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1 Introduction

In this chapter, we discuss approximation algorithms for optimization problems. An optimization problem

consists in finding the best (cheapest, heaviest, etc.) element in a large set P, called the feasible region

and usually specified implicitly, where the quality of elements of the set are evaluated using a func-

tion f(x), the objective function, usually something fairly simple. The element that minimizes (or

maximizes) this function is said to be an optimal solution of the objective function at this element

is the optimal value.

optimal value = min{f(x) | x ∈ P} (1)

A example of an optimization problem familiar to computer scientists is that of finding a

minimum-cost spanning tree of a graph with edge costs. For this problem, the feasible region P,

the set over which we optimize, consists of spanning trees; recall that a spanning tree is a set of

edges that connect all the vertices but forms no cycles. The value f(T ) of the objective function

applied to a spanning tree T is the sum of the costs of the edges in the spanning tree.

The minimum-cost spanning tree problem is familiar to computer scientists because there are

several good algorithms for solving it — procedures that, for a given graph, quickly determine the

minimum-cost spanning tree. No matter what graph is provided as input, the time required for

each of these algorithms is guaranteed to be no more than a slowly growing function of the number

of vertices n and edges m (e.g. O(m log n)).

For most optimization problems, in contrast to the minimum-cost spanning tree problem, there

is no known algorithm that solves all instances quickly in this sense. Furthermore, there is not

likely to be such an algorithm ever discovered, for many of these problems are NP-hard, and such

an algorithm would imply that every problem in NP could be solved quickly (i.e. P=NP), which

is considered unlikely.1 One option in such a case is to seek an approximation algorithm — an

algorithm that is guaranteed to run quickly (in time polynomial in the input size) and to produce

a solution for which the value of the objective function is quantifiably close to the optimal value.

Considerable progress has been made towards understanding which combinatorial-optimization

problems can be approximately solved, and to what accuracy. The theory of NP-completeness

1For those unfamiliar with the theory of NP-completeness, see Chapters 33 and 34 or (?).
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can provide evidence not only that a problem is hard to solve precisely but also that it is hard to

approximate to within a particular accuracy. Furthermore, for many natural NP-hard optimization

problems, approximation algorithms have been developed whose accuracy nearly matches the best

achievable according to the theory of NP-completeness. Thus optimization problems can be cate-

gorized according to the best accuracy achievable by a polynomial-time approximation algorithm

for each problem.

This chapter, which focuses on discrete (rather than continuous) NP-hard optimization prob-

lems, is organized according to these categories; for each category, we describe a representative

problem, an algorithm for the problem, and the analysis of the algorithm. Along the way we

demonstrate some of the ideas and methods common to many approximation algorithms. Also, to

illustrate the diversity of the problems that have been studied, we briefly mention a few additional

problems as we go. We provide a sampling, rather than a compendium, of the field — many im-

portant results, and even areas, are not presented. In Section 12, we mention some of the areas

that we do not cover, and we direct the interested reader to more comprehensive and technically

detailed sources, such as the excellent recent book (?). Because of limits on space for references,

we do not cite the original sources for algorithms covered in (?).

2 Underlying principles

Our focus is on combinatorial optimization problems, problems where the feasible region P is

finite (though typically huge). Furthermore, we focus primarily on optimization problems that

are NP-hard. As our main organizing principle, we restrict our attention to algorithms that are

provably good in the following sense: for any input, the algorithm runs in time polynomial in the

length of the input and returns a solution (i.e., a member of the feasible region) whose value (i.e.,

objective function value) is guaranteed to be near-optimal in some well-defined sense.2 Such a

guarantee is called the performance guarantee. Performance guarantees may be absolute, meaning

that the additive difference between the optimal value and the value found by the algorithm is

bounded. More commonly, performance guarantees are relative, meaning that the value found by

the algorithm is within a multiplicative factor of the optimal value.

When an algorithm with a performance guarantee returns a solution, it has implicitly discovered

a bound on the exact optimal value for the problem. Obtaining such bounds is perhaps the most

basic challenge in designing approximation algorithms. If one can’t compute the optimal value,

how can one expect to prove that the output of an algorithm is near it? Three common techniques

are what which we shall call witnesses, relaxation, and coarsening.

Intuitively, a witness encodes a short, easily verified proof that the optimal value is at least,

or at most, a certain value. Witnesses provide a dual role to feasible solutions to a problem.

For example, for a maximization problem, where any feasible solution provides a lower bound

to the optimal value, a witness would provide an upper bound on the optimal value. Typically,

an approximation algorithm will produce not only a feasible solution, but also a witness. The

performance guarantee is typically proven with respect to the two bounds — the upper bound

provided by the witness and the lower bound provided by the feasible solution. Since the optimal

2An alternative to this worst-case analysis is average-case analysis. See Chapter 2.
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value is between the two bounds, the performance guarantee also holds with respect to the optimal

value.

Relaxation is another way to obtain a lower bound on the minimum value (or an upper bound

in the case of a maximization problem). One formulates a new optimization problem, called a

relaxation of the original problem, using the same objective function but a larger feasible region P ′

that includes P as a subset. Because P ′ contains P, any x ∈ P (including the optimal element x)

belongs to P ′ as well. Hence the optimal value of the relaxation, min{f(x) | x ∈ P ′}, is less than

or equal to the optimal value of the original optimization problem. The intent is that the optimal

value of the relaxation should be easy to calculate and should be reasonably close to the optimal

value of the original problem.

Linear programming can provide both witnesses and relaxations, and is therefore an important

technique in the design and analysis of approximation algorithms. Randomized rounding is a

general approach, based on the probabilistic method, for converting a solution to a relaxed problem

into an approximate solution to the original problem.

To coarsen a problem instance is to alter it, typically restricting to a less complex feasible region

or objective function, so that the result problem can be efficiently solved, typically by dynamic

programming. For coarsening to be useful, the coarsened problem must approximate the original

problem, in that there is a rough correspondence between feasible solutions of the two problems,

a correspondence that approximately preserves cost. We use the term coarsening rather loosely to

describe a wide variety of algorithms that work in this spirit.

3 Approximation algorithms with small additive error

3.1 Minimum-degree spanning tree

For our first example, consider a slight variant on the minimum-cost spanning tree problem, the

minimum-degree spanning tree problem. As before, the feasible region P consists of spanning trees

of the input graph, but this time the objective is to find a spanning tree whose degree is minimum.

