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LOW-DEGREE SPANNING TREES OF SMALL WEIGHT*

SAMIR KHULLERt, BALAJI RAGHAVACHARI:, AND NEAL YOUNG

Abstract. Given n points in the plane, the degree-K spanning-tree problem asks for a spanning
tree of minimum weight in which the degree of each vertex is at most K. This paper addresses
the problem of computing low-weight degree-K spanning trees for K > 2. It is shown that for an
arbitrary collection of n points in the plane, there exists a spanning tree of degree 3 whose weight is
at most 1.5 times the weight of a minimum spanning tree. It is shown that there exists a spanning
tree of degree 4 whose weight is at most 1.25 times the weight of a minimum spanning tree. These
results solve open problems posed by Papadimitriou and Vazirani. Moreover, if a minimum spanning
tree is given as part of the input, the trees can be computed in O(n) time.

The results are generalized to points in higher dimensions. It is shown that for any d >_ 3, an
arbitrary collection of points in d contains a spanning tree of degree 3 whose weight is at most 5/3
times the weight of a minimum spanning tree. This is the first paper that achieves factors better
than 2 for these problems.
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1. Introduction. Given n points in the plane, how do we find a spanning tree
of minimum weight among those in which each vertex has degree at most K? Here
the weight of an edge between two points is defined to be the Euclidean distance
between them. This problem is referred to as the Euclidean degree-K spanning tree
problem and is a generalization of the Hamilton path problem, which is known to be
NP-hard [10, 12]. When K 3, it was shown to be NP-hard by Papadimitriou and
Vazirani [15], who conjectured that it is NP-hard for K 4 as well. When K 5,
the problem can be solved in polynomial time [14].

This paper addresses the problem of computing low-weight degree-K spanning
trees for K > 2. In any metric space, it is known that there always exists a spanning
tree of degree 2 whose cost is at most twice the cost of a minimum spanning tree
(MST). This is shown by taking a Euler tour of an MST (in which each edge is
taken twice) and producing a Hamilton tour by short-cutting the Euler tour. In the
case of general metric spaces, it is easy to generate examples in which the ratio of
a shortest Hamilton path to the weight of an MST is arbitrarily close to 2. But
such examples do not translate to points in d. In view of this, Papadimitriou and
Vazirani [15] posed the problem of obtaining factors better than 2 for the Euclidean
degree-K spanning-tree problem. It should be noted that in the special case of K 2,
Christofides [3] gave a simple and elegant polynomial-time approximation algorithm
with an approximation ratio of 1.5 for computing a traveling salesperson tour for
points satisfying the triangle inequality (points in a metric space).
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1.1. Our contributions. In this paper, we show that for an arbitrary collection
of n points in the plane, there exists a degree-3 spanning tree whose weight is at most
1.5 times the weight of an MST. We also show that there exists a degree-4 spanning
tree whose weight is at most 1.25 times the weight of an MST. This solves an open
problem posed by Papadimitriou and Vazirani [15].

Moreover, if an MST is given as part of the input, the trees can be computed
in O(n) time. Note that our bound of 1.5 for the degree-3 spanning-tree problem is
an "absolute" guarantee (based on the weight of an MST) as opposed to a "relative"
guarantee for the degree-2 spanning tree obtained by Christofides [3] (based on the
weight of an optimal solution).

We also generalize our results to points in higher dimensions. We show that for
any d >_ 2, an arbitrary collection of points in }d contains a degree-3 spanning tree
whose weight is at most 5/3 times the weight of an MST. This is the first paper that
achieves factors better than 2 for these problems.

1.2. Significance of our results. Many approximation algorithms make use of
the triangle inequality to obtain approximate solutions to NP-hard problems. These
algorithms typically involve a "short-cutting" step where the triangle inequality is
used to bound the cost of the obtained solution. Examples include Christofides’s
heuristic for the traveling salesperson problem [3], biconnectivity augmentation [8],
approximate weighted matching [11], prize-collecting traveling salesperson [2], and
bounded-degree subgraphs which have low weight and small bottleneck cost [16].

A question of general interest is how to obtain improved approximation algorithms
for such problems when the points come from a Euclidean, as opposed to arbitrary,
metric space. This requires making use of more than just the triangle inequality.
Surprisingly, for most problems, improved algorithms are not known. (A notable
exception is the famous Euclidean Steiner tree problem [5, 6].) We use rudimentary
geometric techniques to obtain an improved algorithm for the Euclidean degree-K
spanning-tree problem.

