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Abstract

We give an approximation algorithm for packing and
covering linear programs (linear programs with non-
negative coefficients). Given a constraint matrix with n
non-zeros, r rows, and c columns, the algorithm (with high
probability) computes feasible primal and dual solutions
whose costs are within a factor of 1 + ε of OPT (the optimal
cost) in time O(n + (r + c) log(n)/ε2).
For dense problems (with r, c = O(

√
n)) the time is

O(n +
√

n log(n)/ε2) — linear even as ε→ 0. In compar-
ison, previous Lagrangian-relaxation algorithms generally
take at least Ω(n log(n)/ε2) time, while (for small ε) the
Simplex algorithm typically takes at least Ω(n min(r, c))
time.

1. Introduction

A packing problem is a linear program of the form
max{a · x : Mx ≤ b, x ∈ P}, where the entries of the con-
straint matrix M are non-negative and P is a convex poly-
tope admitting some form of optimization oracle. A cover-
ing problem is of the form min{a · x̂ : Mx̂ ≥ b, x̂ ∈ P}.

Here we focus on the explicitly given forms, that is,
max{a · x : Mx ≤ b, x ≥ 0} and min{a · x̂ : Mx̂ ≥
b, x̂ ≥ 0}, when the polytope P is the positive orthant. Ex-
plicitly given packing and covering are important special
cases of linear programming, including, for example, frac-
tional set cover, multicommodity flow problems with given
paths, and variants of these problems.

We give a (1 ± ε)-approximation algorithm — that is,
an algorithm that returns feasible primal and dual solutions
whose costs are within a given factor 1 ± ε of OPT. The
algorithm is inherently randomized. With high probability,
it runs in time O(n + (r + c) log(n)/ε2), where n is the
number of non-zero entries in the constraint matrix and r+c
is the number of rows plus columns (i.e., constraints plus
variables).

For even moderately dense problems, r and c are o(n)
and the 1/ε2 term in the running time is multiplied by only

a sub-linear term.
The run time is linear if ε ≥ Ω(

√

(r + c) log(n)/n).
In experiments reported here, our first implementation of

the algorithm typically requires at most 12(r+c) ln(n)/ε2+
O(n) basic operations on dense instances. For comparison,
the GLPK (Gnu Linear Programming Kit) Simplex algo-
rithm typically requires at a minimum about 5 min(r, c)rc
basic operation (and often many more) to compute a near-
optimal solution. (Note: more sophisticated Simplex
implementations that maintain sparsity may require only
O(min(r, c)n) operations.) For example, when ε = 0.01,
the algorithm is faster than GLPK Simplex by factors of 10-
100 for problems with several thousand rows and columns.
The speedup grows roughly linearly with rc.

Our first implementation is relatively simple (fewer than
a thousand lines of C++, mostly devoted to a fast random-
sampling data structure). In contrast to Simplex, the al-
gorithm requires no special techniques to maintain spar-
sity of the constraint matrix, to deal with numerically ill-
conditioned matrices, or to deal with basis cycling.

Related work on Lagrangian-relaxation algorithms.
The algorithm is a Lagrangian-relaxation algorithm. There
is a large literature on Lagrangian-relaxation algorithms.
Bienstock gives an implementation-oriented, operations-
research perspective [3]. Arora et al. discuss them from a
computer-science perspective, highlighting connections to
other fields such as learning theory [2]. Todd places them
in the larger context of linear programming in general in his
overview [13].

For explicitly given packing and covering, the fastest
previous Lagrangian-relaxation algorithm that we know of
runs in time O((r + c)c̄ log(n)/ε2), where c̄ is the max-
imum number of columns in which any variable appears
[15]. That algorithm works for mixed packing and covering
— a more general problem. One can improve that algorithm
to run in time O(n log(n)/ε2) (an unpublished result), but
this is still impractically slow for small ε and large n.

For U
.
= maxij Mij/(biaj), Grigoriadis and Khachiyan

give an O((r + c) log(n)(U OPT)2/ε2)-time algorithm [7].
A pre-processing step [11, §2.1] can ensure that this is at
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most O((r + c) log(n)(min(r, c)/ε)4). Although imprac-
tical for general packing and covering problems, the algo-
rithm is interesting in the following special case: given a
two-player zero-sum matrix game with payoffs in [−1, 1],
one wants to find mixed strategies that guarantee an ex-
pected payoff within an additive ε+ of optimal. For this
case the time is O((r + c) log(n)/ε2

+), which can be sub-
linear in the input size. Their result uses an unusual tech-
nique of coupling primal and dual algorithms, a technique
that is central to our algorithm also.

Tradeoffs in the dependence on 1/ε. Recent works re-
duce the dependence on ε to O(1/ε) for some packing
and covering problems. Bienstock and Iyengar give an al-
gorithm for concurrent multicommodity flow that solves
O∗(ε−1k1.5|V |0.5) shortest-path problems, where k is the
number of commodities and |V | is the number of vertices
[4]. Chudak and Eleuterio continue this direction. For ex-
ample, they give an algorithm for fractional set cover run-
ning in time O∗(c1.5(r + c)/ε + c2r) [5]. This direction is
motivated by the observation that in practice, even for mod-
erately small ε, the 1/ε2 factor in the running time makes
previous algorithms impractically slow for large n. How-
ever, the decreased dependence on ε comes at the cost of
increasing the dependence on other parameters.

Note that the approximation parameter ε plays a dif-
ferent role than the problem-size parameters — as com-
puting power and problem sizes grow, the case when ε is
a small constant (on the order of a fraction of a percent,
say) will still be of interest. More concretely, compare the
O∗(c1.5(r + c)/ε) term in the running time of Chudak et
al.’s algorithm to the O∗((r + c)/ε2) term in the running
time of the algorithm here. The former term is smaller only
for ε ≤ 1/c1.5, but for ε this small both algorithms take at
least Ω∗(c3(r + c)) time — slower than alternatives such as
Simplex. Arguably, neither algorithm is of practical interest
for ε so small.

In sum, both theoretically and practically a main case
of interest is when 1/ε is a moderately large constant (a
hundred to a thousand), while the number of rows and
columns still grows asymptotically (beyond several thou-
sand or more). In this case we prefer an O(1/ε2) term in
the running time to, say, an O(c/ε) term. An important
goal is to design algorithms that are practical for ε in this
range.

