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APPROXIMATING THE MINIMUM EQUIVALENT DIGRAPH*

SAMIR KHULLERt, BALAJI RAGHAVACHARI, AND NEAL YOUNG

Abstract. The minimum equivalent graph (MEG) problem is as follows: given a directed graph, find a smallest
subset of the edges that maintains all teachability relations between nodes. This problem is NP-hard; this paper gives
an approximation algorithm achieving a performance guarantee of about 1.64 in polynomial time. The algorithm
achieves a performance guarantee of 1.75 in the time required for transitive closure.

The heart of the MEG problem is the minimum strongly connected spanning subgraph (SCSS) problem--the
MEG problem restricted to strongly connected digraphs. For the minimum SCSS problem, the paper gives a practical,
nearly linear-time implementation achieving a performance guarantee of 1.75.

The algorithm and its analysis are based on the simple idea of contracting long cycles. The analysis applies
directly to 2-EXCHANCE, a general "local improvement" algorithm, showing that its performance guarantee is 1.75.
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1. Introduction. Connectivity is fundamental to the study of graphs and graph algo-
rithms. Recently, many approximation algorithms for finding minimum subgraphs that meet
given connectivity requirements have been developed [1], [9], [11], [15], [16], [24]. These
results provide practical approximation algorithms for NP-hard network-design problems via
an increased understanding of connectivity properties.

Until now, the techniques developed have been applicable only to undirected graphs. We
consider a basic network-design problem in directed graphs [2], [12], [13], [18], which is as
follows: given a digraph, find a smallest subset of the edges (forming a minimum equivalent
graph (MEG)) that maintains all reachability relations of the original graph

When the MEG problem is restricted to strongly connected graphs we call it the minimum
strongly connected spanning subgraph (SCSS) problem. When the MEG problem is restricted
to acyclic graphs we call it the acyclic MEG problem. The MEG problem reduces in linear
time [5] to a single acyclic problem given by the so-called strong component graph, together
with one minimum SCSS problem for each strong component (given by the subgraph induced
by that component). Furthermore, the reduction preserves approximation in the sense that
c-approximate solutions to the subproblems yield a c-approximate solution to the original
problem.

Moyles and Thompson 18] observe this decomposition and give exponential-time algo-
rithms for the restricted problems. Hsu 13] gives a polynomial-time algorithm for the acyclic
MEG problem.

The related problem of finding a transitive reduction of a digraph--a smallest set ofedges
yielding the same reachability relationswis studied by Aho, Garey, and Ullman [2]. Transitive
reduction differs from the MEG problem in that the edges in the transitive reduction are not

required to be in the original graph. However, the transitive reduction problem decomposes
just like the MEG problem into acyclic and strongly connected instances. For any strongly
connected instance, a transitive reduction is given by any Hamilton cycle through the vertices.
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For an acyclic instance, the transitive reduction is unique and, as Aho, Garey, and Ullman
observe, equivalent to an MEG: it consists of those edges (u, v) for which there is no alternate
path from u to v. In fact, Aho, Garey, and Ullman show that the transitive reduction problem
is equivalent to the transitive closure problem. Thus, the acyclic MEG problem reduces to
transitive closure.

The acyclic MEG problem can be solved in polynomial time, whereas the minimum
SCSS problem is NP-hard [8], [20]. Consequently, this paper focuses on approximation
algorithms for the minimum SCSS problem. By the observations of the preceding paragraphs,
the performance guarantees obtained for the minimum SCSS problem carry over to the general
MEG problem with the overhead of solving a single instance of transitive closure.

1.1. Our results. Given a strongly connected graph, our basic algorithm finds as long
a cycle as it can, contracts the cycle, and recurses. The contracted graph remains strongly
connected. When the graph finally collapses into a single vertex, the algorithm returns the set
of edges contracted during the course of the algorithm as the desired SCSS.

The algorithm achieves a performance guarantee of any constant greater than 7r2/6
1.645 in polynomial time. We give a nearly linear-time version that achieves a performance
guarantee of 1.75. We give examples showing lower bounds on the performance guarantees
of the algorithm. For the general algorithm, the lower bounds are slightly above 1.5. For the
nearly linear-time version, the lower bound is 1.75, matching the upper bound.

The performance guarantee analysis extends directly to a simple "local improvement"
algorithm called 2-EXCHANGE. 2-EXCHANGE starts with the given digraph and performs the
following local improvement step as long as it is applicable: find two edges in the current graph
that can be replaced by one edge from the original graph, maintaining strong connectivity.
Similar local improvement algorithms are natural candidates for many optimization problems
but often elude analysis. We prove that the performance guarantee of 2-EXCHANGE is 1.75.