The key to our method is to give short-cutting steps that are provably better than
implied by the triangle inequality alone. Lemma 3.3, which bounds the perimeter of
an arbitrary triangle in terms of distances to its vertices from any point, is typical of
the techniques that we use to get better bounds.

1.3. Related work. Papadimitriou and Vazirani showed that any MST whose
vertices have integer coordinates has maximum degree at most 5 [15]. Monma and
Suri [14] showed that for every set of points in the plane, there exists a degree-5 MST.

Many recent works have given algorithms to find subgraphs of bounded degree
that simultaneously satisfy other given constraints. A polynomial-time algorithm to
find a spanning tree or a Steiner tree of a given subset of vertices in a graph with
degree at most one more than minimum was given by Fiirer and Raghavachari [9].
This was extended to weighted graphs by Fischer [7]. He showed how to find MSTs
whose degree is within a constant multiplicative factor plus an additive O(log n) of the
optimal degree. The degree bound is improved further in the case when the number of
different edge weights is bounded by a constant. Ravi et al. [16] consider the problem
of computing bounded-degree subgraphs satisfying given connectivity properties in a
graph whose edge weights satisfy the triangle inequality. They give efficient algorithms
for computing subgraphs which have low weight and small bottleneck cost. Salowe
[18] and Das and Heffernan [4] consider the problem of computing bounded-degree
graph spanners and provide algorithms for computing them. Robins and Salowe [17]
study the maximum degrees of MSTs under various metrics.
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2. Preliminaries. Let V (vl,..., vn} be a set of n points in the plane. Let
G be the complete graph induced by V, where the weight of an edge is the Euclidean
distance between its endpoints. We use the terms points and vertices interchangeably.
Let be the Euclidean distance between vertices u and v. Let Train be an MST of
the points in V. Let w(T) denote the total weight of a spanning tree T. Let Tk denote
a spanning tree in which every vertex has degree at most k. Let degT(v) be the degree
of a vertex v in the tree T. Let AABC denote the triangle formed by points A, B,
and C. Let LABC denote the angle formed at B between line segments AB and PC.
Let ABC denote the perimeter of AABC; and more generally, let vlv2. :vk denote
the perimeter of the polygon formed by the line segments vv+l for 1 _< i <_ k, where
Vk+ Vl

In this paper, we prove the following: for an arbitrary set of points in 2,

<
(2) 2Ta" w(T4) <_ 1.25 w(Tmin).

For an arbitrary set of points in }d (d > 2),

5
(3) ST3" w(T3)

_
w(Tmin).

3. Points in the plane. We first consider the case of 2--points in the plane.
We first note some useful properties of MSTs in d.

PROPOSITION 3.1 ([15]). Let AB and BC be two edges incident to a point B in
an MST of a set of points in d. Then AABC is a largest angle in AABC.

COROLLARY 3.2. Let AB and BC be two edges incident to a point B in an
MST of a set of points in d. Then

ZABC 60,
ZBAC, ZBCA 90.

3.1. An upper bound on the perimeter of a triangle. We now prove an
upper bound on the perimeter of an arbitrary triangle in terms of distances to its
vertices from an arbitrary point. This lemma is useful in proving the performances of
our algorithms. The lemma is also interesting in its own right, and we believe that it
and the sociated techniques will be useful in other geometrical problems.

LEMMA 3.3. Let X, A, B, and C be points in d with XA XB, XC. Then

(4) ABC (3 4)+ 2(XB + XC).

Note that 3- 4 1.2. Recall that ABC is the perimeter of the triangle and
is the distance from X to Y.

Proof. Let B and C be points on XB and XC, respectively, such that
XB XC (see Fig. 1). First we observe that the lemma is true if it is true for the
points X, A, B, and C. This follows because by the triangle inequality,

ABC <_ ABtC + 2BB + 2CC.
By our assumption,

AB’C’ <_ (3x/- 4)- + 2(XB’ + XC’).

Combining the two inequalities yields the desired result. Therefore, in the rest of
the proof, we show that the lemma is true when the "arms" XA, XB, and XC are
equal.
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A

FIG. 1. Shrinking to obtain canonical form.

It is not very difficult to see that to maximize the perimeter of the triangle, X
will be in the plane defined by A, B, and C, and thus X is at the center of a circle
passing through A, B, and C.