Technical approach. The following lower bound shows
that some dependence on 1/ε2 is necessary [9]. With
high probability, a packing problem with random matrix
M ∈ {0, 1}c2×c has no (1 − ε)-approximate primal solu-
tion with o(log(n)/ε2) non-zero entries. (This lower bound
only holds when ε is not too small — roughly Ω(

√
c) —

which is why it does not preclude algorithms with o(1/ε2)

dependence on ε but larger dependence on other parame-
ters.)

The lower bound implies that to build a (1 − ε)-
approximate solution requires at least Ω(log(n)/ε2) vari-
ables to be incremented (set to a non-zero value). Most al-
gorithms take at least Ω(n) amortized time per increment,
leading to total time at least Ω(n log(n)/ε2). From this per-
spective, the challenge is to reduce the time per increment
as much as possible.

To do this we use the following main ideas. We start
with a variant of Grigoriadis and Khachiyan’s algorithm [7],
which is essentially as follows. It starts with all-zero primal
and dual solutions. In each iteration, one coordinate xj of
the primal solution is increased by 1, where j is randomly
chosen from a distribution p̂ that depends on M Tx̂, where x̂
is the current dual solution. Likewise, a coordinate x̂i of the
dual solution is increased by 1, where i is chosen at random
from a distribution p that depends on Mx, where x is the
current primal solution.

(This algorithm can be interpreted as a form of fictitious
play of a two-player zero-sum game, where in each round
each player plays from a distribution concentrated around
the best response to the aggregate of the opponent’s histori-
cal plays.)

This random choice of increments can be implemented
more efficiently than the more common approach of finding
“optimal” increments. The reason is that the latter approach
requires choosing an increment ∆x to the primal solution to
minimize pTM∆x, and separately an increment ∆x̂ to the
dual solution to maximize p̂TM T∆x̂. The difficulty with this
is that it requires maintaining the additional vectors pTM
and p̂TM T instead of just p and p̂. (A change in one entry of
x changes many entries in p, but even more entries in pTM .
We are able to bound the total number of changes to entries
in p by O(r log(n)/ε2), but not so for changes to entries in
pTM .)

This basic (“slow”) algorithm is analyzed in Lemma 1.
To speed it up (and generalize it), we incorporate Garg and
Könemann’s non-uniform-increments amortization scheme
[6]. In each iteration, we make the algorithm increment
the primal and dual variables not by 1, but by an amount
just large enough so that some left-hand side (LHS) Mix or
M T

j x̂ increases by Ω(1). This is small enough to allow the
correctness proof to go through, but large enough to guar-
antee progress.

Finally, instead of maintaining Mx and M Tx̂ exactly, we
maintain them approximately with a careful random sam-
pling. This way, when some Mix increases by a relatively
small amount in an iteration (because some xj increases
where Mij is relatively small), we have only a proportion-
ally small chance of doing work to update the estimate of
Mix. Yet the estimates are still accurate in expectation and
with high probability.



Sections 2, 2.1 and 2.2 give the main algorithm, prove
correctness, and bound the worst-case run time, respec-
tively. Section 3 presents our experimental results, includ-
ing a comparison with the GLPK Simplex algorithm.

2. Algorithm and analysis

In the rest of the paper we assume the primal and dual
problems are of the following restricted forms, respectively:
max{|x| : Mx ≤ 1, x ≥ 0}, min{|x̂| : M Tx̂ ≥ 1, x̂ ≥
0}. This is without loss of generality by the transformation
M ′

ij = Mij/(biaj).

Slow algorithm. For explanatory purposes, we first give a
simpler but slow version of the algorithm, essentially a vari-
ant of Grigoriadis and Khachiyan’s algorithm [7]. For this
we assume Mij ∈ [0, 1] and we don’t analyze the running
time, which can be large. This algorithm demonstrates the
use of coupled random increments to the primal and dual. It
returns a (1 − 2ε)-approximate primal-dual pair with high
probability.

slow-alg(M ∈ [0, 1]r×c, ε)

1. Vectors x, x̂← 0; scalar N = ⌈2 ln(rc)/ε2⌉.
2. Repeat until maxi Mix ≥ N :
3. Let pi

.
= (1 + ε)Mix and p̂j

.
= (1− ε)MT

j x̂.
4. Choose random indices j′ and i′ respectively

from probability distributions p̂/|p̂| and p/|p|.
5. Increase xj′ and x̂i′ each by 1.
6. Let (x⋆, x̂⋆)

.
= (x/ maxi Mix, x̂/ minj M T

j x̂).
7. Return (x⋆, x̂⋆).

Note that the scaling at the end ensures feasibility. Also,
|x| and |x̂| are always equal, so to prove the approxi-
mation guarantee we show maxi Mix is not too large in
comparison to minj M T

j x̂ (we want minj M T

j x̂ ≥ (1 −
O(ε))maxi Mix at the end). To show this, we show that
|p| · |p̂| (the product of the 1-norms) is a Lyapunov function
for the system — that it is non-increasing in expectation.

Lemma 1 The slow algorithm returns a (1 − 2ε)-
approximate primal-dual pair (feasible primal and dual so-
lutions x⋆ and x̂⋆ such that |x⋆| ≥ (1− 2ε)|x̂⋆|) with prob-
ability at least 1− 1/(rc).

proof: In a given iteration, let p and p̂ denote the vectors
at the start of the iteration. Let p′ and p̂′ denote the vectors
at the end of the iteration. Let ∆x denote the vector whose
jth entry is the increase in xj during the iteration (or if z
is a scalar, ∆z denotes the increase in z). Then (using that

∆Mix = Mi∆x ∈ [0, 1])

|p′| =
∑

i

pi(1 + ε)Mi∆x

≤
∑

i

pi(1 + εMi∆x)

= |p|[1 + εpTM∆x/|p|].

Likewise |p̂′| ≤ |p̂|[1− εp̂TM T∆x̂/|p̂|].

Multiplying these bounds on |p′| and |p̂′|, and using that
(1 + a)(1− b) = 1 + a− b− ab ≤ 1 + a− b for a, b ≥ 0,

|p′||p̂′| ≤ |p||p̂|
[

1 + ε(p/|p|)TM∆x − ε∆x̂TM(p̂/|p̂|)
]

.

This inequality motivates the “coupling” of primal and dual.
Taking expectations and plugging in E[∆x] = p̂/|p̂| and

E[∆x̂] = p/|p| from the definition of the algorithm, the
right-hand terms cancel and we get E[|p′||p̂′|] ≤ |p||p̂|.

This and Wald’s equation (Lemma 9) imply that the ex-
pectation of |p||p̂| at termination is at most its initial value
rc. So, by the Markov bound, with probability at least
1 − 1/rc, at termination |p||p̂| ≤ (rc)2. Assume this hap-
pens. Then, for all i and j, (1 + ε)Mix(1− ε)MT

j x̂ ≤ (rc)2.