A natural improvement to the cycle-contraction algorithm is to modify the algorithm to
solve the problem optimally once the contracted graph has no cycles longer than a given
length c. For instance, for c 3 this modification improves the performance guarantee to

:rr2/6 1/36 1.617. We use SCSSc to denote the minimum SCSS problem restricted to

digraphs with no cycle longer than c. The minimum SCSS2 problem is trivial. The minimum
SCSS3 problem can be solved in polynomial time as shown by Khuller, Raghavachari, and
Young [14]. However, further improvement in this direction is limited: we show that the
minimum SCSS5 problem is NP-hard. In fact, we show that the minimum SCSS7 problem is
MAX SNP-hard. This precludes the possibility of a polynomial-time approximation scheme,
assuming PNP [4].

1.2. Otherrelatedwork. The union ofany incoming branching and any outgoing branch-
ing from the same root yields an SCSS with at most 2n 2 edges (where n is the number
of vertices in the graph). This is a special case of the algorithm given by Frederickson and
JfiJi [6] that uses minimum weight branchings [7] to achieve a performance guarantee of 2 for
weighted graphs. Since any SCSS has at least n edges, this yields a performance guarantee of
2 for the SCSS problem.

Any minimal SCSS (one from which no edge can be deleted) has at most 2n 2 edges
and yields a performance guarantee of 2. The problem of efficiently finding a minimal SCSS
is studied by Simon [21 ]. Gibbons et al. 10] give a parallel algorithm.

A related problem in undirected graphs is to find a smallest subset of the edges forming
a biconnected (respectively, bridge-connected (i.e., 2-edge-connected)) spanning subgraph
of a given graph. These problems are NP-hard. Khuller and Vishkin [15] give a depth-

forfirst-search- (DFS-) based algorithm that achieves a factor of for biconnectivity and
bridge-connectivity. Garg, Santosh, and Singla [9] subsequently improve the approximation



APPROXIMATING THE MINIMUM EQUIVALENT DIGRAPH 861

factor for biconnectivity, using a similar approach, to . None of these methods appear to
extend directly to the minimum SCSS problem.

Undirected graphs having bounded cycle length have bounded tree width. Arnborg,
Lagergren, and Seese [3] have shown that many NP-hard problems, including the minimum
biconnected-spanning-subgraph problem, have polynomial-time algorithms when restricted
to such graphs.

2. Preliminaries. To contract a pair of vertices u, v of a digraph is to replace u and v (and
each occurrence of u or v in any edge) by a single new vertex and delete any subsequent self-
loops and multiedges. Each edge in the resulting graph is identified with the corresponding
edge in the original graph or, in the case of multiedges, the single remaining edge is identified
with any one of the corresponding edges in the original graph. To contract an edge (u, v) is
to contract the pair of vertices u and v. To contract a set S of pairs of vertices in a graph
G is to contract the pairs in S in arbitrary order. The contracted graph is denoted by G!S.
Contracting an edge is also analogously extended to contracting a set of edges.

Let OPT(G) be the minimum size of any subset of the edges that strongly connects G.
In general, the term cycle refers only to simple cycles.

3. Lower bounds on OPT(G). We begin by showing that if a graph has no long cycles,
then the size of any SCSS is large.

LEMMA 3.1 (Cycle lemma). For any strongly connected directed graph G with n vertices,

ifa longest cycle ofG has length C, then

C
OPT(G) > (n- 1).

C-1

Proof. Starting with a minimum-size subset that strongly connects the graph, repeatedly
contract cycles in the subset until no cycles are left. Observe that the maximum cycle length
does not increase under contractions. Consequently, for each cycle contracted, the ratio of

cthe number of edges contracted to the decrease in the number of vertices is at least C-l"
Since the total decrease in the number of vertices is n 1, at least (n 1) edges are
contracted. U

Note that the above lemma gives a lower bound which is existentially tight. For all values
of C, there exist graphs for which the bound given by the lemma is equal to 0797-(G). Also
note that C has a trivial upper bound of n and, using this, we get a lower bound of n for
0797"(G), which is the known trivial lower bound.

LEMMA 3.2 (Contraction lemma). For any directed graph G and set ofedges S,

079:T(G) > OPT(G/S).

Proof. Any SCSS of G contracted around S (treating the edges of S as pairs) is an SCSS
of G/S.