The degree of a vertex of a spanning tree (or, indeed, of any graph), is the number of edges incident

to that vertex, and the degree of the spanning tree is the maximum of the degrees of its vertices.

Thus minimizing the degree of a spanning tree amounts to finding a smallest integer k for which

there exists a spanning tree in which each vertex has at most k incident edges.

Any procedure for finding a minimum-degree spanning tree in a graph could be used to find

a Hamiltonian path in any graph that has one, for a Hamiltonian path is a degree-two spanning

tree. (A Hamiltonian path of a graph is a path through that graph that visits each vertex of the

graph exactly once.) Since it is NP-hard even to determine whether a graph has a Hamiltonian

path, even determining whether the minimum-degree spanning tree has degree two is presumed to

be computationally difficult.

3.2 An approximation algorithm for minimum-degree spanning tree

Nonetheless, the minimum-degree spanning-tree problem has a remarkably good approximation

algorithm (?, Ch. 7). For an input graph with m edges and n vertices, the algorithm requires

time slightly more than the product of m and n. The output is a spanning tree whose degree is
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Figure 1: On the left is an example input graph G. On the right is a spanning tree T that might
be found by the approximation algorithm. The shaded circle indicates the nodes in the witness set
S.

Figure 2: The figure on the left shows the r trees T1, . . . , Tr obtained from T by deleting the nodes
of S. Each tree is indicated by a shaded region. The figure on the right shows that no edges of the
input graph G connect different trees Ti.

guaranteed to be at most one more than the minimum degree. For example, if the graph has a

Hamiltonian path, the output is either such a path or a spanning tree of degree three.

Given a graph G, the algorithm naturally finds the desired spanning tree T of G. The algorithm

also finds a witness — in this case, a set S of vertices proving that T ’s degree is nearly optimal.

Namely, let k denote the degree of T , and let T1, T2, . . . , Tr be the subtrees that would result from

T if the vertices of S were deleted. The following two properties are enough to show that T ’s degree

is nearly optimal.

1. There are no edges of the graph G between distinct trees Ti, and

2. the number r of trees Ti is at least |S|(k − 1)− 2(|S| − 1).

To show that T ’s degree is nearly optimal, let Vi denote the set of vertices comprising subtree Ti
(i = 1, . . . , r). Any spanning tree T ∗ at all must connect up the sets V1, V2, . . . , Vr and the vertices

y1, y2, . . . , y|S| ∈ S, and must use at least r + |S| − 1 edges to do so. Furthermore, since no edges

go between distinct sets Vi, all these edges must be incident to the vertices of S.
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Figure 3: The figure on the left shows an arbitrary spanning tree T ∗ for the same input graph G.
The figure on the right has r shaded regions, one for each subset Vi of nodes corresponding to a tree
Ti in Figure 3.2. The proof of the algorithm’s performance guarantee is based on the observation
that at least r + |S| − 1 edges are needed to connect up the Vi’s and the nodes in S.

Hence we obtain∑
{degT ∗(y) | y ∈ S} ≥ r + |S| − 1

≥ |S|(k − 1)− 2(|S| − 1) + |S| − 1

= |S|(k − 1)− (|S| − 1) (2)

where degT ∗(y) denotes the degree of y in the tree T ∗. Thus the average of the degrees of vertices

in S is at least |S|(k−1)−(|S|−1)|S| , which is strictly greater than k−2. Since the average of the degrees

of vertices in S is greater than k − 2, it follows that at least one vertex has degree at least k − 1.

We have shown that for every spanning tree T ∗, there is at least one vertex with degree at least

k − 1. Hence the minimum degree is at least k − 1.

We have not explained how the algorithm obtains both the spanning tree T and the set S of

vertices, only how the set S shows that the spanning tree is nearly optimal. The basic idea is as

follows. Start with any spanning tree T , and let d denote its degree. Let S be the set of vertices

having degree d or d − 1 in the current spanning tree. Let T1, . . . , Tr be the subtrees comprising

T−S. If there are no edges between these subtrees, the set S satisfies property 1 and one can show it

also satisfies property 2; in this case the algorithm terminates. If on the other hand there is an edge

between two distinct subtrees Ti and Tj , inserting this edge in T and removing another edge from T

results in a spanning tree with fewer vertices having degree at least d−1. Repeat this process on the

new spanning tree; in subsequent iterations the improvement steps are somewhat more complicated

but follow the same lines. One can prove that the number of iterations is O(n log n).

We summarize our brief sketch of the algorithm as follows: either the current set S is a witness

to the near-optimality of the current spanning tree T , or there is a slight modification to the set and

the spanning tree that improve them. The algorithm terminates after a relatively small number of

improvements.

This algorithm is remarkable not only for its simplicity and elegance but also for the quality of

the approximation achieved. As we shall see, for most NP-hard optimization problems, we must

settle for approximation algorithms that have much weaker guarantees.
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3.3 Other problems having small-additive-error algorithms

There are a few other natural combinatorial-optimization problems for which approximation algo-

rithms with similar performance guarantees are known. Here are two examples:

Edge Coloring: Given a graph, color its edges with a minimum number of colors so that, for

each vertex, the edges incident to that vertex are all different colors. For this problem, it is easy to

find a witness. For any graph G, let v be the vertex of highest degree in G. Clearly one needs to

assign at least degG(v) colors to the edges of G, for otherwise there would be two edges with the

same color incident to v. For any graph G, there is an edge coloring using a number of colors equal

to one plus the degree of G. The proof of this fact translates into a polynomial-time algorithm that

approximates the minimum edge-coloring to within an additive error of 1.

Bin Packing: The input consists of a set of positive numbers less than 1. A solution is a partition

of the numbers into sets summing to no more than 1. The goal is to minimize the number of blocks of

the partition. There are approximation algorithms for bin packing that have very good performance

guarantees. For example, the performance guarantee for one such algorithm is as follows: for any

input set I of item weights, it finds a packing that uses at most OPT(I) + O(log2 OPT(I)) bins,

where OPT(I) is the number of bins used by the best packing, i.e. the optimal value.

