
Chapter 27

Balancing Minimum Spanning and Shortest Path Trees

Samir Khuller’ Balaji Raghavacharit

Abstract
Efficient algorithms are known for computing a mini-
mum spann.ing tree, or a shortest path. tree (with a fixed
vertex as the root). The weight of a shortest path tree
can be much more than the weight of a minimum spa,n-
ning tree. Conversely, the distance bet,ween the root,
and any vertex in a minimum spanning tree may be
much more than the distance bet#ween the two vertices
in the graph. Consider the problem of balancing be-
tween the two kinds of trees: Does every graph contain
a tree that is “light” (at most a constant times heavier
than the minimum spanning t,ree), such that the dis-
tance from the root to any vertex in t,he tree is no more
than a constant times the true distance? This paper
answers the question in the affirmative. It is shown
that there is a continuous tradeoff between the two pa-
rameters. For every y > 0, there is a tree in the graph
whose total weight is at most 1 + $? times the weight
of a minimum spanning tree, such that the di&nce in
the tree between the root, and any vertex is at, most
1 + &y times the true distance. Efficient sequential
and parallel algorithms achieving these factors are pro-
vided. The algorithms are shown to be optimal in two
ways. First, it is shown that no algorithm can achieve
better factors in all graphs, because there a.re graphs
that do not have better trees. Second, it is shown that
even on a per-graph basis, finding trees that achieve
better factors is NP-hard.

* Computer Science Department, University of Maryland,
College Park, MD 20742. Email : samir(Pcs .umd. edu. This work
was done while this author was at UMIACS and was supported
by NSF grants CCR-8906949, CCR-9103135 and CCR-9111348.

t Computer Science Department, Pennsylvania St,ate Univer-
sity, University Park, PA 16802. Email : rbk@cs . psu . edu.

t University of Maryland Institute for Advanced Com-
puter Studies, College Park, MD 20742. Email :
youngOumiacs . umd . edu. Supported by NSF grants CCR-8906949
and CCR-9111348.

Neal Youngt

1 Introduction
Let a graph G = (V, E) represent a feasible
communications network. An edge (a, b) denotes
the feasibility of adding a link from site o to site
b. Each edge e has a nonnega.tive weight w(e),
which represents the distance between the sites.
The weight is a measure of the cost to add the link,
and also of the time taken for a message to travel
along it. The weight of a network is the sum of the
weights of its edges. A minimum spnning tree,
T&f, is a spanning subgraph of G whose weight
is minimum, i.e., the cheapest network that will
allow the sites to communicate. Fast algorithms
for computing a minimum spanning tree (MST) in
a graph are known [9, 10, 12, 151.

Assume that there is a root vertex T in the
network from which many messages are sent. We
would like the messages to be sent along short
paths from the root to the vertices in the net-
work, so that the messa.ges reach their destinations
quickly. A shortest path tree, Ts, is a tree rooted at
T such that the distance between the root a.nd any
vertex u in T,y is exa.ctly the same as the length of
the shortest path between u and T in G. Dijkstra’s
algorithm can be used for computing T.y [8, 93.

It is possible that the weight of Ts is signif-
ica.ntly more tl1a.n the weight of TM. In the ex-
ample of Fig. 1, in the n-vertex graph, the short-
est path tree has a weight of n(n”), whereas the
weight of an MST is only O(n).

Conversely, certain vertices that are close to
the root in a gra.ph can be far away from r in TM.
In the example of Fig. 2, all edges on the cycle
have a weight of 1, except the edge to the root
that closes the cycle. The weight of the MST is
n - 1, but the vertex that is at a distance of 1 + E
in the graph is at a distance of n - 1 in TM.

243

Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 243-250 (1993)

244

1 T

r 1

2 c n
nnn n n 1

--- __-- 1 1. ---j- ‘1. -‘I “I.- ,‘l“‘*--

1+c
-m

--

1

J

1

1 1

KHULLER ET AL.