Taking logs gives (1−ε)maxi Mix ≤ minj M T

j x̂+εN.
(See the proof of Theorem 1 or Lemma 10 for details.)

By the termination condition maxi Mix ≥ N , so this
implies (1− 2ε)maxi Mix ≤ minj M T

j x̂.

This and |x| = |x̂| imply the performance guarantee.

Full algorithm. In the remainder of the paper we analyze
the full algorithm. The algorithm is in Fig. 1, except for
some implementation details that are left until Section 2.2.
In comparison to the slow algorithm, the algorithm incor-
porates the following additional features:

• It uses non-uniform increments. That is, in each iter-
ation it increases the randomly chosen xj′ and x̂i′ by
some increment δi′j′ , chosen so that the maximum in-
crease in any left-hand side (LHS) (i.e. maxi ∆Mix or
maxj ∆M T

j x̂) is Θ(1). It also deletes covering con-
straints once they become satisfied. (These basic ideas
are from [6, 10].)
It adjusts the sampling distributions accordingly
to maintain that the expected changes still satisfy
E[∆x] = αp̂/|p̂| and E[∆x̂] = αp/|p| for an α > 0.
Implementing this requires maintaining the follow-
ing data structures: a set J of indices of still-active
columns (covering constraints); for each column M T

j

the maximum entry uj; and for each row Mi, a close
upper bound ûi on the maximum active entry.



solve(M ∈ R
r×c
+

, ε) — return a (1− 6ε)-approximate primal-dual pair w/ high probability.
1. Initialize vectors x, x̂, y, ŷ ← 0, and scalar N = ⌈2 ln(rc)/ε2⌉.
2. Fix uj

.
= max{Mij : i ∈ [r]} for j ∈ [c]. (This is the largest entry in column j of M .)

3. The algorithm will increment x and x̂, maintaining y and ŷ so E[y] = Mx, E[ŷ] = M Tx̂.
It will also maintain vectors p defined by pi

.
= (1 + ε)yi and, as a function of ŷ:

J
.
= {j ∈ [c] : ŷj ≤ N} (the active columns)

ûi ∈ [1, 2]×max{Mij : j ∈ J} (approximates the largest active entry in row i of M )

p̂j
.
=

{

(1− ε)ŷj if j ∈ J
0 otherwise.

It will also maintain vectors p× û and p̂× u.
4. Repeat until maxi yi = N or minj ŷj = N :
5. Let (i′, j′)← random-pair(p, p̂, p× û, p̂× u).
6. Increase xj′ and x̂i′ each by the same amount δi′j′

.
= 1/(ûi′ + uj′).

7. Update y, ŷ, and the other vectors as follows: choose random z ∈ [0, 1] uniformly, and
8. for each i ∈ [r] such that Mij′δi′j′ ≥ z, increase yi by 1 (and multiply pi and (p× û)i by 1 + ε);
9. for each j ∈ J such that Mi′jδi′j′ ≥ z, increase ŷj by 1 (and multiply p̂j and (p̂× u)j by 1− ε).

10. For each j leaving J , update J , û, and p× û.
11. Let (x⋆, x̂⋆)

.
= (x/ maxi Mix, x̂/ minj M T

j x̂). Return (x⋆, x̂⋆).

Figure 1. The full algorithm. Notation: p×û denotes a vector with ith entry piûi; [c] denotes {1, 2, . . . , c}.
Implementation details are in Section 2.2.

The increment δi′j′ is taken to be 1/(ûi′ +uj′), so that
when xj′ and x̂i′ are increased by δi′j′ , the maximum
increase in any LHS (any Mix or M T

j x̂) is in [1/4, 1].

• It maintains the vectors Mx and M Tx̂ only approxi-
mately (as y and ŷ), using a simple random sampling.
For example, if Mix increases by 1/10 in an iteration,
then the algorithm increases yi by 1 with probabil-
ity 1/10. This reduces the total work, yet maintains
y ≈Mx and ŷ ≈M Tx̂ with high probability.
To implement this the algorithm chooses a random
z ∈ [0, 1]. It then increments yi by 1 if the increase in
Mix is at least z, and increments ŷi by 1 if the increase
in M T

j x̂ is at least z. To do this efficiently, rows and
columns are first internally sorted (or approximately
sorted) in decreasing order.

With these changes, we bound the running time by charging
the work done to increases in |Mx| + |M Tx̂|.

The following subroutine random-pair() chooses the
random pair of indices (i′, j′). Any given pair (i, j) is
chosen with probability proportional to pip̂j(ûi + uj) =
pip̂j/δij .

random-pair(p, p̂, p× û, p̂× u)

1. With probability |p× û||p̂|/(|p× û||p̂| + |p||p̂× u|)
choose random i′ from distribution p× û/|p× û|,
and independently choose j′ from p̂/|p̂|,

2. or, otherwise,
choose random i′ from distribution p/|p|,
and independently choose j′ from p̂× u/|p̂× u|.

3. Return (i′, j′).

2.1. Correctness

Theorem 1 With probability at least 1 − 3/rc, the algo-
rithm in Fig. 1 returns feasible primal and dual solutions
(x⋆, x̂⋆) with |x⋆|/|x̂⋆| ≥ 1− 6ε.

proof: To start we show the algorithm’s basic properties.

Lemma 2 In each iteration, for α = |p||p̂|/
∑

ij pip̂j/δij ,

1. The largest change in any relevant LHS is at least 1/4:
max{maxi ∆Mix, maxj∈J ∆M T

j x̂} ∈ [1/4, 1].

2. The expected changes in various quantities are:
E[∆x] = αp̂/|p̂|, E[∆y] = E[∆Mx] = αMp̂/|p̂|,
E[∆x̂] = αp/|p|, E[∆ŷ] = E[∆M Tx̂] = αM Tp/|p|.



proof: (1) By the choice of û and u, for the (i′, j′) chosen,

max{max
i

Mij′δi′j′ , max
j∈J

Mi′jδi′j′}

∈ [1/2, 1]δi′j′ max{ûi′ , uj′}
⊆ [1/4, 1]δi′j′ (ûi′ + uj′)

= [1/4, 1].

(2) First, we verify that the probability that random-pair()
returns a given (i, j) is α(pi/|p|)(p̂j/|p̂|)/δij . Here is the
calculation. The probability is proportional to

|p× û| |p̂|
piûi

|p× û|
p̂j

|p̂|
+ |p| |p̂× u|

pi

p

p̂juj

|p̂× u|

which by algebra simplifies to pip̂j(ûi + uj) = pip̂j/δij .
Thus, the probability must be α(pi/|p|)(p̂j/|p̂|)/δij , be-

cause the choice of α makes the sum over all i and j of the
probabilities equal 1.

