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Abstract

In this paper we study approximation algorithms for
solving a general covering integer program. An n-vector
x of nonnegative integers is sought, which minimizes cT �x;
subject to Ax � b; x � d: The entries of A; b; c are nonneg-
ative. Letm be the number of rows ofA: Covering problem-
s have been heavily studied in combinatorial optimization.
We focus on the effect of the multiplicity constraints, x � d;
on approximability. Two longstanding open questions re-
main for this general formulation with upper bounds on the
variables.

(i) The integrality gap of the standard LP relaxation is ar-
bitrarily large. Existing approximation algorithms that
achieve the well-known O(logm)-approximation with
respect to the LP value do so at the expense of vio-
lating the upper bounds on the variables by the same
O(logm) multiplicative factor. What is the small-
est possible violation of the upper bounds that still
achieves cost within O(logm) of the standard LP op-
timum?

(ii) The best known approximation ratio for the problem
has been O(log(maxj

P
i Aij)) since 1982. This

bound can be as bad as polynomial in the input size.
Is an O(logm)-approximation, like the one known for
the special case of Set Cover, possible?

We settle these two open questions. To answer the first ques-
tion we give an algorithm based on the relatively simple
new idea of randomly rounding variables to smaller-than-
integer units. To settle the second question we give a re-
duction from approximating the problem while respecting
multiplicity constraints to approximating the problem with
a bounded violation of the multiplicity constraints.

1Research partially supported by NSERC Grant 227809-00 and a CFI
New Opportunities Award

1. Introduction

In this paper we examine approximation algorithms for
the general formulation of a covering integer program
(CIP). We also study the integrality gaps of two related lin-
ear relaxations. Here is a formal definition of CIPs.

Definition 1.1 Given A 2 Rm�n
+ ; b 2 Rm

+ ; c 2 Rn
+ and

d 2 Rn
+; a CIP P = (A; b; c; d) seeks to minimize cT � x

subject to Ax � b; x 2 Zn
+; and x � d: If A 2 f0; 1gm�n;

each entry of b is assumed integral and the CIP is called
(0; 1):

The dilation � of a CIP is the maximum number of con-
straints any variable appears in.

Definition 1.2 Given a CIP P = (A; b; c; d); the standard
linear relaxation of P ; seeks to minimize cT � x subjec-
t to A0x � b; x � d and x nonnegative, where A0

ij =
minfAij ; big: The width W of the standard linear relax-
ation is defined as mini;jjA0

ij
6=0 bi=A

0
ij :

Covering integer programs form a large subclass of in-
teger programs (IPs) encompassing such classical NP-hard
problems as Minimum Knapsack and Set Cover. Set Cover
is a (0; 1)-CIP with bT 2 f1gm: The n columns of the ma-
trixA correspond to the sets and the m rows to the elements
to be covered. In Set Cover the upper bound of 1 on all the
variables is implicit in the minimization of the objective, in
that it never helps to set a variable above 1: However in a
general-form CIP constraints of the type x � d; as given
in Definition 1.1, have to be explicitly included. We call
these inequalities, which disallow arbitrarily large variable
values, multiplicity constraints. They express a natural re-
source limitation: a restricted number of copies is available
of each covering object, thus imposing an upper bound on
the multiplicity of the latter in the final cover. Consider for
instance the natural generalization of Set Cover where the i-
th element needs to be covered bi > 1 times. Setting dj to a
vector of ones means that each set can be chosen only once.
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Our paper focuses on the effect of multiplicity constraints
on approximability.