4. Cycle-contraction algorithm. The algorithm follows. Fix k as any positive integer.

CONTRACT-CYCLESk (G)
for/=k,k-l,k-2 2

2 while the graph contains a cycle with at least edges
3 Contract the edges on such a cycle.
4 return the contracted edges

In 6, we will show that the algorithm can be implemented to run in O (mot(m, n)) time
for the case k 3 and in polynomial time for any fixed value of k, where rn is the number
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of edges. It is clear that the edge set returned by the algorithm strongly connects the graph.
The following theorem establishes an upper bound on the number of edges returned by the
algorithm.

THEOREM 4.1. CONTRACT-CYCLESk(G) returns at most ck 079"T(G) edges, where

yg2 2
--<Ck< +6 - (k- 1)k

Proof. Initially, let the graph have n vertices. Let ni vertices remain in the contracted
graph after contracting cycles with or more edges (i k, k 2).

How many edges are returned? In contracting cycles with at least k edges, at most
(n nk) edges are contributed to the solution. For < k, in contracting cycles withk-1

edges, _l(ni+l ni) edges are contributed. Thus the number of edges returned is at most

k

k-1
-li ( 1)ni -1

(n-n)+i_i (ni+l-ni)< 1+ 2--_1 n+
(i-1)(i-2)’= i=3

Clearly OPT(G) > n. For 2 < < k, when ni vertices remain, no cycle has more than
i-1edges. By Lemmas 3.1 and 3.2, OPT(G) > _2(ni 1). Thus the number of edges

returned, divided by OPT(G), is at most

(1 + k__i_) n k ni-1 (1 + k___ll)n k ni-1 k-I

/3 (i-1,(i-2,li-.t--’, k /1(i-1)(i-2) < -I-
"hi

+ ck"OPT(G) + OPT(G)- n"= "= i-2 "=

Using the identity (from [17, p. 75]) y4C=l 1/i2 2/6, we get

2 2
<Ck--

6-

<
-6 k-1

6
2

6

k- 2

/k (i + 1)

k-1 k

(k 1)k

If desired, standard techniques can yield more accurate estimates of c, e.g., c zre/6 +
1/2k2 + O(1/k3). If the graph initially has no cycle longer than ( > k), then the analysis
can be generalized to show a performance guarantee of (k-1 -1)/(1 k-1) +i 1/ie.
For instance, in a graph with no cycle longer than 5, the analysis bounds the performance
guarantee (when k 5) by 1.424.

Table gives lower and upper bounds on the performance guarantee of the algorithm for
small values of k and in the limit as k cx. The lower bounds are shown in the next section.

4.1. Lower bounds on the performance ratio. In this section, we present lower bounds
on the performance ratio of CONTRACT-(]YCLESk(G). The graph in Fig. has groups
of vertices. Each group consists of a (2k 2)-cycle "threaded" with a k-cycle.

In the first iteration, CONTRACT-CYCLESk(G) can contract the k-cycle within each
group, leaving the graph with only 2-cycles. The algorithm subsequently must contract all the
remaining edges. Thus, all the (3k 2) 2 edges are in the returned SCSS. The graph
contains a Hamilton cycle and the optimal solution is thus n. Hence, for arbitrarily large n,
+ 2/n is a lower bound on the performance guarantee of CONTRACT-CYCLESk (G).

As k approaches oe, the lower bound tends to 1.5.
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TABLE
Bounds on the performance guarantee.

1.750
1.694
1.674
1.645

Upper bound Lower bound

1.750
1.666
1.625
1.500

FIG. 1. Bad examplefor CONTRACT-CYCLESk (G).

5. 2-ExcrIANGE algorithm. In this section, we use the cycle-contraction analysis to
show that 2-EXCHANGE has a performance guarantee of 1.75. 2-EXCHANGE is a special case
of k-EXCHANGE, which is defined as follows.

k-EXCHANGE(G (V, E)) Local improvement algorithm.
Et---E

2 while the following improvement step is possible
3 Pick a set Ek of k edges in E’ and a set Ek-1 of up to k edges in E

such that the set of edges E" (E’ E) U Ek-1 forms an SCSS.
4 E’ - E".
5 return E’

Note that for fixed k, each step can be performed in polynomial time and reduces the
size of E’, so k-EXCHANGE runs in polynomial time. The following theorem shows that the
approximation factor achieved by 2-EXCHANGe; is 1.75.

THEOREM 5.1. The performance guarantee of2-EXCHANGE is 1.75.