By scaling, it suffices to consider the case when the circle has unit radius. In this
case, the right-hand side (r.h.s.) of (4) is exactly 3vf. Thus, it suffices to show that
the maximum perimeter achieved by any triangle whose vertices lie on a unit circle is
3/. This is easily proved [13].

Note that in an arbitrary metric space it is possible to have an (equilateral)
triangle of perimeter six and a point X at distance one from each vertex.

3.2. Spanning trees of degree 3. We now assume that we are given a Eu-
clidean MST T of degree at most 5. We show how to convert T into a tree of degree
at most 3. The weight of the resulting tree is at most 1.5 times the weight of T.

High level description. The tree T is rooted at an arbitrary leaf vertex. Since T
is a degree-5 tree, once it is rooted at a leaf, each vertex has at most four children.
For each vertex v, the shortest path Pv starting at v and visiting every child of v is
computed. The final tree T3 consists of the union of the paths (Pv. Figure 2 gives the
above algorithm. In analyzing the algorithm, we think of each vertex v as replacing its
edges from its children with the path Pv. The above technique of "short-cutting" the
children of a vertex by "stringing" them together has been known before, especially
in the context of computing degree-3 trees in metric spaces (see [16, 18]).

TREE-3(V, T) Find a degree-3 tree of V.
1 Root the MST T at a leaf vertex r.
2 For each vertex v E V do
3 Compute Pv, the shortest path starting at v and visiting all the children of v.
4 Return T3, the tree formed by the union of the paths (P}.

FIG. 2. Algorithm to find a degree-3 tree.

Note. Typically, the initial MST has very few nodes with degree greater than
3 [1]. In practice, it is worth modifying the algorithm to scan the vertices in preorder,
maintaining the partial tree T3 of edges added so far, and to add paths to T3 as follows.
When considering a vertex v, if the degree of v in the partial T3 is 2, add the path
Pv as described in the algorithm. Otherwise, its degree is 1, so, in this case, relax the
requirement that the added path must start at v. That is, add the shortest path that
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visits v and all of v’s children to T3 (see 3.3). This modification will never increase
the cost of the resulting tree but may offer substantially lighter trees in practice.

LEMMA 3.4. The algorithm in Fig. 2 outputs a spanning tree of degree 3.

Proof. An easy proof by induction shows that the union of the paths forms a
tree. Each vertex v is on at most two paths and is an interior vertex of at most one
path.

LEMMA 3.5. Let v be a vertex in an MST T of a set of points in 2. Let Pv be
a shortest path visiting {v} U childT(v) with v as one of its endpoints.

ve childr )

By the above lemma, each path P has weight at most 1.5 times the weight of
the edges it replaces. Thus we have the following theorem.

THEOREM 3.6. Let T be an MST of a set of points in 2. Let T3 be the spanning
tree output by the algorithm in Fig. 2.

w(T3) _< 1.5 w(T).

Proof of Lemma 3.5. We consider the various cases that arise depending on the
number of children of v. The cases when v has no children or exactly one child are
trivial.

Case 1. v has 2 children, vl, v2. There are two possible paths for Pv, namely
P1 [v, v, v2] and P2 Iv, v2, Vl]. Clearly,

w(P,) min(w(P) w(P2)) < w(P1)+ w(P2) VVl VV2
2 + - +v-y _< 1.5 (--V- + -V-5).

Case 2. v has 3 children, v, v2, V3. Let vl be the child that is nearest to v. Con-
sider the following four paths (see Fig. 3): P1 Iv, v, v2, v3], P2 Iv, v, v3, v2], P3
Iv, v2, v, v3], and P4 Iv, v3, v, v2].

V3 V3 V3 V3

Vl V2 Vl V2 Vl V2 Vl
P1 P Pa P4

FIG. 3. T3, three children.

The path Pv is at most as heavy as the lightest of {P1, P2, P3, Pa}. The weight
of the lightest of these paths is at most any convex combination of the weights of the
paths. Specifically,

w(P,) < min(w(P),w(P2) w(P3) w(P4)) < w(P)
3 3 6 6
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We will now prove that

w(P1) < 1.5 (VV-+-O+VV"5).
3 3 6 6

This simplifies to

which follows from Lemma 3.3.
Case 3. v has 4 children, vl, v2, v3, v4, ordered clockwise around v. Let v’ be

the point of intersection of the diagonals vlv3 and. Note that the diagonals do
intersect because the polygon VlV2V3V4 is convex (follows from Corollary 3.2).