4 Randomized rounding and linear programming

A linear programming problem is any optimization problem in which the feasible region corresponds

to assignments of values to variables meeting a set of linear inequalities and in which the objective

function is a linear function. An instance is determined by specifying the set of variables, the

objective function, and the set of inequalities. Linear programs are capable of representing a large

variety of problems and have been studied for decades in combinatorial optimization and have a

tremendous literature (see e.g., Chapters 24 and 25 of this book). Any linear program can be solved

— that is, a point in the feasible region maximizing or minimizing the objective function can be

found — in time bounded by a polynomial in the size of the input.

A (mixed) integer linear programming problem is a linear programming problem augmented

with additional constraints specifying that (some of) the variables must take on integer values.

Such constraints make integer linear programming even more general than linear programming —

in general, solving integer linear programs is NP-hard.

For example, consider the following balanced matching problem: The input is a bipartite graph

G = (V,W,E). The goal is to choose an edge incident to each vertex in V (|V | edges in total),

while minimizing the maximum load of (number of chosen edges adjacent to) any vertex in W . The

vertices in V might represent tasks, the vertices in W might represent people, while the presence of

edge {v, w} indicates that person w is competent to perform task v. The problem is then to assign

each task to a person competent to perform it, while minimizing the maximum number of tasks

assigned to any person.3

3Typically, randomized rounding is applied to NP-hard problems, whereas the balanced matching problem here
is actually solvable in polynomial time. We use it as an example for simplicity — the analysis captures the essential
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This balanced matching problem can be formulated as the following integer linear program:

minimize ∆

subject to


∑
u∈N(v) x(u, v) = 1 ∀v ∈ V∑
v∈N(u) x(u, v) ≤ ∆ ∀w ∈W

x(u, v) ∈ {0, 1} ∀(u, v) ∈ E.

Here N(x) denotes the set of neighbors of vertex x in the graph. For each edge (u, v) the variable

x(u, v) determines whether the edge (u, v) is chosen. The variable ∆ measures the maximum load.

Relaxing the integrality constraints (i.e., replacing them as well as we can by linear inequalities)

yields the linear program:

minimize ∆

subject to


∑
u∈N(v) x(u, v) = 1 ∀v ∈ V∑
v∈N(u) x(u, v) ≤ ∆ ∀w ∈W

x(u, v) ≥ 0 ∀(u, v) ∈ E.

Rounding a fractional solution to a true solution. This relaxed problem can be solved in

polynomial time simply because it is a linear program. Suppose we have an optimal solution x∗,

where each x∗(e) is a fraction between 0 and 1. How can we convert such an optimal fractional

solution into an approximately optimal integer solution? Randomized rounding is a general approach

for doing just this (?, Ch. 5).

Consider the following polynomial-time randomized algorithm to find an integer solution x̂ from

the optimal solution x∗ to the linear program:

1. Solve the linear program to obtain a fractional solution x∗ of load ∆∗.

2. For each vertex v ∈ V :

(a) Choose a single edge incident to v at random, so that the probability that a given edge

(u, v) is chosen is x∗(u, v). (Note that
∑
u∈N(v) x

∗(u, v) = 1.)

(b) Let x̂(u, v)← 1.

(c) For all other edges (u′, v) incident to v, let x̂(u′, v)← 0.

The algorithm will always choose one edge adjacent to each vertex in V . Thus, x̂ is a feasible

solution to the original integer program. What can we say about the load? For any particular vertex

w ∈ W , the load on w is
∑
u∈N(v) x̂(u, v). For any particular edge (u, v) ∈ E, the probability that

x̂(u, v) = 1 is x∗(u, v). Thus the expected value of the load on a vertex u ∈ U is
∑
vinN(u) x

∗(u, v),

which is at most ∆∗. This is a good start. Of course, the maximum load over all u ∈ U is likely to

be larger. How much larger?

spirit of a similar analysis for the well-studied integer multicommodity flow problem. (A simple version of that
problem is: “Given a network and a set of commodities (each a pair of vertices), choose a path for each commodity
minimizing the maximum congestion on any edge.”)

7



To answer this, we need to know more about the distribution of the load on v than just the

expected value. The key fact that we need to observe is that the load on any v ∈ V is a sum of

independent {0, 1}-random variables. This means it is not likely to deviate much from its expected

value. Precise estimates come from standard bounds, called “Chernoff”- or “Hoeffding” bounds,

such as the following:

Theorem Let X be the sum of independent {0, 1} random variables. Let µ > 0 be the expected

value of X. Then for any ε > 0,

Pr[X ≥ (1 + ε)µ] < exp(−µmin{ε, ε2}/3).

(See e.g. (?, Ch. 4.1).) This is enough to analyze the performance guarantee of the algorithm. It

is slightly complicated, but not too bad:

Claim With probability at least 1/2, the maximum load induced by x̂ exceeds the optimal by at most

an additive error of

max

{
3 ln(2m),

√
3 ln(2m)∆∗

}
,

where m = |W |.
proof sketch: As observed previously, for any particular v, the load on v is a sum (of independent

random {0, 1}-variables) with expectation bounded by ∆∗. Let ε be just large enough so that

exp(−∆∗min{ε, ε2}/3) = 1/(2m). By the Chernoff-type bound above, the probability that the

load exceeds (1 + ε)∆∗ is then less than 1/(2m). Thus, by the naive union bound4, the probability

that the maximum load on any v ∈ V is more than ∆∗(1 + ε) = ∆∗+ ε∆∗ is less then 1/2. We leave

it to the reader to verify that the choice of ε makes ε∆∗ equal the expression in the statement of

the claim. �

Summary. This is the general randomized-rounding recipe:

1. Formulate the original NP-hard problem as an integer linear programming problem (IP).

2. Relax the program IP to obtain a linear program (LP).

3. Solve the linear program, obtaining a fractional solution.

4. Randomly round the fractional solution to obtain an approximately optimal integer solution.

5 Performance ratios and ρ-approximation

Relative (multiplicative) performance guarantees are more common than absolute (additive) perfor-

mance guarantees. One reason is that many NP-hard optimization problems are rescalable: given

an instance of the problem, one can construct a new, equivalent instance by scaling the objective

function. For instance, the traveling salesman problem is rescalable — given an instance, multiply-

ing the edge weights by any λ > 0 yields an equivalent problem with the objective function scaled

by λ. For rescalable problems, the best one can hope for is a relative performance guarantee (?).