Proof We will show that the edges output by 2-EXCHANGI(G) could be output by
CONTRACT-CYCLES3(G). Thus, the performance guarantee of 1.75 for CONrrtACa-CYCLES3 carries over to 2-EXCHANGE.

First we show that the performance guarantee is at most 1.75. Let E’ be the set of
edges returned by 2-EXCHANGE(G (V, E)). Run CONTRACT-CYCLES3 on the graph
G’ (V, E’). Let H be the set of edges contracted during the first iteration when cycles of
at least three edges are contracted. The resulting graph G’/H is strongly connected and has
only 2-cycles. Such a graph has a tree-like structure. In particular, an edge (u, v) is present if
and only if the reverse edge (v, u) is present.
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ooo

Edges returned by 2-Exchange

->- Edges not used by 2-Exchange

FIG. 2. Worst-case examplefor 2-EXCHANGE.

The important observation is that G/H is equivalent to G’/H. Clearly G’/H is a subgraph
of G/H; to prove the converse, suppose that some edge (u, v) of G/H was not in G’/H.
Consider adding edge (u, v) to G’/H. By the structure of G’/H, u and v are not adjacent in
G’/H, and for each edge on the path from v to u, the reverse edge is also in G’/H. If (u, v) is
added to G’/H, these (at least two) reverse edges can be deleted from G’/H without destroying
the strong connectivity of G’/H. Consequently, the original edge in G corresponding to (u, v)
can be added to G’, and the original edges in G’ corresponding to the reverse edges can be
deleted from G’, without destroying the strong connectivity of G’. This contradicts the fact
that E’ was output by 2-EXCHANGE(G), since E’ is eligible for an improvement step.

Next consider executing CONTRACT-CYCLES3(G). Since G/H is equivalent to G’/H,
the sequence of cycles chosen in the first iteration of CONTRACT-CYCLES3 (G’) could also be
chosen by the first iteration of CONTRACT-CYCLES3(G). Similarly, the second iteration in
CONTRACT-CYCLES3 (G’) could be mimicked by CONTRACT-CYCLES3(G), in which case
CONTRACT-CYCLES3(G) would return the same edge set as CONTRACT-CYCLES3(G’).
Since E’ is minimal (otherwise an improvement step applies), the edge set retumed is exactly
E’. Thus, the upper bound on the performance guarantee of CONTRACT-CYCLES3 from.
Theorem 4.1 is inherited by 2-EXCHANGE.

For the lower bound on the performance guarantee, given the graph in Fig. 2,
2-EXCHANGE can choose a number of edges arbitrarily close to 1.75 times the minimum.

" groups with four vertices in each group. First observe that the graph has a directedThere are
Hamilton cycle. The edges marked in Fig. 2 form a solution with which 2-EXCHANGE could
terminate. This solution clearly has edges. This gives the lower bound of 1.75 on the
performance of the algorithm. [3

6. Implementation. For any fixed k, CONTRACT-CYCLESk can be implemented in
polynomial time using exhaustive search to find long cycles. For instance, if a cycle of
size at least k exists, one can be found in polynomial time as follows: For each simple path
P of k edges, check whether a path from the head of P to the tail exists after P’s internal
vertices are removed from the graph. If k is even, there are at most mk/2 such paths; if k is
odd, the number is at most n rn (k-)/2. It takes O (m) time to decide if there is a path from the
head of P to the tail of P. For the first iteration of the for loop, we may have O (n) iterations
of the while loop. Since the first iteration is the most time consuming, the algorithm can be
implemented in O(n m l+k/2) time for even k and O(n2 m(k+l)/2) time for odd k.

6.1. A practical implementation yielding 1.75. Next we give a practical, near linear-
time implementation of CONTRACT-CYCLES3. The performance guarantee achieved is c3
1.75. CONTRACT-CYCLES3 consists of two phases: (1) repeatedly finding and contracting
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cycles ofthree or more edges (called long cycles) until no such cycles exist, and (2) contracting
the remaining 2-cycles.

High-level description ofthe algorithm. To perform phase (1), the algorithm does a DFS
of the graph from an arbitrary root. During the search, the algorithm identifies edges for
contraction by adding them to a set S. At any point in the search, G’ denotes the subgraph of
edges and vertices traversed so far. The rule for adding edges to S is as follows: when a new
edge is traversed, if the new edge creates a long cycle in G’/S, the algorithm adds the edges
of the cycle to S. The algorithm thus maintains that G’!S has no long cycles. When the DFS
finishes, G’/S has only 2-cycles. The edges on these 2-cycles, together with S, are the desired
SCSS.