Background. Let CIP1 denote the problem of solving
a covering integer program without multiplicity constraints
or equivalently with trivially large upper bounds on the
variables. A CIP1 instance is hence defined by a triple
P = (A; b; c): There is a long line of research investigating
approximation algorithms forCIP1: Most of this work us-
es the value of the linear relaxation LP1 as a lower bound
on the optimum, even when a fractional solution is not ex-
plicitly computed as is the case with the greedy algorithm
for Set Cover [10, 3]. In other work the error is analyzed
directly with respect to some estimate on the integral opti-
mum [8, 4, 6]. Among the most recent work some relevant
references are [15, 12, 22, 20, 19]. The reader is referred to
the survey in [7] for a discussion of the extensive literature
on covering problems. It is well known that the integrali-
ty gap of LP1 is �(1 + log(m)=W ): Moreover Raz and
Safra [16] showed that it is NP-hard to obtain an o(lnm)
approximation algorithm. Srinivasan’s work [20, 19] yields
the currently best known approximation results for CIP1
with existential improvements on the logm factor.

When the formulation contains multiplicity constraints
there are two natural avenues of investigation: (1) find an
approximation with respect to the optimum y� of the stan-
dard LP relaxation and (2) find an approximation with re-
spect to some other estimate of the integral optimum. We
describe what is known from both perspectives.

Let �; l be scalars greater than or equal to 1: Define
as a (�; l)-approximate solution w.r.t. the standard LP op-
timum, an integral vector x that meets the covering con-
straints Ax � b and has the following two properties: (i)
cTx � �y� and (ii) for all j; xj � dldje: In words, a
(�; l)-approximate solution achieves a bicriteria approxima-
tion with respect to the cost and the violation of the upper
bounds on the variables.

For (0; 1)-CIPs Rajagopalan and Vazirani [15] give an
efficient algorithm to find an (O(log�); 1)-approximate so-
lution. An algorithm by Srinivasan and Teo [21] yields an
(O(1 + log(m)=W ); 1 + ")-approximate solution for CIPs
where each cj = 1: Kolliopoulos studied in [9] column-
restricted CIPs (CCIPs) where all non-zero entries of the
j-th column of A have the same value �j : The algorithm in
[9] obtains an (O(logm); 12)-approximate solution.

Simple as they appear, multiplicity constraints make cov-
ering problems much harder. The recent paper of Carr et al.
[1] gives a simple instance of a Minimum Knapsack prob-
lem (trivially a CCIP), for which the integrality gap of the
standard linear relaxation can be made arbitrarily large if
multiplicity constraints are to be respected1. The LP below

1In [15] anO(logm) integrality gap was erroneously claimed for gen-
eral CIPs.

has an integrality gap of at least M > 0 :

minimize x2

(M � 1)x1 +Mx2 �M

0 � x1; x2 � 1

However if one sets the right hand side of the multiplicity
constraints to 2; an integral solution of zero cost becomes
possible. This example demonstrates that for any finite � a
(�; 1)-approximate solution w.r.t. the standard LP optimum
is impossible for general CIPs. A second negative result
from [9] shows that the integrality gap for a (0; 1)-CIP is

(logm) even when allowing arbitrarily large values for
the variables. Hence for any l; a (�; l)-approximate solution
with � = o(logm) is also impossible. The two negative
results imply that finding an (O(logm); l)-approximate so-
lution with l as close to 1 as possible has a natural signifi-
cance: by allowing a small increase on the number of copies
available from each covering object, one is able to achieve
a cost guarantee which would have otherwise been impos-
sible to attain.

Some of the existing algorithms for the CIP1 problem
without multiplicity constraints, such as standard random-
ized rounding [14] or Srinivasan’s algorithms [20, 19], are
easily seen to produce (O(logm); O(logm))-approximate
solutions when applied to CIPs. This was the best known
tradeoff between cost and violation of the multiplicity con-
straints prior to our work. The first basic question our paper
addresses is the following:

Question 1: What is the smallest possible violation of the
multiplicity constraints that still allows an integer solution
of cost within O(logm) of the optimum of the standard LP
relaxation?