Figure 1: A Heavy Shortest-Path Tree

This raises the question of finding a spanning
tree T whose total weight is not much more thaa
the weight of TM, and such that the dista.nce from
the root to any vertex in T is not much more
than the distance in Ts. More precisely we ask
the following question: Does every graph conta.in
a tree that is “light” (at most a constant times
heavier than the minimum spa.nning tree), such
that the distance from the root to any vertex in
the tree is no more tha.n a constant times the
true distance? We refer to such a tree as a Light
Approximate Shortest-path Tnze (LAST).

DEFINITION 1.1. Let G be an arbitrary gmph
with non-negative edge weights and a root vertex
r. A tree rooted at r is called an (a,P)-LAST if
the following conditions are satisfied (a!,/3 2 1):

1. The distance of every vertex v fern r in T is
at most Q times the distance between v and r
in G.

2. The weight of T is at most p times the weigh,t
of a MST of G.

The main result in this paper, given in $3, is
that for any (Y 2 1 and ,8 > 1 + 5, every gra.ph
contains an (cr, P)-LAST for any root. Our proof is
constructive: we give an algorithm that, given the
n-vertex trees TM and Ts, finds the (a,P)-LAST
in O(n) time.

In $4, we show that for cy > 1 this result is
optimal: for any o > 1 and 1 5 p < 1+ &, there
are graphs containing no (o,P)-LAST a.t some
root, and the problem of deciding whether a given
graph contains an (a,@-LAST is NP-complete.

For the remaining case, when Q = 1, the
problem reduces to finding a shortest-path tree

Figure 2: An MST with a Long Path

of at most a certain weight. In fj5, we describe
how the problem of finding a minimum-weight
shortest-pa.th tree can be reduced to the problem
of finding a minimum-weight branching in the
shortest-path subgraph of G, a,nd how this yields
an efficient algorithm for finding an optimal (1, /3)-
LAST.

In $6, we sketch how the algorithm from $3
can be parallelized to run in O(logn) time using
n processors.

2 Related Work

Awerbuch, Baratz and Peleg [2] showed that every
graph has a shallow-light tree, which is a tree
that is at most a constant times heavier tha.n TM,
and with the property that the diameter of T
is at most a constant times the diameter of G.
They also gave an algorithm to compute such a
tree efficiently. For any gra,ph, if we fix the root
arbitra.rily and fix a to be an a.rbitrary constant
greater tl1a.n one, then every (a, l-l- &)-LAST is
also a shallow-light tree. Recently, we learned that
Awerbuch, Baratz and Peleg [3] have extended
their sha,llow-light-tree algorithm to obta,in an
(a, 1 + &)-LAST in O(m + nlogn) time.

For VLSI applications of LAST’s, see [5, 61.
Considerable research has been done on find-

ing spanners of small size and weight in arbitrary
graphs, and in Euclidean graphs (graphs induced
by points in the plane). A t-spanner is a small
weight spanning subgraph G’ of G, with the prop-
erty that the distance between a,ny two vertices in
G’ is at most t times the distance in G. It is known
that there are graphs that do not have spa,nners
that are only a constant times heavier than TM.

BALANCING MINIMUM SPANNING AND SHORTEST PATH TREES 245

However, in our case we are looking for a “rooted”
spanner. For a survey of results on spanners, see
the recent pa,per by Chandra, Das, Narasimhan
and Soares [4]. Other papers dealing with spa.n-
ners are by [l, 131.

3 The Algorithm
Notation: Let DT(u, V) be the distance along the
shortest path between vertices ‘u, and v in T. The
weight of a subgraph X (such as a path or a tree)
is denoted by w(X) and is defined as the sum of
the weights of the edges in X.

The idea is the following: we start with the
tree TM, and do a depth-first-search (DFS) of the
tree, starting at the root. When we encounter a
vertex for the first time, if its dista,nce from the
root in the current graph is too large, we bring it
closer by adding its shortest pa.th (in Ts) to the
current graph.

The added paths are not too heavy beca.use
we do not add a path to a vertex unless the vertex
is far from T in TM, using a.ny of the previously
added paths. This allows us to bound the added
weight by charging it to a path in TM - if we
add a path to a vertex o, and the last path a.dded
was to vertex u, then the length of the added
path is bounded by (DT~(T, u)+D~,,(u, ~))/a. By
summing these bounds, we bound the net added
weight. This method is inspired by the shallow-
light tree algorithm of [2]. The funda,mental
differences are that we added paths to vertices
that are too far from the root, ra.ther tha.n the
last such vertex, and tha.t we obtain a.n O(n)-time
algorithm.