Next, note that part (1) of the lemma implies that in line 8
(given the chosen i′ and j′) the probability that a given yi is
incremented is Mij′δi′j′ , while in line 9 the probability that
a given ŷj is incremented is Mi′jδi′j′ .

Now the equalities in (2) follow by direct calculation.
For example:

E[∆xj ] =
∑

i(αpi/|p|)(p̂j/|p̂|)/δij)δij = αp̂j/|p̂|.

The next lemma is in the same spirit as Lemma 1. We
use the coupling in the algorithm to show that the Lyapunov
function φ

.
= |p||p̂| is non-increasing in expectation and that

this and the termination condition imply the approximation
guarantee (as long as y ≈Mx and ŷ ≈M Tx̂).

Lemma 3 With probability at least 1 − 1/rc, when the al-
gorithm stops, maxi yi ≤ N andminj ŷj ≥ N(1− 2ε).

proof: Let p′ and p̂′ denote p and p̂ after a given iteration,
while p and p̂ denote the values before the iteration.

We claim that, given p and p̂, E[|p′| |p̂′|] ≤ |p| |p̂| — with
each iteration |p| |p̂| is non-increasing in expectation.

To prove it, note |p′| =
∑

i pi(1+ε∆yi) = |p|+εpT∆y
and, similarly, |p̂′| = |p̂|− εp̂T∆ŷ.

Multiply the latter two equations and drop a negative
term to get

|p′| |p̂′| ≤ |p| |p̂| + ε|p̂|pT∆y − ε|p|p̂T∆ŷ.

The claim follows by applying linearity of expectation, then
substituting E[∆y] = αMp̂/|p̂| and E[∆ŷ] = αM Tp/|p|
from Lemma 2.

By Wald’s equation (Lemma 9), the claim implies that
E[|p| |p̂|] at termination is at most the initial value rc.

Applying the Markov bound, with probability at least 1−
1/rc, at termination maxi pi maxj p̂j ≤ |p||p̂| ≤ (rc)2.

Assume this happens. The index set J is not empty at
termination, so the minimum ŷj is achieved for j ∈ J .
Substituting in the definitions of pi and p̂j and taking logs,
maxi yi ln(1 + ε) ≤ minj ŷj ln(1/(1− ε)) + 2 ln(rc).

Divide by ln(1/(1− ε)), apply 1/ ln(1/(1 − ε)) ≤ 1/ε
and also ln(1 + ε)/ ln(1/(1 − ε)) ≥ 1 − ε. This gives
(1− ε)maxi yi ≤ minj ŷj + 2 ln(rc)/ε ≤ minj ŷj + εN .

By the termination condition maxi yi ≤ N is guaran-
teed, and either maxi yi = N or minj ŷj = N . So if
minj ŷj = N , then the event in the lemma occurs, and oth-
erwise maxi yi = N , which (with the inequality in previous
paragraph) gives (1− ε)N ≤ minj ŷj + εN .

Next we establish that y ≈Mx and ŷ ≈M Tx̂.

Lemma 4
(1) For any i, with probability at least 1−1/(rc)2, when

the algorithm terminates, (1 − ε)Mix ≤ yi + εN .
(2) For any j, with probability at least 1− 1/(rc)2, after

the last iteration with j ∈ J , (1− ε)ŷj ≤ M T

j x̂ + εN .

proof: (1) In each iteration Mix increases by at most 1
(by the choice of δi′j′ ), yi increases by at most 1, and (by
Lemma 2) the expected increases in these two quantities are
the same. So, by the Chernoff bound for random stopping
times (Lemma 10), Pr[(1 − ε)Mix ≥ yi + εN ] is at most
exp(−ε2N) ≤ 1/(rc)2. This proves (1).

The proof for (2) is similar, noting that, while j ∈ J ,
M T

j x̂ increases by at most 1 each iteration.

We now prove Theorem 1. Recall that the algorithm re-
turns (x⋆, x̂⋆)

.
= (x/ maxi Mix, x̂/ minj M T

j x̂).
By the naive union bound, with probability at least 1 −

3/rc the event in Lemma 3 occurs and (for all i and j) the
events in Lemma 4 occur.

Assume all of these events happen.
By algebra, using (1 − a)(1 − b) ≥ 1 − a − b and

1/(1 + ε) ≥ 1 − ε, we have (1 − 2ε)maxi Mix ≤ N
and minj M T

j x̂ ≥ (1− 4ε)N .
This implies minj M T

j x̂/ maxi Mix ≥ 1− 6ε.
Since the sizes |x| and |x̂| increase by the same

amount each iteration, they are equal. Thus, |x⋆|/|x̂⋆| =
minj M T

j x̂/ maxi Mix ≥ 1− 6ε.

2.2. Running time

In this section we describe fast implementations of the
algorithm. We assume that the matrix M is given in any
standard sparse representation (so that the non-zero entries
can be traversed in time proportional to the number of non-
zero entries).



Simpler implementation. We first describe an imple-
mentation that takes O(n log n + (r + c) log(n)/ε2) time.
We then describe how to modify it to remove the log n fac-
tor from the first term.

Theorem 2 The algorithm can be implemented to return a
(1−6ε)-approximate primal-dual pair for packing and cov-
ering in timeO(n log n+(r+c) log(n)/ε2) with probability
at least 1− 4/rc.

proof: Use the data structure of [12] (see also [8]), which
maintains a vector v and allows random sampling from the
distribution v/|v| and updating of entries of v in O(1) time.
Maintain such a data structure for each of the vectors p, p̂,
p × û, and p̂ × u. Then random-pair() runs in O(1) time,
and each update of an entry of p, p̂, p × û, or p̂ × u takes
O(1) time.

At the start, pre-process the matrix M . Build, for each
row and column, a doubly linked list of the non-zero en-
tries. Sort each list in descending order. Cross-reference
the lists so that, given an entry Mij in the ith row list,
the corresponding entry Mij in the jth column list can be
found in constant time. The total time for pre-processing is
O(n log n).