Next we discuss what is known about approximations of
the integer optimum using methods other than the standard
LP relaxation. In what follows, a �-approximation algo-
rithm means one that produces an integer solution meet-
ing the multiplicity constraints and having cost at most �
times the integer optimum of the CIP. Dobson in 1982 [4]
gave an H(max1�j�n

P
1�i�mAij)-approximation algo-

rithm, where H(t) is the harmonic series with t terms. Re-
cently, Carr, Fleischer, Leung and Phillips [1] gave a p-
approximation algorithm, where p denotes the maximum
number of variables in any constraint. Their algorithm is
based on a new linear relaxation LP-KC that is stronger than
the standard relaxation.

One would like to achieve for general CIPs the same ap-
proximation as for Set Cover. The second basic question we
address is the following:

Question 2: Is there an O(logm)-approximation algorithm
for general CIPs?
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Our results. In this paper we settle the two open ques-
tions above.

For Question 1, we improve the previously known log-
arithmic violation of the multiplicity constraints to con-
stant. We give an algorithm that produces an (O(1 +
log(m)=W ); 1+")-approximate solution w.r.t. the standard
LP optimum for any " > 0: (The constant in the order
notation depends on 1=":) For the case where maxj dj is
bounded by a constant, we obtain solutions that violate the
multiplicity constraints by at most an additive 1: The logm
in the performance guarantee can be strengthened to log�
with a more complicated analysis based on Srinivasan’s re-
sults [19]. Recall � is the maximum number of constraints
any variable appears in.

Observe that when finding an integral solution for a CIP
we can replace every dj by bdjc: We chose to allow frac-
tional dj ’s in Definitions 1.1 and 1.2 to obtain a larger so-
lution space for the standard LP relaxation and therefore
prove a stronger result for the cost integrality gap.

The new idea underlying our algorithm is simple — we
randomly round variables to smaller-than-integer units and
then deterministically round the resulting values to integers.

For Question 2, we give an O(1 + log(m)=W )-
approximation algorithm. The algorithm works by reduc-
ing the problem of approximating a CIP (in which mul-
tiplicity constraints must be respected) to finding a (�; l)-
approximate solution to an auxiliary covering problem, for
appropriate � and l: The reduction uses the LP-KC relax-
ation of Carr et al. [1]. As in Question 1, the logm term can
be improved to log�:

Preliminaries. We denote
P

j Aijxj by (Ax)i and
maxj dj by �: The symbol vc(t) denotes a vector whose
coordinates are all equal to t: The dimension of such a vec-
tor will be clear from the context. We use dte1=k to denote
the smallest integer multiple of 1=k that is greater than or
equal to t: We overload notation by denoting by dve1=k; v a
vector, the vector obtained by applying the operation com-
ponentwise. Similarly for the floor operation. The well-
known Chernoff bound [2] is central to our result. The form
we will use was given by Raghavan [13].

Theorem 1.1 [13] Let X =
PN

i=1Xi be the sum of N
independent random variables in [0; U ] with E(X) � �:
Let " > 0: Then Pr[X � (1� ")�] < exp(��"2=(2U)):

2. The Rounding Argument

Let P = (A; b; c; d) be a given CIP and �x a fractional
optimal solution. Our goal is to show that an integer solu-
tion x̂ with nice properties exists with nonzero probability.
“Nice” refers to a solution of cost within O(logm) of cT �x;

and small violation of the multiplicity constraints. Based
on Definition 1.2 we assume throughout Sections 2, 3 that
Aij � bi for all i; j:

We compute x̂ in two steps. First randomly round �x to
a vector whose coordinates are integer multiples of some
integer parameter k � 1: Next, round up each coordinate of
the resulting vector to the closest integer. The details of the
rounding experiment follow. It takes two parameters: k and
" > 0:

ALGORITHM FINELY ROUND (P ; �x; k; ")
STEP 0: Set x0 := �x=(1� "):
STEP 1: Randomly round each coordinate of x0 to its upper
or lower multiple of 1=k : set x00 := bx0c1=k + r=k; where
the j-th entry of random vector r takes the value 1 with
probability k(x0j�bx

0
jc1=k) and the value 0 otherwise. Note

that E(x00) = �x=(1� "):
STEP 2: Return x̂ := dx00e:

The ensuing lemma analyzes Step 1 of the rounding ex-
periment.