Let v3 be the point that is furthest from v’, among {v, v2, v3, va}. Consider the
following two paths (see Fig. 4): P Iv, va, v, v2, v3], P2 Iv, v2, Vl, v4, v3].

Vl Vl

V4 V4

V2

V3 V3

V2

FIG. 4. T3, four children.

Clearly,

w(Pv) <_ min(w(P),w(P2)) <_ /
2 2

We will show that

(w(P1) + w(P2)) < 1.5(-9- / + VV5 / VV-)
2

This simplifies to

vv2v3va + (v--i + v--i-) <_ 3(VV- + VVS) + 2(VV + VV-).

We will first prove that

(6) vtv2v3v4 + (v--i- + v--i) <_ 3(v-v + v’v3) + 2(v’v2 +

Once we prove (6), by the triangle inequality, we can conclude that (5) is true,
since vv--y + VV5 >_ vv3 V’Vl + v’v3 and + _> v2va v’v2 + vva.
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We prove (6) by contradiction. Suppose there exists a set of points which does
not satisfy (6). Suppose we shrink v’v3 by i. The left side of the above inequality
decreases by at most 2, whereas the right side of the inequality decreases by exactly
3i. Therefore, as we shrink v’v3, the inequality stays violated. Suppose vv3 shrinks
and becomes equal to another edge vv for some i E (1, 2, 4}. We now shrink both vv3
and v v simultaneously at the same rate. Again, it is easy to show that the inequality
continues to be violated as vv3 and v’v shrink. Hence we reach a configuration where
three of the edges are equal.

Without loss of generality, the length of the three edges is 1 and the length of the
fourth edge is some e <_ 1.

There are two subcases to consider. The first is when VVl e and the second is
when v’v2 e. (The case when vv4 e is the same as the second case.)

Case 3a. vvl -e. We wish to prove that

vlv2v3va + (v-- + v-) <_ 7 + 3e.

We want to show that the function F(e) vlv2v3v4 + (v-i / v-i-v-) 7 3e is
nonpositive in the domain 0 _< e _< 1. Simplifying, we get

F(e) 2v- + + + 2v-- 7 3e.

Each of in the definition of F is a convex function of e due to the following
reason. Let p be the point closest to vj on the line connecting vi and v’. Observe
that as vi moves towards v, decreases if vi is moving towards p and increases
otherwise. Since F is a sum of convex functions minus a linear function, it is a convex
function of e. Therefore, it is maximized at either e --- 0 or e 1.

When e 1, all four points are at the same distance from v. If angle /v4vvl a
then F can be written as a function of a single variable a and it can be verified that
F reaches a maximum value of 100vf0--.8- 10, which is nonpositive.

When e O, vv2 vva 1. Simplifying we get F v2v3 +- 3, and it
reaches a maximum value of 2v/- 3, which is nonpositive (when e 0, note that v
is the midpoint of the line segment v2v4).

Case 3b. vv2 --e. We wish to prove that

vv2v3va + (v-V + v-V) <_ 8 + 2.

We want to show that the function F’(e) VlV2V3V4 -(v---v--)- 8- 2e is
nonpositive in the domain 0 <_ e <_ 1.

As a function of e, function F is a sum of convex functions minus a linear function
and thus is convex. Therefore, it is maximized at either e 0 or e 1.

The case e 1 leads to the same configuration as in Case 3a.
When e O, VlV2 1. Here F’ 2v--i- +- 5. If angle /vav’vl a,

then F’ can be written as a function of a single variable a and it can be verified that
F’ reaches a maximum value of 5Vf0.8- 5, which is nonpositive.

This concludes the proof of Lemma 3.5. [:l

The example in Fig. 5 shows that the 1.5 factor is tight for the algorithm in Fig. 2,
modified according to the note following its description. The same example also shows
that the 1.5 factor is tight for the unmodified algorithm since the unmodified algorithm
never outputs a lighter tree than the modified algorithm. Each curved arc shown in
Fig. 5 is actually a straight line and has been drawn curved for convenience. The
vertex that is the child of the root has three children and is forced to drop one child.
In doing so, the degree of its child goes to 4, and it in turn drops one of its children.
The algorithm could make choices in such a way that the changes propagate through
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the tree and the tree T3 output by the algorithm may be as shown in the figure. The
ratio of the cost of the final solution to the cost of the MST can be made arbitrarily
close to 1.5. See 5 for a discussion on the worst-case ratio between degree-3 trees
and MSTs.