4The probability that any of several events happens is at most the sum of the probabilities of the individual events.
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A ρ-approximation algorithm is an algorithm that returns a feasible solution whose objective

function value is at most ρ times the minimum (or, in the case of a maximization problem, the

objective function value is at least ρ times the maximum). We say that the performance ratio of

the algorithm is ρ.5

6 Polynomial approximation schemes

The knapsack problem is an example of a rescalable NP-hard problem. An instance consists of a

set of pairs of numbers (weighti,profiti), and the goal is to select a subset of pairs for which the

sum of weights is at most 1 so as to maximize the sum of profits. (Which items should one put in

a knapsack of capacity 1 so as to maximize profit?)

Since the knapsack problem is rescalable and NP-hard, we assume that there is no approximation

algorithm achieving, say, a fixed absolute error. One is therefore led to ask: what is the best

performance ratio achievable by a polynomial-time approximation algorithm? In fact (assuming

P6=NP), there is no such best performance ratio: for any given ε > 0, there is a polynomial

approximation algorithm whose performance ratio is 1 + ε. The smaller the value of ε, however,

the greater the running time of the corresponding approximation algorithm. Such a collection of

approximation algorithms, one for each ε > 0, is called a (polynomial) approximation scheme.

Think of an approximation scheme as an algorithm that takes an additional parameter, the value

of ε, in addition to the input specifying the instance of some optimization problem. The running

time of this algorithm is bounded in terms of the size of the input and in terms of ε. For example,

there is an approximation scheme for the knapsack problem that requires time O(n log(1/ε)+1/ε4)

for instances with n items. Below we sketch a much simplified version of this algorithm that requires

time O(n3/ε). The algorithm works by coarsening.

The algorithm is given the pairs (weight1, profit1), . . . , (weightn,profitn), and the parameter ε.

We assume without loss of generality that each weight is less than or equal to 1. Let profitmax =

maxi profiti. Let OPT denote the (unknown) optimal value. Since the item of greatest profit itself

constitutes a solution, albeit not usually a very good one, we have profitmax ≤ OPT. In order to

achieve a relative error of at most ε, therefore, it suffices to achieve an absolute error of at most

ε profitmax.

We transform the given instance into a coarsened instance by rounding each profit down to

a multiple of K = ε profitmax /n. In so doing, we reduce each profit by less than ε profitmax /n.

Consequently, since the optimal solution consists of no more than n items, the profit of this optimal

solution is reduced by less than ε profitmax in total. Thus, the optimal value for the coarsened

instance is at least OPT− ε profitmax, which is in turn at least (1 − ε) OPT. The corresponding

solution, when measured according to the original profits, has value at least this much. Thus we

need only solve the coarsened instance optimally in order to get a performance guarantee of 1− ε.
Before addressing the solution of the coarsened instance, note that the optimal value is the

sum of at most n profits, each at most profitmax. Thus OPT ≤ n2K/ε. The optimal value for the

coarsened instance is therefore also at most n2K/ε.

5This terminology is the most frequently used, but one also finds alternative terminology in the literature. Con-
fusingly, some authors have used the term 1/ρ-approximation algorithm or (1 − ρ)-approximation algorithm to refer
to what we call a ρ-approximation algorithm.
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To solve the coarsened instance optimally, we use dynamic programming. Note that for the

coarsened instance, each achievable total profit can be written as i ·K for some integer i ≤ n2/ε.

The dynamic-programming algorithm constructs an dn2/εe × (n + 1) table T [i, j] whose i, j entry

is the minimum weight required to achieve profit i ·K using a subset of the items 1 through j. The

entry is infinity if there is no such way to achieve that profit.

To fill in the table, the algorithm initializes the entries T [i, 0] to infinity, then executes the

following step for j = 1, 2, . . . , n:

For each i, set T [i, j] := min{T [i, j − 1],weightj +T [i− ( ̂profitj/K), j − 1]}

where ̂profitj is the profit of item j in the rounded-down instance. A simple induction on j shows

that the calculated values are correct. The optimal value for the coarsened instance is

ÔPT = max{iK | T [i, n] ≤ 1}.

The above calculates the optimal value for the coarsened instance; as usual in dynamic program-

ming, a corresponding feasible solution can easily be computed if desired.

6.1 Other problems having polynomial approximation schemes

The running time of the knapsack approximation scheme depends polynomially on 1/ε. Such a

scheme is called a fully polynomial approximation scheme. Most natural NP-complete optimization

problems are strongly NP-hard, meaning essentially that the problems are NP-hard even when the

numbers appearing in the input are restricted to be no larger in magnitude than the size of the

input. For such a problem, we cannot expect a fully polynomial approximation scheme to exist

(?, §4.2). On the other hand, a variety of NP-hard problems in fixed-dimensional Euclidean space

have approximation schemes. For instance, given a set of points in the plane:

Covering with Disks: Find a minimum set of area-1 disks (or squares, etc.) covering all the

points (?, §9.3.3).

Euclidean Traveling Salesman: Find a closed loop passing through each of the points and

having minimum total arc length (?).

Euclidean Steiner Tree: Find a minimum-length set of segments connecting up all the points

(?).

Similarly, many problems in planar graphs or graphs of fixed genus can be have polynomial

approximation schemes (?, §9.3.3), For instance, given a planar graph with weights assigned

to its vertices:

Maximum-Weight Independent Set: Find a maximum-weight set of vertices, no two of which

are adjacent.

Minimum-Weight Vertex Cover: Find a minimum-weight set of vertices such that every edge

is incident to at least one of the vertices in the set.

The above algorithms use relatively more sophisticated and varied coarsening techniques.
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7 Constant-factor performance guarantees

We have seen that, assuming P6=NP, rescalable NP-hard problems do not have polynomial-time

approximation algorithms with small absolute errors but may have fully polynomial approximation

schemes, while strongly NP-hard problems do not have fully polynomial approximation schemes but

may have polynomial approximation schemes. Further, there is a class of problems that do not have

approximation schemes: for each such problem there is a constant c such that any polynomial-time

approximation algorithm for the problem has relative error at least c (assuming P6= NP). For such

a problem, the best one can hope for is an approximation algorithm with constant performance

ratio.