Maintain the data structures during each iteration as fol-
lows. Let It denote the set of indices i for which yi is
incremented in line 8 in iteration t. From the random
z ∈ [0, 1] and the sorted j′th row list, compute this set It by
traversing the row list, collecting elements until an i with
Mij′ < z/δi′j′ is encountered. Then, for each i ∈ It, up-
date yi, pi, and the ith entry in p × û. Likewise, let Jt

denote the set of indices j for which ŷj is incremented in
line 9. Compute Jt from the sorted i′th column list. For
each j ∈ Jt, update p̂j , and the jth entry in p̂×u. The total
time for these operations during the course of the algorithm
is O(

∑

t 1 + |It| + |Jt|).
For each element j that leaves J , update p̂j . Delete all

entries in the jth column list from all row lists. For each row
list i whose first (largest) entry is deleted, update the corre-
sponding ûi by setting ûi to be the next (now first and max-
imum) entry remaining in the row list; also update (p× û)i.
The total time for this during the course of the algorithm is
O(n), because each Mij is deleted at most once.

This completes the implementation.
The total time is O(n log n) plus O(

∑

t 1 + |It|+ |Jt|).
To finish we bound the latter term.

Lemma 5
∑

t |It| + |Jt| ≤ (r + c)N = O((r + c) log(n)/ε2).

proof: First,
∑

t |It| ≤ rN because each yi can be in-
creased at most N times before maxi yi ≥ N (causing ter-
mination). Second,

∑

t |Jt| ≤ cN because each ŷj can be
increased at most N times before j leaves J .

So the total time is O(n log n + (r + c) log(n)/ε2) plus
O(# t such that |It| + |Jt| = 0). It remains to bound the
latter term. Call iteration t empty if |It| + |Jt| = 0.

Lemma 6 Given the state at the start of an iteration, the
probability that it is empty is at most 3/4.

proof: Given the (i′, j′) chosen in the iteration, by (1) of
Lemma 2, there is either an i such that Mij′δi′j′ ≥ 1/4 or
a j such that Mi′jδi′j′ ≥ 1/4. In the former case, i ∈ It

with probability at least 1/4. In the latter case, j ∈ Jt with
probability at least 1/4.

Lemma 7 With probability at least 1−1/rc, the number of
empty iterations is O((r + c)N).

proof: Let Et be 1 for empty iterations and 0 otherwise.
By the previous lemma and the Chernoff bound tailored for
random stopping times (Lemma 10), for any δ, A ≥ 0,

Pr
[

(1 − δ)
∑T

t=1 Et ≥ 3
∑T

t=1(1− Et) + A
]

is at most exp(−δA). Taking δ = 1/2 and A = 2 ln(rc), it
follows that with probability at least 1−1/rc, the number of
empty iterations is bounded by a constant times the number
of non-empty iterations plus 2 ln(rc). We know the number
of non-empty iterations is at most (r+c)N , so we conclude
that with probability at least 1− 1/rc the number of empty
iterations is O((r + c)N).

If the event in Lemma 7 happens, then (since each empty
iteration takes O(1) time) the total time is O(n log n+(r +
c) log(n)/ε2). This and Theorem 1 imply Theorem 2.

Faster implementation. Next we remove the log n factor
from the n log n term in the running time. The idea is that
it suffices to approximately sort the row and column lists.

Theorem 3 The algorithm can be implemented to return a
(1−7ε)-approximate primal-dual pair for packing and cov-
ering in time O(n + (c + r) log(n)/ε2) with probability at
least 1− 5/rc.

proof: Modify the algorithm as follows.
First, pre-process M as described in [11, §2.1] so that

the non-zero entries have bounded range. Specifically, let
β = minj maxi Mij . Let M ′

ij
.
= 0 if Mij < βε/c and

M ′
ij

.
= min{βc/ε, Mij} otherwise. As shown in [11], any

(1 − 6ε)-approximate primal-dual pair for the transformed
problem will be a (1−7ε)-approximate primal-dual pair for
the original problem.

In the pre-processing step, instead of sorting the row
and column lists, pseudo-sort them — sort them based on



keys ⌊log2 Mij⌋. These keys will be integers in the range
log2(β)±log(c/ε). Use bucket sort, so that a row or column
with k entries can be processed in O(k + log(c/ε)) time.
The total time for pseudo-sorting the rows and columns is
O(n + (r + c) log(c/ε)).

Then, in the tth iteration, maintain the data structures as
before, except as follows.

Compute the set It as follows. Traverse the pseudo-
sorted jth column until an index i with Mij′δi′j′ < z/2
is found. (No indices later in the list can be in It.) Take all
the indices i seen with Mij′δi′j′ ≥ z. Compute the set Jt

similarly. Total time for this is O(
∑

t 1+|I′
t|+|J ′

t |), where
I ′

t and J ′
t denote the sets of indices actually traversed (so

It ⊆ I′
t and Jt ⊆ J ′

t ).
When an index j leaves the set J , delete all entries in the

jth column list from all row lists. For each row list affected,
set ûi to two times the first element remaining in the row
list. This ensures ûi ∈ [1, 2] maxj∈J Mij .

These are the only details that are changed.
The total time is now O(n + (r + c) log(c/ε)) plus

O(
∑

t 1 + |I′
t|+ |J ′

t |). To finish we bound the latter term.

Lemma 8 With probability at least 1− 2/rc,
∑

t(1 + |I′
t| + |J ′

t |) = O((r + c)N).

proof: Consider a given iteration. Fix i′ and j′ chosen in
the iteration. For each i, note that, for the random z ∈ [0, 1],

Pr[i ∈ I′
t] ≤ Pr[z/2 ≤Mij′δi′j′ ]

≤ 2Mij′δi′j′

= 2 Pr[z ≤Mij′δi′j′ ]

= 2 Pr[i ∈ It].

Fix an i. Applying Chernoff for random stopping times
(Lemma 10), for any δ, A ≥ 0,

Pr
[

(1− δ)
∑

t[i ∈ I′
t] ≥ 2

∑

t[i ∈ It] + A
]

is at most exp(−δA). (Above [i ∈ S] denotes 1 if i ∈ S
and 0 otherwise.)

Taking δ = 1/2 and A = 4 ln(rc), with probability at
least 1− (rc)2,

∑

t[i ∈ I′
t] ≤ 4

∑

t[i ∈ It] + 8 ln(rc).
Likewise, for any j, with probability at least 1−1/(rc)2,

∑

t[j ∈ J ′
t ] ≤ 2

∑

t[j ∈ Jt] + 8 ln(rc).
Taking the naive union bound over all i and j, with

probability at least 1 − 1/rc,
∑

t(|I′
t| + |J ′

t |) is at most
4

∑

t(|It| + |Jt|) + 8(r + c) ln(rc).
By Lemma 5 this is O((r + c)N).
We know (Lemma 7) that the number of empty iterations

is O((r+c)N) with probability at least 1−1/rc. The lemma
follows by applying the naive union bound.