Lemma 2.1 For any Æ; " > 0 the probability that x 00 fails
to satisfy

cTx00 � ÆcT �x=(1� "); Ax00 � b; x00 � d�x=(1� ")e

is less than 1=Æ +m exp(�"2kW=2):

Proof. Think of the fixed part of each x00j ; that is, the
bx0jc1=k part, as a sum of independent random variables,
each in [0; 1=k]; happening to take the value 1=k with prob-
ability 1: Then for all i the quantity (Ax00)i=bi is a sum of
independent random variables with value in [0; 1=(kW )]:
Observe that by Step 1, E[x00j ] = �xj=(1 � "): According-
ly E[(Ax00)i=bi] � 1=(1 � "): By the Chernoff bound of
Theorem 1.1

Pr[(Ax00)i=bi � 1] < exp(�"2kW=2):

By the Markov inequality,

Pr[cTx00 � ÆcT �x=(1� ")] � 1=Æ:

By the union bound, the probability that x00 fails to satisfy
cTx00 � ÆcT �x=(1 � ") and Ax00 � b; is at most 1=Æ +
m exp(�"2kW=2): The observation that by Step 1, x00j �

d�xj=(1� ")e; 8j; completes the proof.
We now analyze Step 2.

Lemma 2.2 For any Æ; " > 0 the probability that x̂ fails to
satisfy

cT x̂ �
kÆ

1� "
cT �x; Ax̂ � b; x̂ � d�x=(1� ")e

is less than 1=Æ +m exp(�"2kW=2):
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Proof. The factor of k comes into the cost because each
x00j is a multiple of 1=k; so dx00i e � kx00j : The remaining
inequalities follow directly from Lemma 2.1.

Theorem 2.1 Given a CIP P = (A; b; c; d); and an
"0 > 0; one can obtain in polynomial time an
(O
�
maxf1; 1="02g[1 + log(m)=W ]

�
; 1+ "0)-approximate

solution.

Proof. Set " = minf1=2; "0=(1 + "0)g: We choose Æ
and k so that the performance ratio kÆ=(1 � ") is O(1 +
log(m)=W ) and the bound, 1=Æ + m exp(�"2kW=2); on
the probability of failure is at most 1: Choose Æ = 2;
k = d2 log(2m)=(W"2)e: By Lemma 2.2 the integer vector
x̂ returned by FINELY ROUND satisfies with nonzero prob-
ability the conditions:

cT x̂ � minf2; 1+ "0g2kcT �x (1)

Ax̂ � b (2)

x̂ � d(1 + "0)�xe (3)

Derandomizing the construction to compute the solution
deterministically can be done in a standard fashion using
the method of conditional probabilities [5, 18, 13].

Recall that � denotes maxj dj : In Theorem 2.1, by
choosing "0 < 1=(2dj); for all j; we can obtain an addi-
tive 1 guarantee. But then the performance guarantee on the
cost becomes proportional to �2:

Theorem 2.2 Given a CIP P = (A; b; c; d); denote by y�
the optimum of the standard linear relaxation. One can ob-
tain in deterministic polynomial time an integral vector x̂ of
cost at most O(�2[1 + log(m)=W ]y�); such that Ax̂ � b
and x̂ � d+ vc(1):

We can easily deduce from Theorem 2.1 a bicriteria-type
result for the CIP1 problem. Solve the standard linear re-
laxation for CIP1 and then round the fractional solution �x
introducing multiplicity bound d = �x:

Corollary 2.1 Given a CIP1 instance P = (A; b; c); de-
note by �x the optimal solution to the standard linear relax-
ation and by y� the value cT �x: For any "0 > 0; we can
obtain in polynomial time an integral solution x̂ of cost
O(maxf1; 1="02g[1 + log(m)=W ]y�) such that for all j;
x̂j � d(1 + "0)�xje:

Cost guarantees depending on the dilation

Recall that the dilation � of a CIP is the maximum num-
ber of constraints any variable appears in. We sketch briefly
how to improve the performance guarantee so that it de-
pends on � instead of m: The basic idea is to combine our
idea of rounding to finer than integer units with Srinivasan’s
derandomization in [19] of the standard randomized round-
ing for CIP1 :

Theorem 2.3 [19] Given a CIP1 instance P = (A; b; c);
of width W; and a fractional solution �x one can obtain in
deterministic polynomial time an integer feasible solution
of cost L

:
= 1 + O(maxfln(� + 1)=W;

p
ln(� + 1)=Wg)

times the fractional cost.

By inspection of Srinivasan’s analysis [19] the obtained
integer solution x̂ satisfies x̂ � dL�xe: By scaling by k the
following corollary is immediate:

Corollary 2.2 Given a CIP instance P = (A; b; c; d); of
width W; a fractional solution �x, and integer k > 0, let
Lk

:
= 1+O(maxfln(�+1)=(kW );

p
ln(�+ 1)=(kW )g):

One can obtain in deterministic polynomial time a feasible
solution x00 where each x00j is an integer multiple of 1=k, and

cTx00 � Lkc
T �x; Ax00 � b; x00 � dLk�xe:

Comparing this to Lemma 2.1 we see that if we modify
the FINELY ROUND procedure to use Corollary 2.2 in place
of Steps 0 and 1, we can choose k to obtain the following
theorem.

Theorem 2.4 Given a CIP P = (A; b; c; d); and an
"0 > 0; one can obtain in polynomial time an
(O
�
maxf1; 1="02g[1 + log(�)=W ]

�
; 1 + "0)-approximate

solution.

3. Generalized multiplicity constraints

The rounding argument from Section 2 can deal with a
more general form of multiplicity constraints. Consider an
integer program PG = (A;B; b; c; d) of the form

min cTx

Ax � b

Bx � d

x 2 Zn
+

where all the coefficients are nonnegative and B is an r�n
matrix, r � 1: Matrix A has again dimensionm�n: When
B is the identity n� n matrix we obtain a CIP as a special
case. Generalized multiplicity constraints capture natural
additional constraints. Consider the situation when B is a
(0; 1) matrix. Row l of the matrix B can be seen as corre-
sponding to a subset Sl of the covering objects. We seek
a minimum-cost cover but no more than dl objects can be
chosen from each set Sl: CIPs with (generalized) multiplic-
ity constraints fall in the class of Mixed Packing Covering
IPs.

Denote by Tl the sum of coefficients at the l-th row of
B: The algorithm is very similar to the FINELY ROUND so
we only outline the differences. After Step 1 of the round-
ing scheme, the equivalent of Lemma 2.1 goes through with
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(Bx00)l � dl=(1� ") + Tl=k: After Step 2, the generalized
multiplicity constraints yield (Bx̂)l � ddl=(1�")+Tl=ke:
To bound the probability of failure below 1 we choose again
k = d2 log(2m)=(W"2)e:

Theorem 3.1 Let PG = (A;B; b; c; d) be a mixed packing
covering integer program as defined above. For any " 0 > 0;
one can obtain in deterministic polynomial time an integral
solution x̂ of cost O(

�
maxf1; 1="02g[1 + log(m)=W ]

�
)

times the optimum of the standard LP relaxation, which sat-
isfies Ax̂ � b and 81 � l � r;

(Bx̂)l � d (1 + "0)dl +O
�
minf"02; 1gTlW=(logm)

�
e:

Picking different values for "0 gives tradeoffs between the
violation of the multiplicity constraints and the cost ap-
proximation. Observe that when maxl Tl = o(logm=W )
a multiplicative 2-violation of the generalized multiplicity
constraints becomes possible. If a larger approximation for
the cost can be tolerated, higher values of maxl Tl can still
lead to small multiplicity constraint violation.