3.1 Relaxation. To obtain a simple linea,r-time
algorithm, we don’t add entire paths, and we don’t
keep track of exact shortest-pa.th distances in the
current graph. Instead, using sta.nda.rd shortest-
path techniques [7, pp. 5181, we maintain for each
vertex v a &stance estimnte d[v] and a prent
pointer p[v]. The distance estimate of u is always
an upper bound on the distance to T from v in the
current graph via the path (v,p[~],pb[~]], r).
This invariant is established by the INITIALIZE
step and maintained through a sequence of RELAX
steps:

INITIALIZEO
Initialize distance estimates, parent pointers.
1 for v E V - {r} do p[v] * r; d[v] +- co
2 d[r] + 0
RELAX(U, w)
Check for shorter path to v through u.
1 if d[v] > d[u] + w(u,w)
2 then d[v] + n[u] + W(U, w)
3 PM + u
If during a sequence of relaxa.tion steps, a path
P = (r = WO,Tl~,O2)...) V) has been relaxed (i.e.,
rela.xations have been done in order on the pairs
{(w;, ~i+r)}, possibly interspersed with other re-
laxations), then a[~] is at most w(P). Thus, for in-
stance, if P is a shortest path, then d[v] must equal
w(P), a.nd the path (v,p[v],p[p[v]], r) must be
a shortest path.

3.2 A Relaxing DFS. For our algorithm, we
do a simple sequence of relaxation steps, and we
use d[v] to decide whether to add the shortest
pa.th to V. As we traverse TM, we relax each
edge (u, V) when we traverse it - once when we
explore v from u (executing RELAX(U, v)), and
la.ter when we return from exploring w (executing
RELAX(W,U)). When we first visit a vertex w, if
44 > a &s(r, 4, th en we “add the path” from r
to w (in T,q) by relaxing enough edges on the path
to lower d[w] sufficiently.

When we finish the traversal, each distance
estimate d[w] is bounded by cr DT~(T, w), and so
the tree T formed by the edges {(w,p[w])} meets
the cy constraint. If during the traversal, we add
the shortest path to a vertex w, then we know that
the weight of the pa,th is bounded by (DT~(T, u) +
DT~(u, ~))/a, because the corresponding path
(from r to u via the edges in Ts, and then from
u to w via the edges in TM) was relaxed. Thus
we can bound the weight of the added edges as
described earlier.

The algorithm is given in Fig. 3.

3.3 Analysis of the Algorithm. We now
prove that T has the desired properties: the
distance from T to any vertex w in T is not
increased by more than a factor of cy, and w(T)
is no more thaa (1 + &)“(TM).

246 KHULLER ET AL.

FIND-LAST(TM,TS,T,O)
Return an (Q, 1 + -&>-LAST.
1 INITIALIZE()
2 DFS(r)
3 return tree T = {(v,p[w]) 1 v E V - {r))

DFS(u)
Traverse the subtree of TM rooted at u, relaxing
edges as they are traversed, and adding paths from
Ts as needed.
1 if d[u] > cx DT~(T, u)
2 then ADD-PATH(U)
3 for each child v .of u in TM
4 do RELAX(U,O)
5 DFS(v)
6 RELAX(D,U)
ADD-PATH(D)
Relax edges along path from r to v in Ts.
1 if d[v] > DT~(T,~))
2 then ADD-PATH(pa.rentTs(v))
3 RELAX(parentTS(w),w)

Figure 3: Algorithm to Compute a LAST

LEMMA 3.1. The distance of each vertex v
from T in T is at most cr times the distance in
Ts, i.e.,