MST

FIG. 5. Bad example .for algorithm in Fig. 2.

3.3. Spanning trees of degree 4. We now assume that we are given a Eu-
clidean minimum-spanning tree in which every vertex has degree at most 5. We show
how to convert this tree to a tree in which every vertex has degree at most 4.

High level description. The basic idea is the same as in the previous algorithm.
The difference is that we don’t insist that each path Pv start at v. The tree is rooted
at an arbitrary leaf. For each vertex v, the minimum-weight path Pv visiting v and all
of v’s children (not necessarily starting at v) is computed. The final tree Ta consists
of the union of the paths (Pv}. Again, for the analysis we think of each path Pv
replacing the edges between v and its children in T.

TREE-4(V T) Find a degree-4 tree of V.
1 Root the MST T at a leaf vertex r.
2 For each vertex v V do
3 Compute the shortest path Pv visiting v and all its children.
4 Return Ta, the tree formed by the union of the paths {Pv}.

FIG. 6. Algorithm to find a degree-4 tree.

LEMMA 3.7. The algorithm in Fig. 6 returns a degree-4 spanning tree of the given
set of points V.

Proof. A proof by induction shows that Ta is a tree. Each vertex v occurs in at
most two paths and thus has degree at most 4.

LEMMA 3.8. Let v be a vertex in an MST T for a set of points in 2. Let Pv be
the shortest path visiting (v} t2 childT (v).

<_
ve childr
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From the above lemma, each path Pv weighs at most 1.25 times the net weight
of the edges it replaces. Thus we have the following theorem.

THEOREM 3.9. Let T be an MST of a set of points in 2. Let T4 be the spanning
tree output by the algorithm in Fig. 6.

w(T4) <_ 1.25 w(T).

Proof of Lemma 3.8. The proof is similar to the proof of Lemma 3.5. As before,
we consider cases depending on the number of children of v. The cases when v has
no children, one child, or two children are trivial.

Case 1. v has 3 children, vl, v2, v3. Let Vl be the point that is closest to v, among
its children. Consider the following four paths (see Fig. 7): P1 Iv2, vl, v, v3], P2
Iv2, V, Vl, V3], P3 [Vl, v, V2, V3], and P4 Iv1, v, V3, V2].

V3 V3 V3 V3

V

Vl V2 Vl V2 Vl V2 Vl
P1 P: P4

V2

FIG. 7. T4, three children.

Clearly,

 (p4)
w(Pv) < w(P1)

3 3 6 6

We will show that

 (P4)w(P1) lw(P2)w(P3)l < (VV- + VV- + VV-5).
3 3 6 6 3

This proves the three-child case because 2+v approximately equals 1.244 and is less3
than 1.25. This simplifies to

vlv2 + v- + v2v3 vv-" + VV5 < 2 ++ + (v-v-; +-+ v-),
3 2 3

which further simplifies to

1 ) (V- + VV-).Vl V2V3

__
( 1)-y + - +

Since vl is the closest point to v, applying Lemma 3.3, we get

vlv2v3 <_ (3vf- 4)VV- + 2(-9- + VV-),
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and hence

VlV2V3 <_ (v/- 1)- + (2/- 3)V / 2(-9-{ / -V-)
1_< (V- llKg- + (x/ + 5)(--V-5 + V’).

This proves (7).
Case 2. v has 4 children, vl, v2, v3, v4. Assume that Vl is the point that is closest

to v among v’s children. Let the order of the points be Vl, v2, v3, v4 when we scan the
plane clockwise from v starting from an arbitrary direction.

There are two cases, depending on whether v4 or v3 is the point that is furthest
from v among its children. We first address the case when v4 is the furthest point.
(The proof for the case when v2 is the point furthest from v is symmetric to the case
when v4 is the furthest point.)

Consider the following paths: P1 Iv4, v, v, v2, v3] and P2 Iv4, v3, v, Vl, v2] (see
Fig. 8).

v4

v3

Vl

v2

Vl

v4

v3

FIG. 8. T4, four children.