Our example of such a problem is the vertex cover problem: given a graph G, find a minimum-

size set C (a vertex cover) of vertices such that every edge in the graph is incident to some vertex

in C. Here the feasible region P consists of the vertex covers in G, while the objective function is

the size of the cover. Here is a simple approximation algorithm (?):

1. Find a maximal independent set S of edges in G.

2. Let C be the vertices incident to edges in S.

(A set S of edges is independent if no two edges in S share an endpoint. The set S is maximal if

no larger independent set contains S.) The reader may wish to verify that the set S can be found

in linear time, and that because S is maximal, C is necessarily a cover.

What performance guarantee can we show? Since the edges in S are independent, any cover

must have at least one vertex for each edge in S. Thus S is a witness proving that any cover has

at least |S| vertices. On the other hand, the cover C has 2|S| vertices. Thus the cover returned by

the algorithm is at most twice the size of the optimal vertex cover.

The weighted vertex cover problem. The weighted vertex cover problem is a generalization of

the vertex cover problem. An instance is specified by giving a graph G = (V,E) and, for each vertex

v in the graph, a number wt(v) called its weight. The goal is to find a vertex cover minimizing the

total weight of the vertices in the cover. Here is one way to represent the problem as an integer

linear program:

minimize
∑
v∈V

wt(v)x(v)

subject to

 x(u) + x(v) ≥ 1 ∀{u, v} ∈ E
x(v) ∈ {0, 1} ∀v ∈ V.

There is one {0, 1}-variable x(v) for each vertex v representing whether v is in the cover or not,

and there are constraints for the edges that model the covering requirement. The feasible region

of this program corresponds to the set of vertex covers. The objective function corresponds to the

total weight of the vertices in the cover. Relaxing the integrality constraints yields
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minimize
∑
v∈V

wt(v)x(v)

subject to

 x(u) + x(v) ≥ 1 ∀{u, v} ∈ E
x(v) ≥ 0 ∀v ∈ V.

This relaxed problem is called the fractional weighted vertex cover problem; feasible solutions to

it are called fractional vertex covers.6

Rounding a fractional solution to a true solution. By solving this linear program, an

optimal fractional cover can be found in polynomial time. For this problem, it is possible to

convert a fractional cover into an approximately optimal true cover by rounding the fractional

cover in a simple way:

1. Solve the linear program to obtain an optimal fractional cover x∗.

2. Let C =
{
v ∈ V : x∗(v) ≥ 1

2

}
.

The set C is a cover because for any edge, at least one of the endpoints must have fractional weight

at least 1/2. The reader can verify that the total weight of vertices in C is at most twice the

total weight of the fractional cover x∗. Since the fractional solution was an optimal solution to a

relaxation of the original problem, this is a 2-approximation algorithm (?).

For most problems, this simple kind of rounding is not sufficient. The previously discussed

technique called randomized rounding is more generally useful.

Primal-dual algorithms — witnesses via duality. For the purposes of approximation, solving

a linear program exactly is often unnecessary. One can often design a faster algorithm based on the

witness technique, using the fact that every linear program has a well-defined notion of “witness”.

The witnesses for a linear program P are the feasible solutions to another related linear program

called the dual of P.

Suppose our original problem is a minimization problem. Then for each point y in the feasible

region of the dual problem, the value of the objective function at y is a lower bound on the value of

the optimal value of the original linear program. That is, any feasible solution to the dual problem

is a possible witness — both for the original integer linear program and its relaxation. For the

weighted vertex cover problem, the dual is the following:

maximize
∑
e∈E

y(e)

subject to


∑
e3v y(e) ≤ wt(v) ∀v ∈ V

y(e) ≥ 0 ∀e ∈ E.

A feasible solution to this linear program is called an edge packing. The constraints for the vertices

are called packing constraints.

6The reader may wonder whether additional constraints of the form x(v) ≤ 1 are necessary. In fact, assuming the
vertex weights are non-negative, there is no incentive to make any x(v) larger than 1, so such constraints would be
redundant.
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Recall the original approximation algorithm for the unweighted vertex cover problem: find a

maximal independent set of edges S; let C be the vertices incident to edges in S. In the analysis,

the set S was the witness.

Edge packings generalize independent sets of edges. This observation allows us to generalize

the algorithm for the unweighted problem. Say an edge packing is maximal if, for every edge, one

of the edge’s vertices has its packing constraint met. Here is the algorithm:

1. Find a maximal edge packing y.

2. Let C be the vertices whose packing constraints are tight for y.

The reader may wish to verify that a maximal edge packing can easily be found in linear time and

that the set C is a cover because y is maximal.

What about the performance guarantee? Since only vertices whose packing constraints are tight

are in C, and each edge has only two vertices, we have∑
v∈C

wt(v) =
∑
v∈C

∑
e3v

y(e) ≤ 2
∑
e∈E

y(e).

Since y is a solution to the dual,
∑
e y(e) is a lower bound on the weight of any vertex cover,

fractional or otherwise. Thus, the algorithm is a 2-approximation algorithm.

Summary. This is the general primal-dual recipe:

1. Formulate the original NP-hard problem as an integer linear programming problem (IP).

2. Relax the program IP to obtain a linear program (LP).

3. Use the dual (DLP) of LP as a source of witnesses.

Beyond these general guidelines, the algorithm designer is still left with the task of figuring out

how to find a good solution and witness. See (?, Ch. 4) for an approach that works for a wide class

of problems.

7.1 Other optimization problems with constant-factor approximations

Constant-factor approximation algorithms are known for problems from many areas. In this section,

we describe a sampling of these problems. For each of the problems described here, there is no

polynomial approximation scheme (unless P=NP); thus constant-factor approximation algorithms

are the best we can hope for. For a typical problem, there will be a simple algorithm achieving a

small constant factor while there may be more involved algorithms achieving better factors. The

factors known to be achievable typically come close to, but do not meet, the best lower bounds

known (assuming P6=NP).

For the problems below, we omit discussion of the techniques used; many of the problems are

solved using a relaxation of some form, and (possibly implicitly) the primal-dual recipe. Many of

these problems have polynomial approximation schemes if restricted to graphs induced by points

in the plane or constant-dimensional Euclidean space (see Section 6.1).
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MAX-SAT: Given a propositional formula in conjunctive normal form (an “and” of “or”’s of

possibly negated Boolean variables), find a truth assignment to the variables that maximizes the

number of clauses (groups of “or”’ed variables in the formula) that are true under the assignment.