DT(r,v) 5 aD~~(r,v), for all 2, E V

Proof. Clearly the series of relaxation steps
done by the algorithm guarantees that once a ver-
tex o has been visited, d[v] 5 a DT~(T, v). Subse-
quently, d[v] d oes not increase, and, as desc.ribed
above, the weight of the path (v,p[~],p[p[v]], T)
is always at most d[v]. When the algorithm ter-
minates, this is the path from VI to r in T. II

LEMMA 3.2. The weight of T is at most (1+

2 a-l > times the weight of a minimum spanning
tree, i.e.,

w(T) 5 (1 + A) I
Proof. Let ve = r and let (or, ~2, Q) be the

list of vertices that caused shortest paths to be

a.dded during the traversal, in the order they were
encountered. When V; is encountered, the weight
of the newly a.dded edges is at most DT~(T, wi).
We will bound C; DT~(T, ui) as follows.

Observe that, when VU; is encountered,
cy DT~(T, vi) < d[v;]. As described earlier, the path
P, composed of the path from T to TI;-~ in TS fol-
lowed by the path from vi-1 to o; in TM, had been
relaxed. Thus d[v;] < w(P), and

Q DT&, vi) < d[v;]
I w(P)
= DT&, WI) + DT&L~, v;)

Summing over i gives

i=l i=l
and therefore

The DFS traversal traverses each edge exa.ctly
twice, a.nd hence the sum on the right-hand side
is a.t most twice the weight of TM, i.e.,

k c DT&L-~, vi) L 2 I.
i=l

Thus, if any paths are added, their net weight
is less than &~(TM). The remaining edges are
from TM, thus giving the result. II

THEOREM 3.1. (CORRECTNESS)
The algorithm finds a (1 + A-y, 1 + $)-LAST
for any y > 0.

Proof. Let cr = 1 + &y . Then by Lemmas 3.2
and 3.1 we get

w(T) <

DT(~‘) I (I+ x’%) &.(v)

for all v E V. Hence the tree generated by the
algorithm is a. (1 + fir, 1 + $)-LAST. 0

BALANCING MINIMUM SPANNING AND SHORTEST PATH TREES 247

Notice that these also imply a.n upper bound on
the diameter of T of 2(l+&) times the dia.meter
of G.

We now establish the running time of the
algorithm.

THEOREM 3.2. (RUNNING TIME)
The algorithm runs in O(n) time. Consequently,
an (a,/?)-LAST can be found in an arbitrary n-
vertez, m-edge graph in O(m + n log n) time.

Proof. The number of steps is proportional
to the number of relaxations. Clearly at most
2n relaxations occur in DFS, and at most n
occur in ADD-PATH. TM a.nd Ts can be found
in O(m + nlogn) time using existing algorithms
[9, 101. Cl

Observe that for Euclidean graphs (graphs
induced by points in the plane) the running time
is only O(n log n) since the MST can be computed
in O(nlogn.) time [14]. The rest of the processing
can be done in linear time.
Observation 1: Note that Thf and Ts can be
arbitrary rooted trees - our algorithm will still
compute a tree spanning the vertices of TM of
weight at most (1 + 5) w(TM), a,nd in which
the distance from T to each v is bounded by
Q h&, v>. Thus, if trees approximating the
minimum weight and shortest paths are known or
can be found quickly, a LAST ca.n also be found
quickly, although the weight and distance blow-
up may increase by the additional approximation
factors.
Observation 2: The algorithm can be used to
solve the “multiple-root” problem, where there are
multiple roots, and each vertex is required to be
close to some root in T rela.tive to its dista.nce to
its closest root in Ts.

4 Optimality of the Algorithm
In this section we show tha.t the algorithm is
optimal in the following sense. We show that
for any CY > 1 and 1 5 p < 1 + 5 there is a
graph such that the graph does not contain an
(a,P)-LAST, and that the problem of deciding
whether a given graph conta.ins a.n (a,P)-LAST
is NP-complete.

Figure 4: A graph with no (a,P)-LAST for ,0 <
l+&. (A=a+l,B=a+E-landC=2.)

