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Abstract 

Given a directed graph G = ( V,E), a natural problem is to choose a minimum number of the 

edges in E such that, for any two vertices u and v, if there is a path from u to v in E, then there 
is a path from u to v among the chosen edges. We show that in graphs having no directed cycle 
with more than three edges, this problem is equivalent to Maximum Bipartite Matching. This 
leads to a small improvement in the performance guarantee of the previous best approximation 
algorithm for the general problem. 

1. Introduction 

Let G = (V, E) be a directed graph. The minimum equivalent graph (MEG) problem 
is the following: find a smallest subset S 2 E of the edges such that, for any two vertices 
u and u, if there is a path from u to v in E then there is a path from u to u using only 
edges in S. The problem is NP-hard [3]. A c-approximate solution is a subset of edges 
providing the necessary paths of size at most c times the minimum. A c-approximation 
algorithm is a polynomial-time algorithm guaranteeing a c-approximate solution. 

Moyles and Thompson [8] observed that any solution to the MEG problem decom- 
poses into solutions for each strongly connected component and a solution for the 
component graph (the graph obtained by contracting each strongly connected com- 
ponent). Thus, the problem reduces in linear time to two cases: the graph is either 
acyclic or strongly connected. If the graph is acyclic, the MEG problem is equivalent 
to the transitive reduction problem, which was shown by Aho et al. to be equivalent 
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to transitive closure [l]. Thus, we assume the graph is strongly connected, so that the 

problem is to find a small subset of the edges preserving the strong connectivity. We 

refer to this problem as the strongly connected spanning subgraph (SCSS) problem. 

The only known c-approximation algorithm for any c < 2 works by repeatedly 

contracting cycles [6]. Each cycle contracted is either a longest cycle in the current 

graph, or has length at least some constant k. The set of contracted edges yields 

the set S. As k grows, the performance guarantee of this algorithm rapidly tends to 

7c2/6 M 1.64. 

A natural modification is to solve the problem optimally as soon as the maximum 

cycle length in the current graph drops below some threshold. The problem remains 

NP-hard even when the maximum cycle length is five, but we conjectured in [6] that 

it was solvable in polynomial time if the maximum cycle length is three. We use 

SCSSs to denote the SCSS problem with this restriction. In this paper we confirm the 

conjecture: 

Theorem 1.1. The SCC& problem in n-vertex digraphs reduces in O(n*) time to 

Minimum Bipartite Edge Cover. 

This gives an 0(n2 + mfi)-time algorithm for the SCCSs problem, since Mini- 

mum Bipartite Edge Cover is trivially equivalent to Maximum Bipartite Matching [9], 

which can be solved in O(mJil) time [4]. Modifying the cycle-contraction algorithm 

correspondingly reduces its performance guarantee by l/36. 

Corollary 1.2. For any c > x2/6 - l/36 M 1.61, there exists a c-approximation algo- 
rithm for the MEG problem. 

(For graphs with bounded cycle size, a slightly stronger performance guarantee can 

be shown as described at the end of Section 4.) This corollary follows from a straight- 

forward modification to the analysis in [6] of the algorithms described above. 

Here is an overview of the reduction of SCSSa to Edge Cover. We classify each 

edge as either necessary (removal of the edge leaves the graph not strongly connected) 

or redundant (otherwise). It turns out that any SCSS consists of the necessary edges 

together with a set of redundant edges sufficient to ensure that each necessary edge 

lies on some cycle in the SCSS. We characterize the manner in which redundant edges 

can lie on such cycles - specifically, each cycle can have at most one redundant edge 

and each redundant edge lies on exactly one cycle (and thus “provides a cycle” for at 

most two necessary edges). This allows the reduction. 

A natural question is whether SCSSs is fundamentally simpler than Bipartite Edge 

Cover. In Section 3 we show it is not: 

Theorem 1.3. Minimum Bipartite Edge Cover reduces in linear time to SCS&. 

Comparison to undirected graphs: When the maximum cycle length is three, the 

SCSS problem is as hard as Bipartite Matching. When it is five, the problem is NP-hard. 
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When it is seventeen, the problem is MAX-SNP-hard [6]. The latter precludes even 

a polynomial-time approximation scheme unless P=NP. Thus, digraphs with bounded 

cycle length can have rich connectivity structure. 

This highlights the fundamental difference between connectivity in directed and undi- 

rected graphs. The analogous problem in undirected graphs is to find a minimum-size 

subset of edges preserving 2-edge connectivity. This problem (and many others that 

are NP-hard in general) can be solved optimally in polynomial time for graphs with 

bounded cycle length [2]. 