Because G’/S has no long cycles and the original graph is strongly connected, G’/S
maintains a simple structure.

LEMMA 6.1. After the addition ofany edge to G’ and the possible contraction ofa cycle
by adding it to S, (i) the graph G’/S consists ofan outward branching and some ofits reverse
edges, (ii) the only reverse edges that might not be present are those on the "active" path:
from the supervertex containing the root to the supervertex in G’/S containing the current

vertex ofthe DFS.
Proof. Clearly the invariant is initially true. We show that each given step of the algorithm

maintains the invariant. In each case, if u and w denote vertices in the graph, then let U and
W denote the vertices in G’/S containing u and w, respectively.

When the DFS traverses an edge (u, w) to visit a new vertex w, we have the following:
Vertex w and edge (u, w) are added to G’. Vertex w becomes the current vertex. In G’/S,
the outward branching is extended to the new vertex W by the addition of edge (U, W). No
other edge is added and no cycle is created. Thus, part (i) of the invariant is maintained. The
supervertex containing the current vertex is now W, and the new "active path" contains the
old "active path." Thus, part (ii) of the invariant is also maintained.

When the DFS traverses an edge (u, w) and w is already visited, we have thefollowing:
If U W or the edge (U, W) already exists in G’/S, then no cycle is created, G’/S is
unchanged, and the invariant is clearly maintained. Otherwise, the edge (u, w) is added to
G and a cycle with the simple structure illustrated in Fig. 3 is created in GI/S. The cycle
consists of the edge (U, W) followed by the (possibly empty) path of reverse edges from W
to the lowest common ancestor (lca) of U and W, followed by the (possibly empty) path of
branching edges from lca(U, W) to U. Addition of (U, W) to G’/S and contraction of this
cycle (in case it is a long cycle) maintains part (i) of the invariant. If the "active path" is
changed, it is only because part of it is contracted, so part (ii) of the invariant is maintained.

When the DFSfinishes visiting a vertex w, we have thefollowing: No edge is added and
no cycle is contracted, so part (i) is clearly maintained. Let u be the new current vertex, i.e.,
w’s parent in the DFS tree. If U W, then part (ii) is clearly maintained. Otherwise, consider
the set D of descendants of w in the DFS tree. Since the original graph is strongly connected,
some edge (x, y) in the original graph goes from the set D to its complement V D. All
vertices in D have been visited, so (x, y) is in G’. By part (i) of the invariant, the vertex in

G’!S containing x must be W, while the vertex in G’/S containing y must be U. Otherwise
the edge corresponding to (x, y) in G’/S would create a long cycle. 71

The algorithm maintains the contracted graph G’/S, using a union-find data structure [22]
to represent the vertices in the standard way and three data structures to maintain the branching,
the reverse edges discovered so far, and the "active path." When a cycle arises in G’/S, it must
be of the form described in the proof of Lemma 6.1 and illustrated in Fig. 3. Using these data
structures, the algorithm discovers it and, if it is long, contracts it in a number of union-find
operations proportional to the length ofthe cycle. This yields an O (mot (m, n))-time algorithm.
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root

inactive
active

/

inactive
W

, active
inactive

FIG. 3. Contracted graph G’/ S.

The vertices of G’/S are represented in union-find sets as follows:
MAInE-SEa’(v). Adds the set {v} corresponding to the new vertex of G’/S.
FIND(v). Returns the set in Gt!S that contains vertex v.
UNIOr(u, v). Joins into a single set the two sets corresponding to the vertices in G’/S

containing G"s vertices u and v.
The data structures representing the branching, reverse edges, and the active paths, re-

spectively are as follows:
from-root[W]. For each branching edge (U, W) in G’/S, from-root[W] (u, w) for

some (u, to) (U W) fq E.
to-root[U]. For each reverse edge (U, W) in G’/S, to-root[U] (u, w) for some
(u,w)(U W) fqE.

to-active[U]. For each vertex U on the "active path" in G’/S, to-active[U] (u, w),
where (u, w) 6 (U W) N E and W is the child of U for which the recursive
DFS call is currently executing, unless no recursive DFS is executing, in which case
to-active[U] current.
For all other vertices, to-active[U] nil.

Pseudo code for the algorithm is given in Figs. 4 and 5.
By the preceding discussion, the algorithm implements CONTRACT-CYCLES3. It is

straightforward to show that it runs in O(mu(m, n)) time. Hence, we have the following
theorem.

