. Thus by induction on t = 0, 1, . . . a constraint C
j

for which a
step was done at round T � t may have to wait until at most round T + t until its packing variable x

j

is
set. Therefore, the total number of rounds until solution x is computed is 2T = O(log m) in expectation and
with high probability. ut

The following theorem is a direct result of Lemma 3 and Thm 1 and the fact that for this problem
m = O(n2).

Theorem 2. For maximum weighted b-matching on graphs there is a distributed 2-approximation algorithm

running in O(log n) rounds in expectation and with high probability.



4 Distributed Fractional Packing with general �

4.1 Distributed model for general �

Here we assume that the distributed network has a node v
j

for each covering constraint C
j

(packing variable
x

j

), with edges from v
j

to each node v
j

0 if C
j

and C
j

0 share a covering variable y
i

4. The total number of
nodes in the network is m. Note that in this model the role of nodes and edges is reversed as compared to
the model used in Section 3. We assume the standard synchronous model with unbounded message size.

4.2 Distributed algorithm

Koufogiannakis and Young [12] show a distributed �-approximation algorithm for (fractional) covering prob-
lems with at most � variables per covering constraint that runs in O(log2 m) rounds in expectation and with
high probability. Similar to the � = 2 case, here we use this algorithm to get a poset of packing variables
which we then consider in a reverse order, raising them maximally.

Distributed covering with general �. Here is a brief description of the distributed �-approximation
algorithm for (fractional) covering from [12]. To start each phase, the algorithm finds large independent
subsets of covering constraints by running one phase of Linial and Saks’ (LS) decomposition algorithm, with
any k such that k 2 ⇥(lnm)5 [16]. The LS algorithm, for a given k, takes O(k) rounds and produces a
random subset R ✓ {v

j

|j = 1 . . . m} of the covering constraints, and for each covering constraint v
j

2 R a
“leader” `(v

j

) 2 R, with the following properties:

– Each v
j

2 R is within distance k of its leader: (8v
j

2 R) d(v
j

, v
`(j))  k.

– Components do not share covering variables (edges do not cross components): (8v
j

, v
j

0 2 R) v
`(j) 6=

v
`(j0) ) Vars(v

j

) \ Vars(v
j

0) = ;.
– Each covering constraint node has a chance to be in R: (8j = 1 . . . m) Pr[v

j

2 R] � 1/cm1/k for some
c > 1.

Next, each node v
j

2 R sends its information (the constraint and its variables’ values) to its leader v
`(j).

This takes O(k) rounds because v
`(j) is at distance O(k) from v

j

. Each leader then constructs (locally) the
subproblem induced by the covering constraints that contacted it and the variables of those constraints,
with their current values. Using this local copy, the leader does steps until all covering constraints that
contacted it are satisfied. (Distinct leaders’ subproblems don’t share covering variables, so they can proceed
simultaneously.) To end the phase, each leader u

`

returns the updated variable information to the constraints
that contacted v

`

. Each covering constraint node in R is satisfied in the phase.
To extend the algorithm to compute a solution to the dual packing problem the idea is similar to the

� = 2 case, substituting the role of stars by components and the role of roots by leaders. With each step
done to satisfy the covering constraints C

j

, the algorithm records (tR
j

, tS
j

), where tR
j

is the round and tS
j

is the within-the-component iteration in which the step was performed. This defines a poset D of covering
constraints for which it performs steps.

Lemma 5. ([12]) The distributed �-approximation algorithm for fractional covering finishes in T =
O(log2 m) rounds in expectation and with high probability, where m is the number of covering constraints

(packing variables). Simultaneously, it sets (tR
j

, tS
j

) for each covering constraint C
j

for which it performs a

step (0 < tR
j

 T ) , thus defining a poset of covering constraints (packing variables) D, ordered by “�”.

Distributed packing with general �. (sketch) The algorithm (Alg. 4) is very similar to the case � = 2.
First it runs the distributed algorithm for covering, recording (tR

j

, tS
j

) for each covering constraint C
j

for
which it performs a step. Meanwhile, as it discovers the partial order D, it begins computing the packing
solution, raising each packing variable as soon as it can. Specifically it waits to set a given x

j

2 D until after
it knows that (a) x

j

is in D, (b) for each x
j

0 2 N(x
j

) whether x
j

� x
j

0 , and (c) each such x
j

0 is set. In
other words, (a) a step has been done for the covering constraint C

j

, (b) each adjacent covering constraint
4 The computation can easily be simulated on a network with nodes for covering variables or nodes for covering

variables and covering constraints.
5 If nodes don’t know a k 2 ⇥(ln m), a doubling technique can be used as a work-around [12].



Distributed �-approximation Fractional Packing with general � alg. 4
input: Graph G = (V, E) representing a fractional packing problem instance.
output: Feasible x, �-approximately minimizing w · x.