Other related work: Moyles and Thompson [8] gave an exponential-time algorithm 

for the MEG problem; Hsu [5] gave a polynomial-time algorithm for the acyclic case. 

Contents: The body of the paper is organized as follows. Section 2 contains the 

reduction of SCSSs to Edge Cover (proving Theorem 1 .l ). Section 3 notes that Edge 

Cover reduces in linear time to SCSSs, so that (with respect to quadratic time reduc- 

tions) the problems are equivalent. Section 4 describes the application: the improved 

approximation algorithm for the general MEG problem. 

2. Reduction: SCSSJ to Edge Cover 

Let G = (V,E) be a strongly connected digraph with maximum cycle length 3 

or less. Assume that G has at least four vertices, none of which are cut vertices 

(that is, vertices whose removal disconnects the underlying undirected graph). This is 

without loss of generality, because by standard techniques, in O(n + m) time, the cut 

vertices can be found and the graph partitioned into 2-connected components. Clearly, a 

c-approximation for each component yields a c-approximation for G. 

Definition 1. An edge is redundant if deleting the edge from G leaves a strongly 

connected graph. Otherwise it is necessary. 
An edge (u, v) is unsatisfied if there is no path from v to u consisting of necessary 

edges. 

A redundant edge e provides a cycle for an unsatisfied edge (u, v) if there is a path 

from v to u consisting of necessary edges and e. 

Here is an outline of the reduction. Since the necessary edges are in any SCSS, the 

question is which redundant edges to add. It turns out that each redundant edge lies on 

exactly one cycle (Lemma 2.1) and thus provides a cycle for at most two unsatisfied 

edges. Further, no cycle has more than one redundant edge, so that a set of edges is 

an SCSS if and only if it contains the necessary edges and, for each unsatisfied edge 

e, a redundant edge providing a cycle for e (Lemma 2.2). 

We construct an equivalent instance of Edge Cover - an undirected graph G’ that 

has a vertex w’ for each unsatisfied edge w in G and an edge r’ for each redundant 
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edge r in G, where r’ is incident to w’ if r provides a cycle for w. It turns out that 

the graph G’ is acyclic (in the undirected sense) and thus bipartite (Lemma 2.3). 

Finally, the redundant edges and the graph G’ can be computed in O(n*) time 

(Lemmas 2.4 and 2.5). 

2.1. Reduction to bipartite Edge Cover 

Here is the first essential fact. 

Lemma 2.1. Each redundant edge lies on exactly one cycle in G. 

Proof. We use here the assumption that G has at least four vertices, none of which 

are cut vertices. 

Since G is strongly connected, each edge lies on at least one cycle. Suppose for 

contradiction that some redundant edge (~,a) lies on more than one cycle. There are 

(at least) two distinct paths from u to u. At least one of the paths is of length two. 

Denote this path (u,x, u). 

Since edge (u, v) is redundant, there is a path P,, from u to v other than edge (u, v). 

P,, must contain X, for otherwise P,, and the path (u,x, u) would form a cycle of more 

than three edges. 

If the edge (a, u) is present in G, then P,, is of length two (as it forms a cycle 

with (v,u)) and hence is the path (u,x,u). Thus, in this case, all six possible edges 

are present between the three vertices u, X, and a. Let V, denote the vertices reachable 

from u without going through v or X. Define V, and I’, similarly. Using the strong 

connectivity of the graph and its lack of long cycles, one can easily show that these 

sets are disjoint and have no edges between them. Thus, either at least one of u, x, 

or u is a cut vertex or the graph has only these three vertices. This contradicts our 

assumption about G. 

Thus, the edge (u,u) is not present and there exists a path distinct from (v,x,u) and 

(u, u) from v to u. Denote this path, which must be of length two, by (v, y, u). The 

path P,, must contain y for the same reason P,, contains x. Thus, there is a path Q, 

without loss of generality from y to x, that does not contain u or v (see Fig. 1). This 

is a contradiction, because the edges (x, u), (u, v), and (v, y) would form a cycle of 

length at least four with the path Q. q 

Lemma 2.2. A set of edges is an SCSS ifs it contains the necessary edges and, for 
each unsatisfied edge e, some redundant edge providing a cycle for e. 

Proof, The “if” direction is straightforward. To see the converse, first note that each 

cycle in G contains at most one redundant edge (otherwise each redundant edge would 

lie on more than one cycle, violating Lemma 2.1). In fact, this also implies that unsat- 

isfied edges are not redundant, otherwise we would have a cycle with two redundant 

edges. 
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Fig. 1. No cycle has two redundant edges. 