4. An approximation with respect to the inte-
gral optimum

In this section we show how to obtain an O(logm) cost-
approximation with respect to the integral optimum of a
CIP, while respecting the multiplicity constraints. Careful
examination of Theorems 2.1, 2.2 reveals that if a value �xj
in the fractional solution is significantly smaller than the
upper bound dj ; (e.g., �xj � dj=2) the rounding scheme
can be tuned to respect the corresponding multiplicity con-
straint. It suffices to focus on the residual covering problem
P 0 defined on those small variables — the large ones can
be rounded up to dj at low cost. The rounding scheme re-
quires the variable coefficients to be at most the residual
covering requirement b0i on each constraint. Enforcing this
on P 0 leads to a potential decrease of the original variable
coefficients Aij : Then the original fractional values are not
feasible any more and one has to solve the LP-relaxation
of P 0 from scratch. The repetition of this process over t
iterations would yield a cost guarantee proportional to t:

Let N denote the set of all variables. To address the d-
ifficulty described above we use as a starting point for the
rounding scheme the solution �x0 to a new linear relaxation
introduced recently by Carr et al. [1]. The latter formulation
guarantees the following strong decomposition property for
any fractional solution �x : if all variables in a certain set
F � N are set to their upper bounds, one can formulate an
IP PN�F for the residual covering problem over the vari-
ables in N � F such that (i) PN�F meets the CIP Defini-
tion 1.1 and (ii) the fractional optimum ofPN�F is no more
than

P
j2N�F cj �x

0
j :

Here is the new LP formulation. Given a CIP P =
(A; b; c; d) we generate a set Si of valid inequalities, called
Knapsack Cover (KC) inequalities in [1], associated with
the i-th constraint (Ax)i � bi: define bi(F )

:
= maxf0; bi�P

j2F Aijdjg: In words, bi(F ) denotes the residual cov-
ering requirement of the i-th constraint once all variables
in F have been set to their upper bounds. Define also
AF
ij

:
= minfAij ; bi(F )g: The set Si consists of the follow-

ing KC inequalities:
X

j2NnF

AF
ijxj � bi(F ); 8F � N:

Definition 4.1 Given a CIP P = (A; b; c; d) the LP-KC
relaxation of P ; seeks to minimize cT � x subject to Ax � b;
x � d; the set of constraints [i=1;:::;mSi; and x nonnega-
tive.

We are not aware of an algorithm that solves LP-KC
exactly in polynomial time. Carr et al. define the following
type of solutions, which are adequate for our purpose. For
� > 1; call a vector x a �-relaxed solution to LP-KC if
it has cost at most the optimum of LP-KC and satisfies (i)
Ax � b (ii) x � d and (iii) the KC inequalities defined for
the set F� = fjjxj � dj=�g: The following theorem is an
immediate corollary of the results by Carr et al. [1] and the
properties of the ellipsoid method [11].

Theorem 4.1 For any � > 1; a �-relaxed solution to an
LP-KC formulation with rational coefficients can be found
in polynomial time.

We reduce the problem of approximating P while re-
specting the multiplicity constraints to the problem of find-
ing an approximate solution with bounded violation of the
multiplicity constraints. The following algorithm imple-
ments the reduction. It is parameterized by a subroutine
A; which we assume finds a (�; l)-approximate solution to
a CIP w.r.t. the standard LP optimum.