If the event in the lemma happens, then the total time is
O(n + (r + c) log(n)/ε2). This proves Theorem 3.

3. Empirical results

We tested our algorithm experimentally and compared its
running time to that of the GLPK (Gnu Linear Programming
Kit) Simplex algorithm (glpsol version 4.15 with default
options). Our first conclusion is that the running time of
our implementation is well-predicted by the analysis, with
a leading constant factor of about 12 basic operations in
the big-O term in which ε occurs. Our second conclusion
is that for large inputs the algorithm can be substantially
faster than Simplex. For inputs with 2500-5000 rows and
columns, the algorithm (with ε = 0.01) is faster than Sim-
plex by factors ranging from tens to hundreds. The speedup
grows roughly linearly in rc.

We used inputs with r, c ∈ [739, 5000], ε ∈
{0.02, 0.01, 0.005}, and matrix density d ∈ {1/2k : k =
1, 2, 3, 4, 5, 6}. For each (r, c, d) tuple that we used, we
generated a random 0/1 matrix with r rows and c columns,
where each entry was 1 with probability d. We ran our
solver for each ε and compared its running time to that taken
by a Simplex solver to find a (1− ε)-approximate solution.
GLPK failed to finish due to cycling on about 10% of the
runs we initially tried; we excluded those inputs from our
experiments. This left 167 runs. The complete data for the
non-excluded runs is given at the end of the paper.

The running time of our algorithm includes (A) time
for pre-processing and initialization, (B) time for sampling
(line 5, once per iteration of the outer loop), and (C) time
for increments (lines 8 and 9, once per iteration of the in-
ner loops). Theoretically the dominant terms are O(n) for
(A) and O((r + c) log(n)/ε2) for (C). For the inputs tested
here, the significant terms in practice are for (B) and (C),
with the role of (B) diminishing for larger problems. The
time (number of basic operations) is well-predicted by the
expression

[12(r + c) + 480d−1] ln(rc)/ε2 (1)

where d = 1/2k is the density (fraction of matrix entries
that are non-zero, at least 1/ min(r, c)).

The 12(r + c) ln(rc)/ε2 term is the time spent in (C),
the inner loops; it is the most significant term in our experi-
ments as r and c grow.

The less significant term 480d−1 ln(rc)/ε2 is for (B),
and is proportional to the number of samples (that is, it-
erations of the outer loop). Note that this term decreases
as matrix density increases. (In our implementation we fo-
cused on reducing the time for (C), not for (B). It is proba-
ble that the constant 480 above can be reduced with a more
careful implementation.)



The plot below plots the actual running time divided by
the estimate (1), as a function of the estimate, for each of
the inputs. The x-axis is on a log10 scale. The plot shows
that the actual number of basic operations is close to the
estimate for all the inputs:
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During our runs the average time per operation was not
constant, it grew with larger instances by as much as a fac-
tor of two. We don’t know why. We observed this effect
across a number of machines. We suspect caching or mem-
ory allocation issues. The plot below shows the growth in
average time per operation.
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The next plot shows the run time in seconds, divided by
the predicted time (estimated time per operation times the
predicted number of operations (1)):
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Next we compared the speed of our algorithm to that
of the GLPK Simplex algorithm. We estimate the time

for Simplex to find a near-optimal approximation to be at
least 5 min(r, c)rc basic operations. This estimate comes
from assuming that at least Ω(min(r, c)) pivot steps are re-
quired (because this many variables will be non-zero in the
final solution), and each pivot step will take Ω(rc) time.
(This holds even for sparse matrices due to rapid fill-in,
although we note that more sophisticated solvers such as
CPLEX may do a better job of maintaining sparsity.) The
leading constant 5 comes from our experimental evaluation.
We note that this estimate seems conservative, and indeed
GLPK Simplex often exceeds it in our trials.

Here’s a plot of the time for Simplex to find a (1 − ε)-
approximate solution, divided by the conservative estimate
(5 min(r, c)rc times the estimated time per operation):
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Combining the above estimates, a conservative estimate
of the speed-up in using our algorithm (that is, the time for
Simplex divided by the time for our algorithm) is

5 min(r, c)rc

[12(r + c) + 480d−1] ln(rc)/ε2.
(2)

This is about (r/310)2/ ln(r) when r ≈ c and ε = 0.01
(for r large).

The plot below plots the actual measured speed-up di-
vided by the conservative estimate (2), as a function of the
estimated running time of our algorithm.
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The plot shows that the speedup is typically at least as
predicted in (2), and often more.



4. Implementation issues

The primary implementation issue is implementing the
random sampling efficiently and precisely. The data struc-
tures in [12, 8], have two practical drawbacks. The con-
stant factors in the running times are moderately large, and
they implicitly or explicitly require that the probabilities
being sampled remain in a polynomially bounded range.
However, our application uses these data structures in a re-
stricted way, and we were able to use the underlying ideas
to build an appropriate data structure with very fast entry-
update time and moderately fast sample time. We focused
more on reducing the update time than the sampling time,
because we expect more update operations than sampling
operations. Full details of the practical implementation is-
sues will be provided in a later paper or on request to the
authors.

5. Future directions

Can one extend this approach to mixed packing and cov-
ering problems, or prove that this is not possible (in a rea-
sonable model)? What about covering with “box” con-
straints (upper bounds on individual variables)? Can one
extend the approach to general packing and covering, e.g. to
maximum multicommodity flow (where P is the polytope
whose vertices correspond to all si → ti paths)? In all of
these cases, correctness of a natural algorithm is easy to es-
tablish, but the running time is an issue. This seems to be
because the coupling approach requires a symmetry (both
primal and dual algorithms of a particular kind must exist)
that the methods based on “optimal” increments do not re-
quire.

Can one adapt this algorithm to efficiently solve dy-
namic problems, or sequences of closely related problems
(e.g. each problem comes from the previous one by a small
change in the constraint matrix)? Adapting the algorithm to
start with a given primal/dual pair seems straightforward.

Can one use this approach to improve parallel and dis-
tributed algorithms for packing and covering (e.g. [11, 15]),
perhaps reducing the dependence on ε from 1/ε4 to 1/ε3?
In this case, instead of incrementing a randomly chosen
variable in each of the primal and dual solutions, one would
increment the primal and dual solutions deterministically by
a fractional vector: incrementing the primal vector x by αp̂
and the dual vector x̂ by αp for some α. The correctness
proof goes through. Can one bound the number of itera-
tions, assuming the matrix is appropriately preprocessed?