A variant called MAX-3SAT restricts to the formula to have three variables per clause. MAX-3SAT

is a canonical example of a problem in the complexity class MAX-SNP (?, §10.3).

MAX-CUT: Given a graph, partition the vertices of the input graph into two sets so as to

maximize the number of edges with endpoints in distinct sets. For MAX-CUT and MAX-SAT

problems, the best approximation algorithms currently known rely on randomized rounding and a

generalization of linear programming called semidefinite programming (?, §11.3).

Shortest Superstring: Given a set of strings σ1, . . . , σk, find a minimum-length string containing

all σi’s. This problem has applications in computational biology (?; ?).

K-Cluster: Given a graph with weighted edges and given a parameter k, partition the vertices

into k clusters so as to minimize the maximum distance between any two vertices in the same

cluster. For this and related problems see (?, §9.4).

Traveling Salesman: Given a complete graph with edge weights satisfying the triangle inequality,

find a minimum-length path that visits every vertex of the graph (?, Ch. 8).

Edge and Vertex Connectivity: Given a weighted graph G = (V,E) and an integer k, find a

minimum-weight edge set E′ ⊆ E such that between any pair of vertices, there are k edge-disjoint

paths in the graph G′ = (V,E′). Similar algorithms handle the goal of k vertex-disjoint paths and

the goal of augmenting a given graph to achieve a given connectivity (?, Ch. 6)

Steiner Tree: Given an undirected graph with positive edge-weights and a subset of the vertices

called terminals, find a minimum-weight set of edges through which all the terminals (and possibly

other vertices) are connected (?, Ch. 8). The Euclidean version of the problem is “Given a set of

points in Rn, find a minimum-total-length union of line segments (with arbitrary endpoints) that

is connected and contains all the given points.”

Steiner Forest: Given a weighted graph and a collection of groups of terminals, find a minimum-

weight set of edges through which every pair of terminals within each group are connected (?, Ch.

4). The algorithm for this problem is based on a primal-dual framework that has been adapted to

a wide variety of network design problems. See Section 8.1.

8 Logarithmic performance guarantees

When a constant-ratio performance guarantee is not possible, a slowly-growing ratio is the next

best thing. The canonical example of this is the set cover problem: Given a family of sets F over

a universe U , find a minimum-cardinality set cover C — a collection of the sets that collectively

contain all elements in U . In the weighted version of the problem, each set also has a weight and the
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goal is to find a set cover of minimum total weight. This problem is important due to its generality.

For instance, it generalizes the vertex cover problem.

Here is a simple greedy algorithm:

1. Let C ← ∅.

2. Repeat until all elements are covered: add a set S to C maximizing

the number of elements in S not in any set in C

wt(S)
.

3. Return C.

The algorithm has the following performance guarantee (?, §3.2):

Theorem The greedy algorithm for the weighted set cover problem is an Hs-approximation algo-

rithm, where s is the maximum size of any set in F .

By definition Hs = 1 + 1
2 + 1

3 + ·+ 1
s ; also, Hs ≤ 1 + ln s.

We will give a direct argument for the performance guarantee and then relate it to the general

primal-dual recipe. Imagine that as the algorithm proceeds, it assigns charges to the elements as

they are covered. Specifically, when a set S is added to the cover C, if there are k elements in S

not previously covered, assign each such elements a charge of wt(S)/k. Note that the total charge

assigned over the course of the algorithm equals the weight of the final cover C.

Next we argue that the total charge assigned over the course of the algorithm is a lower bound

on Hs times the weight of the optimal vertex cover. These two facts together prove the theorem.

Suppose we could prove that for any set T in the optimal cover C∗, the elements in T are

assigned a total charge of at most wt(T )Hs. Then we would be done, because every element is in

at least one set in the optimal cover:∑
i∈U

charge(i) ≤
∑
T∈C∗

∑
i∈T

charge(i) ≤
∑
T∈C∗

wt(T )Hs.

So, consider, for example, a set T = {a, b, c, d, e, f} with wt(T ) = 3. For convenience, assume

that the greedy algorithm covers elements in T in alphabetical order. What can we say about the

charge assigned to a? Consider the iteration when a was first covered and assigned a charge. At the

beginning of that iteration, T was not yet chosen and none of the 6 elements in T were yet covered.

Since the greedy algorithm had the option of choosing T , whatever set it did choose resulted in a

charge to a of at most wt(T )/|T | = 3/6.

What about the element b? When b was first covered, T was not yet chosen, and at least

5 elements in T remained uncovered. Consequently, the charge assigned to b was at most 3/5.

Reasoning similarly, the elements c, d, e, and f were assigned charges of at most 3/4, 3/3, 3/2, and

3/1, respectively. The total charge to elements in T is at most

3× (1/6 + 1/5 + 1/4 + 1/3 + 1/2 + 1/1) = wt(T )H|T | ≤ wt(T )Hs.

This line of reasoning easily generalizes to show that for any set T , the elements in T are assigned

a total charge of at most wt(T )Hs. �
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Underlying duality. What role does duality and the primal-dual recipe play in the above anal-

ysis? A natural integer linear program for the weighted set cover problem is

minimize
∑
S∈F

wt(S)x(S)

subject to


∑
S3i x(S) ≥ 1 ∀i ∈ U

x(S) ∈ {0, 1} ∀S ∈ F .

Relaxing this integer linear program yields the linear program

minimize
∑
S∈F

wt(S)x(S)

subject to


∑
S3i x(S) ≥ 1 ∀i ∈ U

x(S) ≥ 0 ∀S ∈ F .

A solution to this linear program is called a fractional set cover. The dual is

maximize
∑
i∈U

y(i)

subject to


∑
i∈S y(i) ≤ wt(S) ∀S ∈ F

y(i) ≥ 0 ∀i ∈ U .

The inequalities for the sets are called packing constraints. A solution to this dual linear program

is called an element packing. In fact, the “charging” scheme in the analysis is just an element

packing y, where y(i) is the charge assigned to i divided by Hs. In this light, the previous analysis

is simply constructing a dual solution and using it as a witness to show the performance guarantee.