The path Pv added by the algorithm is at most as heavy as the lighter of the
paths P and P2. Hence

w(Pv < min(P1 P2) < w(P1 + w(P2)

We will show that

w(P) / w(P2) < 1 25(- + / / V).
2

Simpliing, we need to show that

5
(+ + +).(+++++++)

rther simpliing, we get

vvvav +=+
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Note that if it happens that v3 was the farthest point from v among v’s children,
we get a similar equation with v3 and va being exchanged in the r.h.s of the equation.
By symmetry, the case when v2 is furthest is similar to v4 being farthest.

Without loss of generality, - >_ VV-5. The proof now proceeds in a manner similar
to the proof of Lemma 3.3. If there is a configuration of points for which this equation
is not true (the 1.h.s exceeds the r.h.s) then we can move v4, v3 closer to v until vv2
vv-’- vv’--. In doing this, we decrease the 1.h.s by at most 2(VV-v) + 2(v-- -9).
Clearly, the r.h.s decreases by exactly 4(V- VV) + 4(V-5- V). This ensures that
the 1.h.s is still greater than the r.h.s. Hence without loss of generality, if there is a
configuration for which our equation is not true, then there is a configuration with
the property that vv’-5 -9-. We now show that when this property is true
there is no counterexample.

By scaling, we may assume that vv--- 1 and vvl e, where e _< 1.
Note that (by Corollary 3.2) v was originally within the convex hull of its four

children. Also (by Corollary 3.2), every child is on the convex hull. These properties
are both maintained by the above shrinking steps.

We now wish to prove that

11 1
VlVVV < - + .

It is easily shown using elementary calculus that for any e such that Vl is on the convex
hull of the points (vl,... ,va}, rotating v and v3 around v until /vvv2 /vvva
(see Fig. 9) and/v2vv3 -/vavv3 does not decrease the perimeter. Also, it maintains
that v is on the convex hull. Assume the two pairs of angles are equal, and define
F(e) vlv2v3v4- e/2- 11/2. We will show that F is nonpositive over the domain of
possible e’s.

FIG. 9. Figure to illustrate degree-4 case.

As a function of e, function F is a sum of convex functions minus a linear function
and thus is convex. Therefore, F is maximized either when 1 or when Vl is the
midpoint of edge (since v is on the convex hull, v cannot cross the edge; hence
this interval contains all possible values for e).

In the first case, all four points lie on a unit circle with center at v. For any four
such points, it is easily proven using calculus that vv2v3v4 is maximized when the
four points are the vertices of a square at 4x/ -- 5.66. Thus, F(1) < 0.
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In the second case, VlV2V3V4 V2V3V4. As noted previously, this is at most
3x/- 5.2. Thus, F(e) < O.

We now deal with the case when v3 is the furthest point. In this case, we take
the paths P1 Iv4, vl, v, v2, v3] and P2 Iv3, v4, v, Vl, v2]. The path P added by the
algorithm is at most as heavy as the lighter of the paths P1 and P2. Hence,

Simplifying, we get

w(P) <_ min(P, P2)_< +

1 5 3
(V +v v v v < -vv- + -v- + -The proof of this is identical to the proof of the previous case.

4. Points in higher dimensions. We show how to compute a degree-3 tree
(T3) when the points are in arbitrary dimension d >_ 3. The algorithm for computing
the tree is similar to the algorithm for computing degree-3 trees in the plane--the
tree T3 is formed by rooting the MST and taking the union of the paths (Pv }, where
each Pv is the shortest path starting at v and visiting all of the children of v in the
rooted MST. It is known that any Euclidean MST has constant degree [17] (for any
fixed dimension), so that the algorithm still requires only linear time. The bound on
the weight of T3 is similar, except that v may have more children. We prove that
regardless of the number of children that v has, the weight of Pv is at most 5/3 the
weight of the edges that it replaces:

LEMMA 4.1. Let {v, v, v2,..., vk} be a set of arbitrary points in d. There is a
path P, starting at v, that visits all the points vl, v2,..., v such that

5 k

<_
i--1

Proof. We prove this by induction on the degree of v. Sort the points in increasing
distance from v as v,..., vk. Let v v0. The lemma is trivially true when k 0, 1, 2.
Let us assume that the lemma is true for all values of k up to some g >_ 2. Consider
k g + 1. By the induction hypothesis, the claim is true when v has k 3 children;
hence we can find a path P that starts at v and visits all vertices vi (i 1,..., k 3)
(not necessarily in that order) such that w(P’) <_ (5/3)= vvi. Let vj be the last
vertex on the path P. We add the cheapest path P" that starts at vj and visits
v-2, v_, and v (again, not necessarily in that order). This path together with P
will form a path that starts at v and visits all vertices adjacent to v. We now show
that