Appendix

Utility lemmas

The first is a one-sided variant of Wald’s equation:

Lemma 9 ([14, lemma 4.1]) Let K be any finite number.
Let x0, x1, . . . , xT be a sequence of random variables,
where T is a random stopping time with finite expectation.
If E[xt − xt−1 |xt−1] ≤ µ and (in every outcome) xt −

xt−1 ≤ K for t ≤ T , then E[xT − x0] ≤ µ E[T ].

The second is a Chernoff bound tailored for random
stopping times.

Lemma 10 Let X =
∑T

t=1 xt and Y =
∑T

t=1 yt be
sums of non-negative random variables, where T is a ran-
dom stopping time with finite expectation, and, for all t,
|xt − yt| ≤ 1 and

E
[

xt − yt |
∑

s<t xs,
∑

s<t ys

]

≤ 0.

Let ε ∈ [0, 1] and A ∈ R. Then

Pr
[

(1 − ε)X ≥ Y + A
]

≤ exp(−εA).

proof: Fix λ > 0. Consider the sequence π0, π1, . . . , πT

where πt = 0 for t > λE[T ] and otherwise

πt
.
=

∏

s≤t

(1 + ε)xs(1− ε)ys

= πt−1(1 + ε)xt(1− ε)yt

≤ πt−1(1 + εxt − εyt)

(using (1+ε)x(1−ε)y ≤ (1+εx−εy) when |x−y| ≤ 1).
As E[xt − yt |πt−1] ≤ 0, we have E[πt |πt−1] ≤ πt−1.
Note that, from the use of λ,

∑

s≤t xs − ys and (there-
fore) πt − πt−1 are bounded. Thus Wald’s (Lemma 9), im-
plies E[πT ] ≤ π0 = 1.

Applying the Markov bound,

Pr[πT ≥ exp(εA)] ≤ exp(−εA).

So assume πT < exp(εA). Taking logs, if T ≤ λE[T ],

X ln(1 + ε)− Y ln(1/(1− ε)) = lnπT < εA.

Dividing by ln(1/(1 − ε)) and applying the inequalities
ln(1+ ε)/ ln(1/(1− ε)) ≥ 1− ε and ε/ ln(1/(1− ε)) ≤ 1,
we get (1− ε)X < Y + A. Thus,

Pr[(1− ε)X ≥ Y + A]

≤ Pr[T ≥ λE[T ]] + Pr[πT ≥ exp(εA)]

≤ 1/λ + exp(−εA).

Since λ can be arbitrarily large, the lemma follows.
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Data

The following tables tabulate the details of the experimental
results described earlier: “t-alg” is the time for our algorithm in
seconds; “t-sim” is the time for Simplex to find a (1 − ε)-optimal
soln; “t-sim%” is that time divided by the time for Simplex to
complete; “alg/sim” is t-alg/t-sim.

r c k 100ε t-alg t-sim t-sim% alg/sim
739 739 2 2.0 1 3 0.31 0.519
739 739 2 1.0 7 6 0.51 1.251
739 739 2 0.5 33 7 0.64 4.387
739 739 5 2.0 3 1 0.51 2.656
739 739 5 1.0 15 1 0.63 8.840
739 739 5 0.5 63 2 0.76 30.733
739 739 4 2.0 2 2 0.51 0.970
739 739 4 1.0 11 3 0.64 3.317
739 739 4 0.5 46 4 0.76 11.634
739 739 3 2.0 2 3 0.43 0.561
739 739 3 1.0 9 5 0.60 1.745
739 739 3 0.5 38 6 0.72 6.197
1480 740 3 2.0 2 9 0.37 0.304
1480 740 3 1.0 13 13 0.53 0.959
1480 740 3 0.5 57 16 0.64 3.478
1480 740 2 2.0 2 24 0.44 0.102
1480 740 2 1.0 11 33 0.60 0.342
1480 740 2 0.5 51 39 0.71 1.313
1480 740 5 2.0 4 4 0.41 0.928
1480 740 5 1.0 18 6 0.56 2.930
1480 740 5 0.5 77 7 0.66 10.447
1480 740 4 2.0 3 6 0.34 0.495
1480 740 4 1.0 15 10 0.49 1.496
1480 740 4 0.5 64 12 0.60 5.239
740 1480 3 2.0 3 14 0.35 0.211
740 1480 3 1.0 14 21 0.51 0.667
740 1480 3 0.5 63 29 0.71 2.139
740 1480 2 2.0 2 13 0.27 0.192
740 1480 2 1.0 11 25 0.51 0.462
740 1480 2 0.5 54 34 0.68 1.597
740 1480 5 2.0 5 7 0.59 0.699
740 1480 5 1.0 22 9 0.72 2.460
740 1480 5 0.5 94 10 0.82 9.054
740 1480 1 2.0 2 23 0.24 0.097
740 1480 1 1.0 9 41 0.44 0.237
740 1480 1 0.5 47 55 0.59 0.848
740 1480 4 2.0 3 12 0.47 0.313
740 1480 4 1.0 17 15 0.61 1.130
740 1480 4 0.5 73 19 0.75 3.803
1110 1110 3 2.0 3 21 0.30 0.142
1110 1110 3 1.0 13 33 0.48 0.399
1110 1110 3 0.5 58 43 0.62 1.354
1110 1110 6 2.0 6 5 0.64 1.327
1110 1110 6 1.0 29 6 0.76 4.763
1110 1110 6 0.5 121 6 0.83 17.903
1110 1110 5 2.0 4 9 0.48 0.480
1110 1110 5 1.0 20 13 0.64 1.575
1110 1110 5 0.5 86 15 0.77 5.439
1110 1110 4 2.0 3 17 0.43 0.203
1110 1110 4 1.0 16 24 0.60 0.649