8.1 Other problems having poly-logarithmic performance guarantees

Minimizing a Linear Function subject to a Submodular Constraint: This is a natural

generalization of the weighted set cover problem. Rather than state the general problem, we give

the following special case as an example: Given a family F of sets of n-vectors, with each set in F
having a cost, find a subfamily of sets of minimum total cost whose union has rank n. A natural

generalization of the greedy set cover algorithm gives a logarithmic performance guarantee (?).

Vertex-Weighted Network Steiner Tree: Like the network Steiner tree problem described

in Section 7.1, an instance consists of a graph and a set of terminals; in this case, however, the

graph can have vertex weights in addition to edge weights. An adaptation of the greedy algorithm

achieves a logarithmic performance ratio.

Network Design Problems: This is a large class of problems generalizing the Steiner forest

problem (see Section 7.1). An example of a problem in this class is survivable network design:

given a weighted graph G = (V,E) and a non-negative integer ruv for each pair of vertices, find a

minimum-cost set of edges E′ ⊆ E such that for every pair of vertices u and v, there are at least

ruv edge-disjoint paths connecting u and v in the graph G = (V,E′). A primal-dual approach,

generalized from an algorithm for the Steiner forest problem, yields good performance guarantees

for problems in this class. The performance guarantee depends on the particular problem; in some
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cases it is known to be bounded only logarithmically (?, Ch. 4). For a commercial application of

this work see (?).

Graph Bisection: Given a graph, partition the nodes into two sets of equal size so as to minimize

the number of edges with endpoints in different sets. An algorithm to find an approximately

minimum-weight bisector would be remarkably useful, since it would provide the basis for a divide-

and-conquer approach to many other graph optimization problems. In fact, a solution to a related

but easier problem suffices.

Define a 1
3 -balanced cut to be a partition of the vertices of a graph into two sets each containing

at least one-third of the vertices; its weight is the total weight of edges connecting the two sets.

There is an algorithm to find a 1
3 -balanced cut whose weight is O(log n) times the minimum weight

of a bisector. Note that this algorithm is not, strictly speaking, an approximation algorithm for

any one optimization problem: the output of the algorithm is a solution to one problem while the

quality of the output is measured against the optimal value for another. (We call this kind of

performance guarantee a “bait-and-switch” guarantee.) Nevertheless, the algorithm is nearly as

useful as a true approximation algorithm would be because in many divide-and-conquer algorithms

the precise balance is not critical. One can make use of the balanced-cut algorithm to obtain

approximation algorithms for many problems, including the following.

Optimal Linear Arrangement: Assign vertices of a graph to distinct integral points on the

real number line so as to minimize the total length of edges.

Minimizing Time and Space for Sparse Gaussian Elimination: Given a sparse, positive-

semidefinite linear system, the order in which variables are eliminated affects the time and storage

space required for solving the system; choose an ordering to simultaneously minimize both time

and storage space required.

Crossing Number: embed a graph in the plane so as to minimize the number of edge-crossings.

The approximation algorithms for the above three problems have performance guarantees that

depend on the performance guarantee of the balanced-separator algorithm. It is not known whether

the latter performance guarantee can be improved: there might be an algorithm for balanced

separators that has a constant performance ratio.

There are several other graph-separation problems for which approximation algorithms are

known, e.g. problems involving directed graphs. All these approximation algorithms for cut prob-

lems make use of linear-programming relaxation. See (?, Ch. 5).

9 Multi-criteria problems

In many applications, there are two or more objective functions to be considered. There have been

some approximation algorithms developed for such multi-criteria optimization problems (though

much work remains to be done). Several problems in previous sections, such as the k-cluster

problem described in Section 7.1, can be viewed as a bi-criteria problem: there is a budget imposed

on one resource (the number of clusters), and the algorithm is required to approximately optimize
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use of another resource (cluster diameter) subject to that budget constraint. Another example is

scheduling unrelated parallel machines with costs: for a given budget on cost, jobs are assigned to

machines in such a way that the cost of the assignment is under budget and the makespan of the

schedule is nearly minimum.

Other approximation algorithms for bi-criteria problems use the bait-and-switch idea men-

tioned in Section 8.1. For example, there is a polynomial approximation scheme for variant of the

minimum-spanning-tree problem in which there are two unrelated costs per edge, say weight and

length: given a budget L on length, the algorithm finds a spanning tree whose length is at most

(1 + ε)L and whose weight is no more than the minimum weight of a spanning tree having length

at most L (?).

10 Hard-to-approximate problems

For some optimization problems, worst-case performance guarantees are unlikely to be possible: it

is NP-hard to approximate these problems even if one is willing to accept very poor performance

guarantees. Following are some examples (?, §10.5,10.6).

Maximum Clique: Given a graph, find a largest set of vertices that are pairwise adjacent (see

also (?)).

Minimum Vertex Coloring: Given a graph, color the vertices with a minimum number of

colors so that adjacent vertices receive distinct colors.

Longest Path: Given a graph, find a longest simple path.

Max Linear Satisfy: Given a set of linear equations, find a largest possible subset that are

simultaneously satisfiable.

Nearest Codeword: Given a linear error-correcting code specified by a matrix, and given a

vector, find the codeword closest in Hamming distance to the vector.

Nearest Lattice Vector: Given a set of vectors v1, . . . , vn and a vector v, find an integer linear

combination of the vi that is nearest in Euclidean distance to v.

11 Research Issues and Summary

We have given examples for the techniques most frequently used to obtain approximation algorithms

with provable performance guarantees, the use of witnesses, relaxation, and coarsening. We have

categorized NP-hard optimization problems according to the performance guarantees achievable in

polynomial time:

1. a small additive error,

2. a relative error of ε for any fixed positive ε,
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3. a constant-factor performance guarantee,

4. a logarithmic- or polylogarithmic-factor performance guarantee,

5. no significant performance guarantee.

The ability to categorize problems in this way has been greatly aided by recent research devel-

opments in complexity theory. Novel techniques have been developed for proving the hardness of

approximation of optimization problems. For many fundamental problems, we can state with con-

siderable precision how good a performance guarantee can be achieved in polynomial time: known

lower and upper bounds match or nearly match. Research towards proving matching bounds

continues. In particular, for several problems for which there are logarithmic-factor performance

guarantees (e.g. balanced cuts in graphs), researchers have so far not ruled out the existence of

constant-factor performance guarantees.