ALGORITHM KC ROUND (P ;A; l)
STEP 1: Set d := bdc: Find an l-relaxed solution �x0 to the
LP-KC relaxation for P :
STEP 2: Let H = fj j �x0j � dj=lg: Set x̂j := dj for all
j 2 H:
STEP 3: Define a CIP PN�H = (A0; b0; c; d0) over the set
of variablesN�H: For notational convenience defineA0 as
a full-dimensionalm�nmatrix with A0ij := 0 if j 2 H and
A0ij := AH

ij otherwise. For 1 � i � m define b0i := bi(H):
Define �x00j := 0 if j 2 H and �x0j otherwise. For 1 � j � n
define dj := �x00j :
STEP 4: Round �x0j ; j 2 N � H; to x̂j by invoking the
(�; l)-approximate algorithm A on P 0:

In the new IP P 0 defined in Step 3, the coefficient of a
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variable xj from N �H in the i-th constraint has been po-
tentially reduced from Aij so as not to exceed the residual
covering requirement b0i: This normalization of the coeffi-
cients is essential for the success of the randomized round-
ing experiment. The advantage of the LP-KC formulation
is that even after the coefficients are reduced, the projection
of the fractional solution �x0 on N � H is feasible for the
residual problem without requiring an increase of the vari-
ables. In fact all the constraints in P 0 which result from
normalization are KC inequalities for the set Fl: The fol-
lowing lemma is a direct consequence of the definition of
P 0:

Lemma 4.1 The vector �x00 is a feasible fractional solution
to the standard linear relaxation of P 0: The objective value
of �x00 is

P
j2N�H cj �x

0
j :

We are now ready to state the reduction.

Theorem 4.2 If one can obtain in polynomial time a (�; l)-
approximate solution to a CIP problem with rational coef-
ficients then one can also obtain in polynomial time an in-
tegral solution that respects the multiplicity constraints and
has cost maxf�; lg times the integral optimum.

Remark 4.1 The assumption on rationality is necessary
only to ensure polynomial-time, based on Theorem 4.1. The
reduction itself works without this assumption.

Proof. The assumption of the theorem is equivalent to
assuming the existence of the subroutine A invoked in
KC ROUND. Taking the floor of every dj in Step 1 does not
change the space of integral solutions of P : The variables
in H trivially satisfy their upper bounds when the algorithm
terminates. For j 2 N �H; since A is (�; l)-approximate,
x̂j � dld0je � dj : Hence all the multiplicity constraints are
satisfied. The contribution of the variables from H to the
objective is at most l

P
j2H cj �x

0
j : The rounding scheme ap-

plied to the variables from N �H yields an integral vector
of cost at most �

P
j2N�H cj �x

0
j : Given that

P
j2N cj �x

0
j is

at most the integral optimum the theorem follows. Observe
that the approximation guarantees � and l for P 0 may de-
pend on the CIP parameters (e.g., dimension, dilation); the
respective parameters of P are always higher.

As mentioned, standard randomized rounding gives an
algorithm which is (O(logm); O(logm))-approximate.

Corollary 4.1 Given a CIP P = (A; b; c; d); one can com-
pute in polynomial time an integral solution that respects
the multiplicity constraints and has cost O(logm) times the
optimum.

Using the dilation bound of Srinivasan [19] (cf. Theorem
2.3) the cost guarantee can be improved.

Corollary 4.2 Given a CIP P = (A; b; c; d); one can com-
pute in polynomial time an integral solution that respects
the multiplicity constraints and has cost O(log�) times the
optimum.

Corollary 4.3 The integrality gap of the LP-KC relaxation
is O(log�):

Observe that KC ROUND can be easily changed to use
an (O(logm); 2)-approximate subroutine such as FINE-
LY ROUND. In this case, the contribution of the H-
variables to the cost will be at most doubled instead of being
scaled up by logm:

5. Open questions

Some of the open questions resulting from this work are
as follows. First, fine tune the constants in the asymptotic
guarantees. Second, give an additive 1 violation of the mul-
tiplicity constraints and logaritmic cost guarantee w.r.t. the
standard LP optimum for general d values. Finally, devel-
op a simple greedy algorithm for general CIPs that achieves
the O(logm) approximation.

Acknowledgements. Thanks to Vijay Vazirani for a clar-
ification on [15]. Thanks to Lisa Fleischer and Aravind S-
rinivasan for comments on a draft of this paper.
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