4.1 Non-Existence of a LAST. Consider the
graph shown in Fig. 4. The structure of the graph
is as follows. The root T is connected to a central
vertex c by a path of weight A of edges of weight
some small 6. The central vertex is connected
through simi1a.r paths of weight B to the 1 lea.ves.
The root is connected to each leaf with an edge
of weight C. Let A = a + 1, B = cr + E - 1 aad
C = 2, where E is an a,rbitra.rily small constant.
The MST is formed by using all edges except those
of weight C.

Any (a,P)-LAST is forced to have all of the
cost C edges. Since the length of the shortest
path from the root to any leaf is 2, we cannot
afford to add the path going through the center
vertex (which is of length A + B = 2a + E). The
path to a leaf through some other leaf is of length
2 + 2B = ~(CV + E), which is also too long. Thus
we are forced to add the edges from the root to
every leaf. In addition, all but 4! of the remaining
edges a.re present. Therefore the weight of any
(a,P)-LAST is 21+ TM - !?6. More formally,

THEOREM 4.1. For any a > 1 and /3,1 5 ,B <
l+ &, there exists a rooted gmph containing no
(a, P)-LAST.

Proof. The minimum spanning tree TAG has a
weight of (a + 1) + ~(CX - l-l- E). Any (a, ,B)-LAST
ha.s weight ~!!+TM -f%. The ratio of the weight of
such a tree a.nd TAG tends to 1-t & a.s E, S + 0 and
f? + 00. Hence, for every fixed p < 1 + &, there
is a gra.ph tha.t does not have an (a,@-LAST. II

248 KHULLER ET AL.

4.2 NP-Completeness of LAST Queries.
We have shown that in general, no algorithm can
guarantee a.nything better tha.n a.n (a, 1 + -&)-
LAST, once (Y is fixed. Our proof was based on
certain graphs having no such trees. An obvious
question to ask is whether one can do better
in graphs that do have the required tree as a
subgraph. Suppose for fixed para.meters (Y a.nd p,
with (Y > 1 and 1 2 /l < 1 + 5, we ask whether
a given gra.ph has an (a,P)-LAST. We show that
this problem is NP-complete.

THEOREM 4.2. For any (Y > 1, and 1 < /3 <
1 + 5, the following problem is NP-complete:
“Given G, and a root r, does G contain an (cY,/~)-
LAST?”

Clearly, the problem is in NP. The proof of
NP-hardness is in two parts. We first show tl1a.t
for any (Y, and /3 = 1, the problem is NP-complete.
We then show how to do a reduction from the
(cr, l)-LAST problem to the (CU, /?)-LAST problem
for the specified range of /3.

LEMMA 4.1. The (cy, 1)-LASTproblem is NP-
hard.

Proof. We prove this by a reduction from 3-
SAT. Let F be 3-SAT formula in conjunctive nor-
mal form - each clause is a subset of three litera.ls
from the sets (21,. . .,z,} a.nd (31,. . .,Zn}. We
build a graph in which the (a, l)-LAST’s corre-
spond to satisfying assignments of F.

There will be a root vertex R. For each vari-
able x; we will build the following “ga.dget” to sim-
ulate the setting of a variable to be true or false.
There is a “triangle” S, X;, xi corresponding to
each variable z; (see Fig. 5).

The weight of the edges (S, X;) and (S, xi)
is A. There is a path connecting X; and x; of
length E. There is also a path connecting R to S
of length D. These paths a,re formed with small
enough edges to ensure tha.t the edges are in any
MST.

For each clause cj there is a vertex Cj, with an
edge from R to Cj of weight IV. If X; E cj then we
add an edge from X; to Cj of weight B. If 5; E cj
then we add an edge from xi to Cj of weight B.

Observe in this construction that, if A <
B < W, the minimum spanning trees are exactly

characterized by the following. The paths [R,S]
a.nd [X;,xi] belong to the MST. For each variable
xi, exactly one of the two edges {(S, X;), (S,Xi)}
is in the MST. For each clause cj, exactly one edge
of the form (X;, cj) or (x;, cj) for some i is in the
MST. No other edges are in the MST.