Another challenge in research is methodological in nature. This chapter has presented meth-

ods of worst-case analysis: ways of universally bounding the error (relative or absolute) of an

approximation algorithm. This theory has led to the development of many interesting and useful

algorithms, and has proved useful in making distinctions between algorithms and between opti-

mization problems. However, worst-case bounds are clearly not the whole story. Another approach

is to develop algorithms tuned for a particular probability distribution of inputs, e.g. the uniform

distribution. This approach is of limited usefulness because the distribution of inputs arising in a

particular application rarely matches that for which the algorithm was tuned. Perhaps the most

promising approach would address a hybrid of the worst-case and probabilistic models. The per-

formance of an approximation algorithm would be defined as the probabilistic performance on a

probability distribution selected by an adversary from among a large class of distributions. Blum

(?) has has presented an analysis of this kind in the context of graph coloring, and others (see (?,

13.7) and (?)) have addressed similar issues in the context of on-line algorithms.

12 Defining Terms

ρ-approximation algorithm — An approximation algorithm that is guaranteed to find a solution

whose value is at most (or at least, as appropriate) ρ times the optimum. The ratio ρ is the

performance ratio of the algorithm.

absolute performance guarantee — An approximation algorithm with an absolute performance

guarantee is guaranteed to return a feasible solution whose value differs additively from the

optimal value by a bounded amount.

approximation algorithm — For solving an optimization problem. An algorithm that runs in

time polynomial in the length of the input and outputs a feasible solution that is guaranteed

to be nearly optimal in some well-defined sense called the performance guarantee.

coarsening — To coarsen a problem instance is to alter it, typically restricting to a less complex

feasible region or objective function, so that the resulting problem can be efficiently solved,

typically by dynamic programming. This is not standard terminology.

19



dual linear program — Every linear program has a corresponding linear program called the dual.

For the linear program under linear program, the dual is maxy
{
b · y : AT y ≤ c and y ≥ 0

}
.

For any solution x to the original linear program and any solution y to the dual, we have

c · x ≥ (AT y)Tx = yT (Ax) ≥ y · b. For optimal x and y, equality holds. For a problem

formulated as an integer linear program, feasible solutions to the dual of a relaxation of the

program can serve as witnesses.

feasible region — See optimization problem.

feasible solution — Any element of the feasible region of an optimization problem.

fractional solution — Typically, a solution to a relaxation of a problem.

fully polynomial approximation scheme — An approximation scheme in which the running

time of Aε is bounded by a polynomial in the length of the input and 1/ε.

integer linear program — A linear program augmented with additional constraints specifying

that the variables must take on integer values. Solving such problems is NP-hard.

linear program — A problem expressible in the following form. Given an n × m real matrix

A, m-vector b and n-vector c, determine minx
{
c · x : Ax ≥ b and x ≥ 0

}
where x ranges over

all n-vectors and the inequalities are interpreted component-wise (i.e. x ≥ 0 means that the

entries of x are non-negative).

MAX-SNP — A complexity class consisting of problems that have constant-factor approximation

algorithms, but no approximation schemes unless P=NP.

mixed integer linear program — A linear program augmented with additional constraints spec-

ifying that some of the variables must take on integer values. Solving such problems is NP-

hard.

objective function — See optimization problem.

optimal solution — To an optimization problem. A feasible solution minimizing (or possibly

maximizing) the value of the objective function.

optimal value — The minimum (or possibly maximum) value taken on by the objective function

over the feasible region of an optimization problem.

optimization problem — An optimization problem consists of a set P, called the feasible region

and usually specified implicitly, and a function f : P → R, the objective function.

performance guarantee — See approximation algorithm.

performance ratio — See ρ-approximation algorithm.

polynomial approximation scheme — A collection of algorithms {Aε : ε > 0}, where each Aε
is a (1 + ε)-approximation algorithm running in time polynomial in the length of the input.

There is no restriction on the dependence of the running time on ε.
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randomized rounding — A technique that uses the probabilistic method to convert a solution

to a relaxed problem into an approximate solution to the original problem.

relative performance guarantee — An approximation algorithm with a relative performance

guarantee is guaranteed to return a feasible solution whose value is bounded by a multiplica-

tive factor times the optimal value.

relaxation — A relaxation of an optimization problem with feasible region P is another optimiza-

tion problem with feasible region P ′ ⊃ P and whose objective function is an extension of the

original problem’s objective function. The relaxed problem is typically easier to solve. Its

value provides a bound on the value of the original problem.

rescalable — An optimization problem is rescalable if, given any instance of the problem and

integer λ > 0, there is an easily computed second instance that is the same except that the

objective function for the second instance is (element-wise) λ times the objective function of

the first instance. For such problems, the best one can hope for is a multiplicative performance

guarantee, not an absolute one.

semidefinite programming — A generalization of linear programming in which any subset of

the variables may be constrained to form a semi-definite matrix. Used in recent results

obtaining better approximation algorithms for cut, satisfiability, and coloring problems.

strongly NP-hard — A problem is strongly NP-hard if it is NP-hard even when any numbers

appearing in the input are bounded by some polynomial in the length of the input.

triangle inequality — A complete weighted graph satisfies the triangle inequality if wt(u, v) ≤
wt(u,w)+wt(w, v) for all vertices u, v, and w. This will hold for any graph representing points

in a metric space. Many problems involving edge-weighted graphs have better approximation

algorithms if the problem is restricted to weights satisfying the triangle inequality.

witness — A structure providing an easily verified bound on the optimal value of an optimiza-

tion problem. Typically used in the analysis of an approximation algorithm to prove the

performance guarantee.
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Further Information

For an excellent survey of the field of approximation algorithms, focusing on recent results and

research issues, see the survey by David Shmoys (?). Further details on almost all of the topics in

this chapter, including algorithms and hardness results, can be found in the definitive book edited

by Dorit Hochbaum (?). NP-completeness is the subject of the classic book by Michael Garey and

David Johnson (?). An article by Johnson anticipated many of the issues and methods subsequently

developed (?). Randomized rounding and other probabilistic techniques used in algorithms are

the subject of an excellent text by Motwani and Raghavan (?). As of this writing, a searchable

compendium of approximation algorithms and hardness results, by Crescenzi and Kann, is available

on-line (?).
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