THEOREM 6.2. There is an O (mct (m, n))-time approximation algorithmfor the minimum
SCSS problem achieving a performance guarantee of 1.75 on an m-edge, n-vertex graph.

Here c(m, n) is the inverse-Ackermann function associated with the union-find data struc-
ture [22].

Example to illustrate algorithm. In the example in Fig. 6, the algorithm begins the DFS
from vertex 1. It visits vertices 2,3,4 and then traverses the reverse edge (4, 2). Since this
edge creates a 3-cycle (2, 3), (3, 4), (4, 2) in G’/S, it contracts the cycle. Next it traverses
the reverse edge (3, 1), but does not contract it, since it forms only a 2-cycle in the contracted
graph. Continuing the DFS, it visits vertices 5 and 6. When it traverses the edge (6, 4), it
discovers and contracts the cycle (3, 1), (1, 5), (5, 6), (6, 4). Next it visits vertices 7 and 8,
traversing the reverse edges (8, 7) and (7, 6). Traversing the edge (6, 8), it discovers and
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CONTRACT=CYCLES3(G (V, E))- Pseudocode.
s{}
Choose r E V.
DF$(r)
Add 2-cycles remaining in G’/S to S.
return S

DFS(u)
to-active[FIND(u)] 4- current

2 for each vertex w adjacent to u traverse edge (u, w)
3 if (w is not yet visited) new vertex
4 MAKE-SET(W)
5 to-active[FIND(u)] 4- from-root[FIND(w)] 4- (u, w)
6 DFS(w)
7 to-active[FIND(U)] 4- current
8 else --edge creates cycle in G’/S
9 if (FIND(U) FIND(W)) cycle length at least 2
10 (x, y) 4- from-root[FIND(u)]
11 if (FIND(x) FIND(w)) length two cycle through parent, U W U
12 to-root[FIND(u)] 4- (u, w) record edge to parent
13 else
14 (x, y) 4- from-root[FIND(w)]
15 if (FIND(x) FIND(u)) not aforward edge to child; length ofcycle > 3
16 CONTRACT-CYCLE(t0)
17 S 4- S U {(u, w)}
18 to-active[FIND(u)] 4- nil

FIG. 4. Practical implementation ofCONTRACT-CYCLES3o

CONTRACT-CYCLE(//))

8
9
10
11
12
13

while (to-active[FIND(w)] # current) do
if (to-active[FIND(w)] nil) then Go up towards lca along reverse edges.

(c, p) 4- to-root[FIND(w)]
a 4- to-active[FIND(p)]

else Go downfrom lca along active path.
(p, c) 4- to-active[FIND(w)]
a 4- to-active[FIND(c)]
Contract parent p and child c.

f 4- from-root[FIND(p)]
4- to-root[FIND(p)]

UNION(p, c)
to-active[FiND(w)] 4- a
from-root[FIND(w)] 4- f
to-root[FIND(w)] 4-

FIG. 5. Subroutine CONTRACT-CYCLE.

contracts the 3-cycle (8, 7), (7, 6), (6, 8). In this example, no 2-cycles remain, so it returns

just the contracted edges.

7. Potential improvement of CONTRACT-CYCLESk. A natural modification to

CONTRACT-CYCLESk would be to stop when the contracted graph has no cycles of length
more than some c and somehow solve the remaining problem optimally.

For instance, for c 3, by following the proof of Theorem 4.1, one can show that
this would improve the performance guarantee of CONTRACT-CYCLESk to c 6 (for
k >_ 4), matching the lower bound in Table 1. (The lower bound given holds for the modified
algorithm.)
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Graph G

o5

6

o7

*8
After traversing edge (3,1)

8
After traversing edge (6,4)

5

8
After traversing edge (7,6)

l’’3
..-’,,

8
8

After traversing edge (6,8) Edges in C

FIG. 6. Examplefor illustrating execution ofalgorithm.

This leads us to consider the minimum SCSSc problem--the minimum SCSS problem
restricted to graphs with cycle length bounded by c. The following theorem is shown in 14].

THEOREM 7.1. There is a polynomial-time algorithmfor the SCSS3 problem.
We make no conjecture concerning the SCSS4 problem. However, we next show that the

SCSS5 problem is NP-hard and the SCSS7 problem is MAX SNP-hard.