Since the SCSS strongly connects the graph, any unsatisfied edge must form a cycle 

with the edges in the SCSS. By the preceding observation, this cycle has one redundant 

edge. 

By Lemma 2.2, the problem reduces to identifying a smallest set of redundant edges 

such that for each unsatisfied edge e in G, some redundant edge in the set provides 

a cycle for e. By Lemma 2.1, each redundant edge provides a cycle for at most two 

unsatisfied edges. 

Build a graph G’ whose vertices correspond to the unsatisfied edges. For each re- 

dundant edge e, if e provides a cycle for two unsatisfied edges, add an edge between 

the two corresponding vertices; if e provides a cycle for one unsatisfied edge, add a 

self-loop at the corresponding vertex. 

By the above discussion, a set of edges in G’ forms an edge cover if and only if the 

corresponding set of redundant edges in the original graph, together with the necessary 

edges, form an SCSS. 

So far, we have reduced our problem to Minimum Edge Cover. The next lemma 

shows that the reduction is in fact to Minimum Bipartite Edge Cover. 

Lemma 2.3. G’ is bipartite. 

Proof. We will show that the unsatisfied edges in G can be two-colored so that no 

adjacent edges have the same color. This gives the result as follows: color each vertex 

in G’ with the color of its corresponding unsatisfied edge in G; by Lemma 2.1, vertices 

that share an edge in G’ correspond to adjacent (and therefore differently colored) 

unsatisfied edges in G. Thus, no edge in G’ has two vertices of the same color. 

Assume for contradiction that the unsatisfied edges of G cannot be legally two- 

colored. Then some set C of the edges corresponds to an (odd) cycle in the underlying 

undirected graph. Let edge (u,u) be one of the edges in C. We will show that there 

is an alternate path from u to u, so that (u,v) is redundant. Since unsatisfied edges are 

not redundant, this is a contradiction. 
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It suffices to show that, for each edge (a,b) on C, there is a path from b to a that 

does not use (u,u). Suppose the return path for (a, b) does contain (u,u). The return 

path must have length two, so either u = b or v = a. 

We consider only the first case; the other is similar. Since u = b, this case reduces 

to finding a path from u to a that does not use (u, a), given that (u, ZI, a) is a return 

path for (a, u) and that (u, V) and (a, u) are unsatisfied and therefore necessary. 

Suppose edge (a, a) was necessary. Then cycle (a, u, v, a) would consist of necessary 

edges, so none of its edges would be unsatisfied. Thus, (~,a) is redundant. Let P, be 

an alternate path from v to a. P, must go through u, for otherwise Pu, and the edges 

(a, u) and (u, a) would form a cycle of length more than three. Thus, P, contains 

a path from u to a that does not go through v. This portion of P,, is the desired 

path. 0 

2.2. Complexity 

To finish the proof of Theorem 1.1, we show that the reduction can be computed in 

O(n’) time. 

Lemma 2.4. Classifving the edges as redundant or necessary requires 0(n2) time. 

Proof. Let G have n vertices and m edges. Fix a root r and find an incoming and 

an outgoing branching (spanning trees rooted at r with all edges directed towards 

or, respectively, away from Y). This can be done in O(n + m) time using depth-first 

search. Let B be the union of the sets of edges in the two branchings. There are at 

most 2n - 2 edges in B and the edges not in B are redundant. This leaves O(n) edges 

to be classified. Classify them using O(n) time per edge as follows. 

Consider an edge (u, u). Enumerate the other vertices to check for alternate paths 

from u to u of length two. If such a path exists, the edge is redundant. Otherwise, 

check for the edge (u, u). If it exists, the edge (u, u) is necessary, because any alternate 

path from u to v would have to have length two and all such paths have been checked. 

Otherwise, check all return paths of length two. If at least two of these paths exist, 

the edge is necessary by Lemma 2.1. 

Otherwise, (u, V) has a unique return path (u, w, u). If an alternate path from u to 

u exists, then it must use w (else we get a cycle of length at least four). Because of 

the edge (w,u), the path from u to w can have length at most two. Similarly, the path 

from w to u can have length at most two. Thus, w and the existence of the paths from 

u to w and w to v can be determined by enumeration in O(n) time. 0 

Lemma 2.5. Building the graph G’ requires 0(n2) time. 