Next, we use the a constraint to ensure that
the MST is a,n (cy, l)-LAST iff the path to each
clause vertex comes from some variable vertex
X; or T; that has an edge directly to S. If
we can do this, then we are done - the (o,l)-
LAST’s will correspond to satisfying assignments
in the original formula via the following. For each
variable xi, choose the edge (S,Xi) iff xi is true,
otherwise choose the edge (S,xi); for each clause
cj, choose the edge (Xi, cj) (or (X;, cj)), where X;
(or Zi) is a va.riable (or nega.ted va.riable) satisfying
Cje

To ensure this, it suffices that the weights
A, B, D, E, IV are picked so that they satisfy the
following constra.ints:

A+D+E<amin{A+D,B+W}

A+B+D 5 amin{A+B+D,W} < A+B+D+E.
For instance, ta.ke A = 1, B = GY, D = 2~3,
E = (a - 1)(2cv + l), andW=1+2a+i. 0

We now provide the proof of Theorem 4.2.
Proof. We now reduce the (o, l)-LAST prob-

lem to the (cz,P)-LAST problem (for CY > 1,
lIPat&).

Let G* be the graph for which we want to solve
the (a, l)-LAST problem. By Theorem 4.1, there
exists a graph G’ with no (o,/3)-LAST. Assume
without loss of generality that the MST of G*
has weight 1 and the MST of G’ is of weight c (a
constant to be determined later). Define the graph
G to be the union of G* and G’ by identifying their
roots into a single root T.

Let /?’ be the minimum such that G’ has an
(a, ,f3’&AST. Define p* analogously for G*. Take
c = p-p.

The weight of the MST in G is 1 + c, similarly
the lightest tree in G meeting the (Y requirement
is of weight p* + /3’ c. Thus G has an (a,/?)-LAST
iff p* + /3’c 2 /?(l + c). By our choice of c, this is
equivalent to ,f3* 2 1. Thus G has an (a,&)-LAST
iff G* has a.n (o, l)-LAST. II

BALANCING MINIMUM SPANNING AND SHORTEST PATH TREES 249

Figure 5: R.eduction from 3-S.4T

5 Minimum-Weight Shortest-Path Trees
Finally, we consider what happens when (Y = 1.
Here, an (a, P)-LAST is a shortest-path tree from
the root, of weight at most ,0 times the weight of
the minimum spanning tree. In this section, we
give an efficient method for finding the minimum-
weight shortest-path tree.

The shortest-path subgmph in a rooted,
weighted, directed graph is obtained from the
graph by removing those edges (u, V) not on any
shortest path from the root - those for which
DT~(T, u) + 2o(u, V) > DT~(T, v). It is easily shown
that paths from T in the shortest-pa,th subgra.ph
correspond to shortest paths from T in the original
graph, and vice versa.

A bmnching in a rooted, directed graph is
a spanning tree with all edges directed away
from the root,. Efficient algorithms for finding
minimum-weight branchings are known [lo].

Thus, finding a minimum-weight shortest pa.th
tree in a directed graph reduces to finding a
minimum-weight branching in the shortest-path
subgraph. To find the minimum-weight shortest

path tree in an undirected gra.ph, simply direct
it: duplica.te each edge, directing one copy to
each endpoint. Shortest-path trees in the original
gra.ph, directed a.ppropriately, then correspond to
shortest-pa.th trees in the directed graph.

6 Parallelizing the LAST Algorithm

In this section we sketch how the LAST algorithm
can be parallelized. The parallel algorithm runs
in O(logn) time using n processors on a CREW
PRAM. We give details in the full paper.

Briefly, repla.ce each edge {u,v} in TM with
the two directed edges (u,v) and (v, u). Let
C = (el,ez,..., e271--2) be the edges of an Euler
tour representing a, DFS traversal of TM, sta.rting
at the root. Let ei = (ui,ui+l). Abusing notation,
let Dc(i,j) denote C:=i w(ek). For i < j, define
the relation m(i, j) to be true if and only if

For fixed j, the relation m(i,j) is monotone in
i. We show that this is sufficient to compute the
function M(i) = min(j > i : m(i,j)} in O(logn)

250 KHULLER ET AL.

time and n processors. Intuitively, UM(~) is the
next vertex that will have to have its shortest path
added if u; does.