7.1. NP-hardness of SCSSs. We prove the following theorem.
THEOREM 7.2. The minimum SCSS5 problem is NP-hard.

Proof The proof is by a reduction from SAT [8]. Fix an arbitrary formula F in conjunctive
normal form (CNF). We will build a rooted digraph such that any SCSS contains all the edges
out of the root (d of them) and F is satisfiable if and only if there exists an SCSS E’ in which
each of the remaining n nonroot vertices has out-degree equal to one. Thus the formula
will be satisfiable if and only if there is an SCSS with n + d edges.

The graph has a fixed root vertex r and a vertex for each clause in F (these vertices are not
shown in Fig. 7). Each clause vertex has a return edge to the root. For each variable in F, the
graph has an instance of the gadget illustrated in Fig. 7. The edges into the gadget come from
the root. Each such edge is present in any SCSS. The edges out of the gadget are alternately
labeled + and For every clause with a positive instance of the variable, one of the + edges
goes to the clause vertex. For every clause with a negative instance of the variable, one of the

edges goes to the clause vertex. Unassigned / and edges go to the root. (The gadget is
easily enlarged to allow any number of occurrences.)
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Root Root

+

Variable gadget. Incoming edges from root, ---->
outgoing edges to clause vertices.

Edges in SCSS for variable=TRUE.

FIG. 7. Variable gadgetfor NP-hardness proof.

The key property of the gadget is that if every (nonroot) vertex has out-degree one in
some SCSS, then either all of the counterclockwise edges are in the SCSS (corresponding to
the variable being true) or all of the clockwise edges are in the SCSS (corresponding to the
variable being false). Thus, given any SCSS of d + n edges, where d is the out-degree
of the root and n is the number of vertices in the digraph constructed, it is easy to construct a
satisfying assignment for F. Conversely, given any satisfying assignment for F, it is easy to
construct an SCSS of size d 4- n 1. [3

7.2. MAX SNP-hardness of SCSS7. Next we consider the MAX SNP-hardness of the
problem. To prove this we do a reduction from the vertex-cover problem in bounded-degree
graphs to the SCSS problem. Since the proof closely follows the reduction from vertex cover
to Hamiltonian circuits (see [8]), it is suggested that the reader study this reduction before
reading this section. It is known that the problem of finding a minimum vertex cover is MAX
SNP-hard in graphs whose maximum degree is bounded by seven [19].

Let G be a connected, undirected graph whose maximum degree is bounded by seven.
Let G have rn edges and n vertices. We construct a digraph D with 2m 4- vertices and no
cycle longer than 17. Any vertex cover of G of size s will yield an SCSS in D of size 2m 4- s
and vice versa. We then show that, since G has O (n) edges, this yields an L-reduction (i.e.,
an approximation-preserving reduction 19]).

7.2.1. The construction ofD. Applying Vizing’s theorem [23], color the edges of G in
polynomial time with at most eight colors so that no two edges incident to a vertex share the
same color. Let the colors of the edges be chosen from the set 1, 2 8 }.

The construction begins with a special "root" vertex r in D.
As the construction proceeds, each vertex in G will have a "current vertex" in D, initially

the root vertex. We process edges in each color class starting with color 1. For each edge
(u, v), add a "cover-testing gadget" to D as illustrated in Fig. 8. Specifically, add two new
vertices x and y. Add two edges into x: the first, labeled u+, from the current vertex of u; the
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u+ x u+

0+

FIG. 8. A cover-testing component.

second, labeled u-, from y. Similarly, add two edges into y: the first, labeled v+, from the
current vertex of v; the second, labeled v-, from xo Make y the new current vertex of u; make
x the new current vertex of v. Finally, after all edges of G have been considered, for each
vertex v in G, add an edge labeled v+ from its final current vertex to the root. The gadgets
are implicitly layered with each gadget assigned to a layer corresponding to the color of the
associated edge in G.

LEMMA 7.3. The graph D constructed above has no cycle with more than 17 edges.
Proof We first assign numbers to the vertices of D. The root r is assigned the number

0. The construction above proceeds in order of increasing color of the edges of G. When
considering an edge (u, v) of color c, we add two new vertices: x is added to v’s path and
y is added to u’s path. We assign the vertices x and y the number c. Consider any cycle X
of length greater than two in D. It is clear that such a cycle must pass through r, since D
is layered. Hence the cycle is of the form (r, x, x2 xk, r). Because we considered the
edges in order of increasing color, the numbers assigned to the vertices in X increase at least
every two steps in any path in D (not including r). In other words, the numbers assigned to
the vertices x xk form a nondecreasing sequence in which no three consecutive vertices
get the same number. Since the edges of G were colored with 8 colors, the numbers assigned
to the vertices of D range from 0 to 8 (only r gets the number 0). Combining all these, the
length of the cycle X is at most 17.