Proof. Once the edges have been classified as redundant or necessary, the unsatisfied 

edges and the return paths for the redundant edges can be identified in O(n’) time as 

follows. Each edge (u, a) is redundant, or necessary but not unsatisfied, if and only if 
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Fig. 2. Bipartite Edge Cover reduces to SCSS3. 

it has a return path of one or two necessary edges. Enumerate each path of one or 

two necessary edges; let u and u be the first and last vertices on the path; if there is 

an edge (u,u), then either note its return path (if it is redundant) or note that it is 

not unsatisfied (if it is necessary). There are O(n2) such paths, since there are O(n) 

necessary edges. 0 

This proves Theorem 1.1. 

3. Reduction: Edge Cover to SCSS3 

The proof of Theorem 1.3 (Minimum Bipartite Edge Cover reduces in linear time 

to SCSSs) is somewhat simpler: 

Proof of Theorem 1.3. Given an undirected bipartite graph, construct a directed graph 

as shown in Fig. 2. Direct all the edges from the first part to the second part. Add 

a root vertex with edges to each vertex in the first part and from each vertex in the 

second part. Any edge cover in the original graph (together with the added edges) 

yields an SCSS and vice versa. 0 

4. Application to the general MEG problem 

Here we describe the improvement to the approximation algorithm for the general 

MEG problem in [6]. As usual, without loss of generality, assume the graph is strongly 

connected. The algorithm in [6] works by repeatedly contracting cycles. Each cycle 

contracted is either a longest cycle in the current graph, or has length at least some 

constant k. The set of contracted edges yields the set S. As k grows, the performance 

guarantee of the algorithm tends rapidly to rc2/6 z 1.64. 

Assume k 2 4. Modify the algorithm so that as soon as the current graph has max- 

imum cycle size three or less, it solves the problem optimally (using Theorem 1.1) 

and returns the edges in the solution for the current graph together with the edges on 

previously contracted cycles. 
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To contract an edge is to identify its endpoints in the graph as a single vertex; to 

contract a cycle is to identify all vertices on the cycle. We use the following result 

from [6]: 

Proposition 4.1 (Khuller et al. [6]). Zf the maximum cycle length in an n-vertex graph 

is /, then any SCSS has at least (n - 1 )e/(e - 1) edges. 

The proof is that any strongly connected graph can be contracted to a single vertex 

by repeatedly contracting cycles whose edges are in the SCSS; the ratio of edges 

contracted to vertices lost when one of these cycles is contracted is at least //(e - 1). 

Proof of Corollary 1.2. Initially, let the graph have n vertices. Assume ni vertices 

remain in the contracted graph after contracting cycles with i or more edges (i = 
k,k- I , . . . ,4). Finally, we get a graph H (with n4 vertices) that has no cycles of 

length four or more; the algorithm solves the SCSS problem for H optimally. 

How many edges are returned? Let OBY(G) denote the minimum size of an SCSS 

of G. In contracting cycles with at least k edges, at most (k/(k - l))(n - nk) edges 

are contributed to the solution. For 4 d i < k, in contracting cycles with i edges, 

(i/(i - l))(ni+i - ni) edges are contributed. The number of edges returned is thus at 

most 

-(ni+i - ni) + #B.F(H). 

A little work shows this is equal to 

Since &WY(H) d 2(q - l), substituting for n4 gives the upper bound 

Clearly, 09Y( G) > n - 1. For 4 < i d k, when ni vertices remain, no cycle has more 

than i - 1 edges. By Proposition 4.1, any SCSS of the current graph (and therefore 

any SCSS of G) has at least (ni - 1 )(i - 1 )/(i - 2) edges. Also 085(G) 2 COPY(H). 
Using these three facts, the above quantity, divided by OY(G), is less than 

&+i: l 1 

i=s (i - l)(i - 1) + 3 

=&+~gj. 
i=l 
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Using the identity (from [7, p.751) Cz, l/i* = 7t2/6, this is equal to 

7c2 1 1 O”l - -- 
6 36+k-1 c 

i=k 
7 

7-c* 1 1 O” 1 -- ~ 
<6-G+k-l c i=k i(i+ 1) 

712 1 1 1 =__-+--- 
6 36 k-l k 

I? 1 =-- 
6 

1, 
36 k(k- 

Similar to [6], standard techniques can yield more accurate estimates, e.g., fn* - 

$ + ( 1/2k*) + 0( 1/k3). Also following [6], if the graph initially has no cycle longer 

than e (8 > k), then the analysis can be generalized to show a performance guarantee 

of (k-’ - t-’ )/( 1 - k-l) + c:z; l/i* - A. F or instance, in a graph with no cycle 

longer than 5, the analysis bounds the performance guarantee (when k = 5) by 1.396. 
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