We construct the LAST tree T as follows. Let
PS(V) denote the parent of vertex 2, in Ts. Let
PM(V) denote the parent of v in TM. Let Q be the
smallest set containing 0 and closed under M(m).
Let R be the smallest set containing {u; : i E Q}
and closed under PS(.). Assign p[v] t PS(V) for
v E R, and p[v] t PM(O) otherwise. Take the tree
T to consist of the edges {(v,p[v])}.

7 Conclusions
We have demonstrated that every graph contains
trees that offer a continuous tradeoff between
minimum spa.nning trees and shortest path trees.
Our proof is constructive and yields a simple and
efficient algorithm .

As a corollary of our result, we can approxi-
mate the case when we need to compute light trees
in which the sum of distances from the root to each
vertex is minimum. The quality of the approxima-
tion is the same as in our problem. Is it possible
to do better? What about a tree with summation
of all pairs distances or with a fixed set of roots?

One could pose the same question for di-
graphs, and ask for the existence of a branching
(with a root T), with the property tha.t the dis-
tance from T to any vertex is a.t most a constant
time the true distance, and the weight is not much
more than the minimum weight branching. It is
not difficult to see that there are graphs for which
a branching with this property does not exist.

Acknowledgments

We would like to thank Shay Kutten for telling
us about [2]. We would also like to thank Seffi
Naor, Dheeraj Sanghi and Moti Yung for useful
discussions.

References

Proc. of 9th Symp. on Principles of Distributed
Computing (PODC), pp. 177-187, (1990).

[3] B. Awerbuch, A. B aratz, and D. Peleg, Efficient
broa.dcast and light-weight spanners, Manuscript,
(1991).

[4] B. Cha.ndra, G. Das, G. Narasimhan and J.
Soares, New sparseness results on graph spanners,
Proc. of 8th Symp. on Computa.tional Geometry,
(CC), pp. 192-201, (1992).

[5] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh
and C. K. Wong, Performance-driven global rout-
ing for cell based IC’s, Proc. IEEE Intl. Confer-
ence on Computer Design, pp. 170-173, (1991).

[6] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh
and C. K. Wong, Provably good performa,nce-
driven global routing, IEEE Transactions on
CAD, pp. 739-752, (1992).

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, The MIT Press,
(1989)

[8] E. W. Dijkstra, A Note on Two Problems in Con-
nexion with Graphs, Numerische Mathematik, 1,
pp. 269-271 (1959).

[9] M. L. Fredma.n and R. E. Tarja,n, Fibonacci heaps
and their uses in improved network optimization
algorithms, Journal ofthe ACM, 34 (3), pp. 596-
615, (1987).

[lo] H. N. G .b a ow, Z. Galil, T. Spencer and R. E.
Tarjan, Efficient algorithms for finding minimum
spa.nning t,rees in undirected and directed gra.phs,
Combinatorics, 6 (2), pp. 109-122, (1986).

[ll] J. Jd.Jd, Int.roduction to Parallel Algorithms,
Addison,- PVesley, Rea.ding, MA, (1991).

[12] J. B. Kruskal, On the Shortest Spanning Subtree
of a Graph and t.he Traveling Salesman Problem,
Proc. Am.er. Math. Soc., 7, pp. 48-50 (1956).

[13] D. Peleg and J. D. Ullma.n, An optimal syn-
chronizer for t,he hypercube, Proc. of 6th Symp.
on Principles of Distributed Computing (PODC),
pp. 77-85, (1987).

[14] F. P. Prepa.ra.ta and M. I. Shamos, Computa-
tional Geometry, Springer Verlag, (1985).

[15] R. C. Prim, Shortest Connection Networks and
Some Generaliza.tions, Bell System Tech. J., 36,
pp. 1389-1401 (1957).

[l] I. Althiifer, G. D as, D. Dobkin, D. Joseph, Gener-
ating sparse spanners for weight,ed graphs, Proc.
of 2nd Scandinavian Workshop on Algorithm
Theory (SWAT), pp. 26-37, (1990).

[2] B. Awerbuch, A. B aratz, and D. Peleg, Cost-
sensitive analysis of communication protocols,