r c k 100ε t-alg t-sim t-sim2 alg/sim
1110 1110 4 0.5 68 29 0.71 2.325
1111 2222 1 2.0 3 94 0.15 0.036
1111 2222 1 1.0 15 198 0.30 0.077
1111 2222 1 0.5 78 344 0.53 0.227
1111 2222 4 2.0 5 94 0.49 0.057
1111 2222 4 1.0 26 123 0.64 0.212
1111 2222 4 0.5 119 148 0.77 0.803
1111 2222 3 2.0 4 109 0.35 0.042
1111 2222 3 1.0 21 163 0.52 0.134
1111 2222 3 0.5 104 222 0.71 0.467
1111 2222 6 2.0 9 23 0.66 0.426
1111 2222 6 1.0 44 26 0.76 1.664
1111 2222 6 0.5 187 29 0.84 6.346
1111 2222 2 2.0 3 83 0.18 0.047
1111 2222 2 1.0 18 169 0.36 0.111
1111 2222 2 0.5 91 269 0.57 0.339
1111 2222 5 2.0 6 63 0.57 0.110
1111 2222 5 1.0 32 77 0.69 0.415
1111 2222 5 0.5 140 88 0.79 1.594
2222 1111 4 2.0 4 53 0.38 0.092
2222 1111 4 1.0 23 75 0.54 0.311
2222 1111 4 0.5 107 91 0.65 1.185
2222 1111 3 2.0 4 53 0.29 0.080
2222 1111 3 1.0 21 84 0.46 0.253
2222 1111 3 0.5 97 115 0.63 0.848
2222 1111 6 2.0 7 21 0.49 0.373
2222 1111 6 1.0 34 26 0.61 1.297
2222 1111 6 0.5 148 30 0.71 4.816
2222 1111 2 2.0 3 102 0.36 0.037
2222 1111 2 1.0 17 139 0.49 0.127
2222 1111 2 0.5 88 173 0.61 0.513
2222 1111 5 2.0 5 42 0.41 0.141
2222 1111 5 1.0 27 57 0.56 0.472
2222 1111 5 0.5 120 70 0.68 1.696
1666 1666 4 2.0 5 117 0.40 0.045
1666 1666 4 1.0 24 163 0.56 0.153
1666 1666 4 0.5 111 201 0.69 0.554
1666 1666 3 2.0 4 112 0.29 0.040
1666 1666 3 1.0 21 185 0.48 0.114
1666 1666 3 0.5 98 245 0.64 0.400
1666 1666 6 2.0 8 42 0.51 0.210
1666 1666 6 1.0 38 55 0.66 0.697
1666 1666 6 0.5 165 63 0.76 2.612
1666 1666 2 2.0 3 109 0.20 0.036
1666 1666 2 1.0 18 221 0.41 0.083
1666 1666 2 0.5 88 313 0.58 0.282
1666 1666 5 2.0 6 82 0.44 0.080
1666 1666 5 1.0 29 109 0.58 0.269
1666 1666 5 0.5 130 133 0.71 0.981
1666 3332 2 2.0 5 354 0.12 0.017
1666 3332 2 1.0 30 857 0.29 0.036
1666 3332 2 0.5 162 1594 0.54 0.102
1666 3332 5 2.0 9 509 0.51 0.020
1666 3332 5 1.0 51 654 0.65 0.078
1666 3332 5 0.5 227 762 0.76 0.299
1666 3332 1 2.0 5 350 0.09 0.015
1666 3332 1 1.0 24 1003 0.25 0.025
1666 3332 1 0.5 135 1881 0.46 0.072
1666 3332 4 2.0 7 578 0.38 0.014

r c k 100ε t-alg t-sim t-sim2 alg/sim
1666 3332 4 1.0 42 899 0.58 0.047
1666 3332 4 0.5 204 1087 0.71 0.188
1666 3332 3 2.0 6 533 0.20 0.013
1666 3332 3 1.0 36 1095 0.41 0.033
1666 3332 3 0.5 180 1741 0.65 0.104
1666 3332 6 2.0 13 255 0.56 0.051
1666 3332 6 1.0 60 319 0.70 0.190
1666 3332 6 0.5 271 361 0.79 0.752
3332 1666 5 2.0 9 275 0.38 0.033
3332 1666 5 1.0 45 392 0.54 0.115
3332 1666 5 0.5 213 482 0.66 0.441
3332 1666 4 2.0 7 274 0.30 0.028
3332 1666 4 1.0 40 414 0.45 0.097
3332 1666 4 0.5 195 556 0.60 0.352
3332 1666 3 2.0 6 316 0.24 0.020
3332 1666 3 1.0 34 544 0.41 0.063
3332 1666 3 0.5 178 703 0.53 0.254
3332 1666 6 2.0 11 154 0.39 0.071
3332 1666 6 1.0 52 218 0.56 0.238
3332 1666 6 0.5 233 273 0.70 0.854
2499 2499 2 2.0 5 530 0.13 0.011
2499 2499 2 1.0 29 1556 0.40 0.019
2499 2499 2 0.5 159 2275 0.58 0.070
2499 2499 5 2.0 9 580 0.42 0.016
2499 2499 5 1.0 46 793 0.58 0.059
2499 2499 5 0.5 217 960 0.70 0.227
2499 2499 4 2.0 8 662 0.31 0.012
2499 2499 4 1.0 42 1064 0.50 0.040
2499 2499 4 0.5 195 1369 0.64 0.143
2499 2499 7 2.0 17 125 0.50 0.139
2499 2499 7 1.0 76 162 0.65 0.475
2499 2499 7 0.5 327 190 0.77 1.715
2499 2499 3 2.0 6 618 0.18 0.011
2499 2499 3 1.0 35 1079 0.32 0.032
2499 2499 3 0.5 174 1774 0.53 0.099
2500 5000 6 2.0 19 2525 0.52 0.008
2500 5000 6 1.0 98 3337 0.69 0.029
2500 5000 6 0.5 458 3828 0.79 0.120
2500 5000 7 2.0 26 1042 0.60 0.026
2500 5000 7 1.0 124 1272 0.73 0.098
2500 5000 7 0.5 556 1427 0.82 0.390
5000 2500 3 2.0 10 2165 0.23 0.005
5000 2500 3 1.0 62 3828 0.40 0.016
5000 2500 3 0.5 338 5586 0.58 0.061
5000 2500 6 2.0 17 1352 0.39 0.013
5000 2500 6 1.0 90 1832 0.53 0.049
5000 2500 6 0.5 418 2297 0.66 0.182
5000 2500 5 2.0 14 1752 0.33 0.008
5000 2500 5 1.0 82 2592 0.49 0.032
5000 2500 5 0.5 397 3330 0.63 0.119
5000 2500 4 2.0 12 1916 0.26 0.006
5000 2500 4 1.0 70 3177 0.44 0.022
5000 2500 4 0.5 367 4197 0.58 0.087
3750 3750 7 2.0 23 1828 0.50 0.013
3750 3750 7 1.0 111 2343 0.64 0.047
3750 3750 7 0.5 506 2712 0.74 0.187
3750 3750 6 2.0 18 3061 0.40 0.006
3750 3750 6 1.0 91 4263 0.55 0.022
3750 3750 6 0.5 432 5279 0.68 0.082
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