7.2.2. The analysis. We now show that every vertex cover of G has a corresponding
SCSS in D. The proof is similar to the corresponding proof (in the reduction from vertex
cover to Hamiltonian circuits) that every vertex cover has a corresponding Hamiltonian circuit.
Consider an arbitrary vertex cover S of G. The idea is to choose the paths in the SCSS
corresponding to S in D. The paths of the vertices of V S are not yet connected. Since S
forms a vertex cover, the vertices in the paths of V S can be connected using the cover-testing
components.

LEMMA 7.4. Given a vertex cover of size s in G, an SCSS of D of size 2m + s can be
constructed.

Proof. Construct a subgraph H of D as follows. For each vertex u in G, let d be the
degree of u in G. If u is in the vertex cover, add the du + edges labeled u+ in D to H.
Otherwise, add the du edges labeled u- in D to H. It is easy to verify that H has the following
properties:

l. H has 2m + s edges.
2. H has no cycles of length 2.
3. Every vertex of H has at least one outgoing and one incoming edge.

As mentioned earlier, D is layered and every cycle oflength greater than 2 contains r. Therefore
property 2 above implies that every cycle of H passes through r. By the above conditions, H
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contains a path from r to every vertex v and another path from v to r, and is therefore strongly
connected. To obtain a path from any v to r, start from v and keep traversing an outgoing
edge (which exists by property 3) from the current vertex. Such a path must eventually reach
r because r is contained in every cycle of H. Hence H satisfies the lemma.

We now show that every SCSS of D corresponds to a vertex cover of G. The proof works
by showing that any SCSS can be converted into a "canonical" SCSS, whose size is no larger,
that corresponds to a vertex cover of G.

LEMMA 7.5. Given an SCSS in D of size 2m + s, a vertex cover of G of size s can be
constructed.

Proof. As long as some nonroot vertex y has both of its incoming edges in the SCSS,
modify the SCSS as follows: Let (x, y) be the edge labeled v- for some v. Remove the edge
(x, y) and add the other edge out ofx if it is not already present. Alternatively, if some nonroot
vertex x has both of its outgoing edges in the SCSS, remove the edge (x, y) and add the other
edge into y. Repeat either modification as long as applicable.

By the layering of D, each modification maintains the strong connectivity of the SCSS.
Clearly none of the modifications increase the size. Each step reduces the number of edges
labeled u- for some u in the SCSS, so after at most 2m steps neither modification applies, and
in the resulting SCSS every nonroot vertex has exactly one incoming edge and one outgoing
edge in the SCSS.

An easy induction on the layering shows that for any vertex v in G, either all of the edges
labeled v+ in D are in the SCSS or none are in the SCSS, in which case all of the edges labeled
v- are in the SCSS. Let C be the set of vertices in G of the former kind. It is easy to show
that the size of the SCSS is 2m + ICI, so that ICI _< s. For every edge (u, v) in G, the form
of the gadget ensures that at least one of the two endpoints is in C. Hence, C is the desired
cover.

THEOREM 7.6. The minimum SCSS7 problem is MAX SNP-hard.
Proof. Let G be an arbitrary undirected graph G whose maximum degree is bounded by

seven. Let G have rn edges and n vertices. Construct the digraph D as shown earlier. By
Lemma 7.3, D has no cycles greater than 17. By Lemma 7.4, any vertex cover in G of size s
can be used to obtain an SCSS of D of size 2m + s. Conversely, by Lemma 7.5 an SCSS of
D of size 2m -I- s can be used to obtain a vertex cover of G of size s. Since the degree of G
is bounded, rn O(n) O(s) and it is easily verified that this yields an L-reduction from
degree-bounded vertex cover to the minimum SCSS7 problem.

8. Open problems. An obvious problem is to further characterize the various complex-
ities of the minimum SCSSk problems.

The most interesting open problem is to obtain a performance guarantee that is less than
2 for the weighted strong connectivity problem (as mentioned earlier, the performance factor
of 2 is from Frederickson and JSJi [6]). Such an algorithm may have implications for the
weighted 2oconnectivity problem 15] in undirected graphs as well.

The performance guarantee of k-EXCHANGE probably improves as k increases. Proving
this would be interesting--similar "local improvement" algorithms are applicable to a wide
variety of problems.

Acknowledgments. We thank the referees for useful comments.
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