5
(8) w(P") <_ -(i)v:2 4- Vvk_ 4-

This suffices to prove the lemma. Let P1,..., P6 be the six possibilities for P". Clearly,

w(P") <_ - Ew(P).
i--1

We will prove that

1 5
(VV_ + Vv_ +Ew(P) <_ -i--1
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This simplifies to

k

+ < + +
i--k-2

Notice that if the above equation is not true, we can "shrink" all the
k- 2, k- 1, k) until VVk-2 VVk-1 VVk. Assume that 5 (vvk- --V) +
(VVk- --VV) / (VO-- V). This can be done because the r.h.s decreases by 55 and
the 1.h.s decreases by at most 55. If the above equation is not true, then it is also not
true when the distance from v to all the points is the same. By scaling, we can assume
that the distance of the points from v is 1. We call this a canonical configuration.
The following proposition is implied by Lillington’s work [13] and helps in completing
the proof.

PROPOSITION 4.2. Let A, B, C, and D be points on a unit sphere in d dimensions,
d >_ 3. The function F AB / AC + AD + BC + CD + BD reaches a maximum
value of 4v/- when the points A, B, C, and D form a regular tetrahedron.

We will now show that (9) is satisfied by the canonical configuration. The left
side of (9) can be written as the sum of the sides of the tetrahedron formed by the
points {Vk, Vk-1, Vk-2, Vy } and the sum of the sides of the triangle formed by the points
{vk, Vk-, Vk-2}. These points lie on a sphere whose center is v. By Lemma 4.2, the
first sum is bounded by 4v/. The second sum is bounded by 3x/-. Hence the left side
of (9) is bounded by 4v/ + 3v/, which is about 14.994. The right side of (9) is 15.
Hence (9) is satisfied by the canonical configuration and therefore all configurations.
This concludes the proof of Lemma 4.1.

Remark. The algorithm outlined earlier runs in linear time only when d, the
number of dimensions, is a constant. The algorithm can be modified to run in linear
time for all d as follows. Observe that in the proof of Lemma 4.1, we considered
the neighbors of v only three at a time. Therefore, the algorithm could also group
vertices into sets of three each, based on the distance from v, and inductively con-
struct the path as in the proof of the lemma. This algorithm would have the same
performance guarantee (5/3) as the earlier algorithm for constructing a degree-3 tree
and in addition have the added advantage of running in linear time for all dimensions.

5. Conclusions. We have given a simple algorithm for computing a degree-3
(degree-4) tree for points in the plane that is within 1.5 (1.25) of an MST of the
points. An extension of the algorithm finds a degree-3 tree of an arbitrary set of
points in d dimensions within 5/3 of an MST. If an MST of the points is given as part
of the input, our algorithms run in linear time. All our proofs are based on elementary
geometric techniques.

Though our algorithms improve greatly the best-known ratios for each of the
respective problems, there are still large gaps between the ratios that we obtain and
the best bounds that we think are achievable. For example, in the case of points in the
plane, consider the ratio of the weight of a minimum weight degree-3 tree to the weight
of an MST. The worst example that we can obtain for this ratio is 4+3 1.104 (with
five points, where four of the points are at the corners of a square and the fifth point
is in the middle). There is a large gap between this and the ratio of 1.5 obtained by
our algorithm. Is 1.104 the worst-case ratio? Are there polynomial time algorithms
which obtain factors better than 1.57 Notice that the performance ratio obtained by
our algorithm on the example in Fig. 5 is highly sensitive to the vertex chosen as the
root. One potential algorithm is to simply try all possible vertices as the root, and to
pick the tree of minimum weight. Does such an algorithm have a better performance
guarantee?
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For the problem of finding degree-4 trees, our algorithm obtains a ratio of 1.25.
Unlike degree-3 trees, we are unable to show that this ratio is tight for the algorithm.
Can the factor of 1.25 for the algorithm be improved? The worst example for the
ratio between a minimum-weight degree-4 tree and an MST that we can obtain is
about 1.035 (five points on the vertices of a regular pentagon with a sixth point in
their centroid). Are there examples with worse ratios?

Problems of approximating degree-k trees in higher dimensions and in general
metric spaces within factors better than 2 are still open.
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