1. Initialize x 0.
2. For each j = 1 . . . m initialize done

j

 false. . . . this indicates if x
j

has been set to its final value

3. Until each x
j

has been set (done
j

== true) do:
4. Perform a phase of the �-approximation algorithm for covering by [12], recording (tR

j

, tS

j

).
5. For each node vK that was a leader at any previous phase, consider locally at vK all components that

chose vK as a leader at any previous phase. For each such component K
r

perform IncreaseComponent(K
r

).

IncreaseComponent(component K
r

):
6. For each j 2 K

r

in decreasing order of tS

j

:
7. If IncreasePackingVar(j) == UNDONE then BREAK (stop the for loop).

IncreasePackingVar(j):
8. If C

j

or any C
j

0 that shares covering variables with C
j

is not yet satisfied return UNDONE.

9. If tR

j

== 0 then:
10. Set x

j

= 0 and done
j

= true.
11. Return DONE.

12. If done
j

0 == false for any x
j

0 such that x
j

� x
j

0 then return UNDONE.
13. Set x

j

= min
i2Cons(xj)

�
(b

i

�
P

j

0 A
ij

0x
j

0)/A
ij

)
�

and done
j

= true.
14. Return DONE.

C
j

0 is satisfied and (c) for each adjacent C
j

0 for which a step was done after C
j

, the variable x
j

0 has been
set. Subject to these constraints it sets x

j

as soon as possible.
To do so, the algorithm considers all components that have been done by leaders in previous rounds. For

each component, the leader considers the component’s packing variables x
j

in order of decreasing tS
j

. When
considering x

j

it checks if each x
j

0 with x
j

� x
j

0 is set, and if yes, then x
j

can be set and the algorithm
continues with the next component’s packing variable (in order of decreasing tS

j

). Otherwise the algorithm
cannot yet decide about the remaining component’s packing variables.

Theorem 3. For fractional packing where each variable appears in at most � constraints there is a dis-

tributed �-approximation algorithm running in O(log2 m) rounds in expectation and with high probability,

where m is the number of packing variables.

The proof is omitted because it is similar to the proof of Thm 1; the �-approximation ratio is given by
Lemma 1 and Lemma 2, and the running time uses T = O(log2 m) by Lemma 5.

The following theorem is a direct result of Lemma 3 and Thm 3.

Theorem 4. For maximum weighted b-matching on hypergraphs, there is a distributed �-approximation

algorithm running in O(log2 m) rounds in expectation and with high probability, where � is the maximum

hyperedge degree and m is the number of hyperedges.

5 Conclusions

We show a new non-standard primal-dual method, which extends the (local-ratio related) algorithms for
fractional covering by [13, 12] to compute approximate solutions to the dual fractional packing problem
without increasing the time complexity (even in the distributed setting).

Using this new technique, we show a distributed 2-approximation algorithm for fractional packing

where each packing variable appears in at most 2 constraints and a distributed 2-approximation algorithm
for maximum weighted b-matching on graphs, both running in a logarithmic number of rounds. We also
present a distributed �-approximation algorithm for fractional packing where each variable appears in
at most � constraints and a distributed �-approximation algorithm for maximum weighted b-matching on
hypergraphs, both running in O(log2 m) rounds, where m is the number of packing variables and hyperedges
respectively.
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Appendix

Alg. 5 shows the distributed 2-approximation algorithm for fractional covering with � = 2.
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Fig. 2. Example of the execution of our greedy primal-dual algorithm (assuming constraint y1 + y2 � 1 is chosen
first).



Distributed 2-approximation Fractional Covering with � = 2 ([12]) alg. 5
input: Graph G = (V, E) representing a fractional covering problem instance with � = 2 .
output: Feasible y, 2-approximately minimizing b · y.

1. Each node u
i

2 V initializes y
i

 0.
2. Each edge e

j

2 E initializes tR

j

 0 and tS

j

 0. . . . auxiliary variables for Alg. 3

3. Until there is a vertex with unsatisfied incident edges, perform a round:
4. Each node u

i

, randomly and independently chooses to be a leaf or a root for the round, each with
probability 1/2.

5. Each leaf-to-root edge e
j

= (u
i

, u
r

) with unmet covering constraint is active at the start of the round
if u

i

is a leaf, u
r

is a root and b
i

/A
ij

 b
r

/A
rj

. Each leaf u
i

chooses, among its active edges, a random
one for the round. Communicate that choice to the neighbors. The chosen edges form independent stars
— rooted trees of depth 1 whose leaves are leaf nodes and whose roots are root nodes.

6. For each root node u
r

, do:
(a) Let St

r

contain the star edges sharing variable y
r

(at this round t).
(b) Until there exist an unsatisfied edge (covering constraint) e

j

= (u
i

, u
r

) 2 St

r

, perform Step(y, e
j

).

Step(y, e
j

= (u
i

, u
r

)):
7. Let �

j

 (w
j

�A
ij

y
i

�A
rj

y
r

) ·min{b
i

/A
ij

, b
r

/A
rj

}.
8. Set y

i

= y
i

+ �
j

/b
i

and y
r

= y
r

+ �
j

/b
r

.
9. Set tR

j

to the number of rounds performed so far.
10. Set tS

j

to the number of steps performed by root u
r

so far at this round.


