Greedy Methods

Samir Khuller* Balaji Raghavacharif Neal E. Young?!

September 9, 2005

1 Introduction

Greedy algorithms can be used to solve many optimization problems exactly and efficiently. Examples include
classical problems such as finding minimum spanning trees and scheduling unit length jobs with profits and
deadlines. These problems are special cases of finding a maximum- or minimum-weight basis of a matroid.
This well-studied problem can be solved exactly and efficiently by a simple greedy algorithm [23, 28].

Greedy methods are also useful for designing efficient approzimation algorithms for intractable (i.e. NP-
hard) combinatorial problems. Such algorithms find solutions that may be suboptimal, but still satisfy some
performance guarantee. For a minimization problem, an algorithm has approrimation ratio «, if, for every
instance I, the algorithm delivers a solution whose cost is at most a x OPT(I), where OPT(I) is the cost of
an optimal solution for instance I. An a-approximation algorithm is a polynomial-time algorithm with an
approximation ratio of a.

In this chapter we survey several NP-hard problems that can be approximately solved via greedy algo-
rithms. For a couple of fundamental problems we sketch the proof of the approximation ratio. For most of
the other problems that we survey, we give brief descriptions of the algorithms and citations to the articles

where these results were reported.

*Department of Computer Science, University of Maryland, College Park, MD 20742. Email:samir@cs.umd.edu
fDepartment of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688. Email: rbk@utdallas.edu

iDepartment of Computer Science, University of California at Riverside, Riverside, CA 92521. Email: neal@cs.ucr.edu

Handbook of Approximation Algorithms and Metaheuristics, Chapter 4, CRC Press (2006)

Handbook of Approximation Algorithms and Metaheuristics, Chapter 4, CRC Press (2006)

2 SET COVER 2
2 Set Cover

We start with SET COVER, perhaps one of the most elementary of the NP-hard problems. The problem
is defined as follows. The input is a set X = {x1,%2,...,2,} of elements and a collection of sets S =
{51, S2,...Sm} whose union is X. Each set S; has a weight of w(S;). A set cover is a subset &' C S such
that (Jg, s S = X. Our goal is to find a set cover &' C § so as to minimize w(S') =) g, cs w(Si)- In
other words, we wish to choose a minimum-weight collection of subsets that covers all the elements.
Intuitively, for a given weight, one prefers to choose a set that covers the most elements. This suggests
the following algorithm: start with an empty collection of sets, then repeatedly add sets to the collection,
each time adding a set that minimizes the cost per newly covered element (i.e., the set that minimizes the

weight of the set divided by the number of its elements that are not yet in any set in the collection.)

2.1 Algorithm for set cover

Next we prove that this algorithm has approximation ratio H(|Smax|), where Spax is the largest set in S
and H is the harmonic function, defined as H(d) = 2?21 1/i. For simplicity, assume each set has weight 1.

We use the following charging scheme: when the algorithm adds o set S to the collection, let u denote
the number of not-yet-covered elements in S and charge 1/u to each of those elements. Clearly the weight
of the chosen sets is at most the total amount charged. To finish, we observe that the total amount charged
is at most OPT x H(|Smax|)- To see why this is so, let S* = {e5,e5-1,...,€1} be any set in OPT. Assume
that when the greedy algorithm chooses sets to add to its collection, it covers the elements in S* in the order
given (each e; is covered by the time e;_1 is). When the charge for an element e; is computed (i.e., when the
greedy algorithm chooses a set S containing e; for the first time) at least ¢ elements (e;,€;_1,€;—2,...,€1) in
S* are not yet covered. Since the greedily chosen set S contains at least as many not-yet-covered elements

as S*, the charge to e; is at most 1/i. Thus, the total charge to elements in S* is at most

1 1 1
-+ +.--+—-4+1=H < H .
s s 1 2 1 (8) = (|Smax|)

Thus, the total charge to elements covered by OPT is at most OPTxH (|Smax|). Since every element is

covered by OPT, this means that the total charge altogether is at most OPTx H (| Smax|). This implies that

2 SET COVER 3

the greedy algorithm is an H (|Smax|)-approximation algorithm.

These results were first reported in the mid 1970’s [19, 36, 24, 7]. Since then, it has been proven that no
polynomial-time approximation algorithm for set cover has a significantly better approximation ratio unless
P=NP [33].

The algorithm and approximation ratio extend to a fairly general class of problems called minimizing a
linear function subject to a sub-modular constraint. This problem generalizes set cover as follows. Instead of
asking for a set cover, we ask for a collection of sets C' such that some function f(C) > f(X). The function
f(C) should be increasing as we add sets to C and it should have the following property: if C' C C’, then,
for any set S, f(C'U{S'}) — f(C") < f(CU{S}) — f(C). In terms of the greedy algorithm, this means that
adding a set S to the collection now increases f at least as much as adding it later. (For set cover, take f(C)

to be the number of elements covered by sets in C.) See [27] for details.

2.2 Shortest superstring problem

We consider an application of the set cover problem, SHORTEST SUPERSTRING problem. Given an alphabet
¥, and a collection of n strings S = {s1, ..., s}, where each s; is a string from the alphabet ¥, find a shortest
string s that contains each s; as a substring. There are several constant-factor approximation algorithms for
this problem [5]; here we simply want to illustrate how to reduce this problem to the set cover problem.

For each s;,s; € S and for each value 0 < k < min (|s;|,|s;|), we first check to see if the last k£ symbols
of s; are identical to the first £ symbols of s;. If so, we define a new string B;;;, obtained by concatenating
s; with s;?, the string obtained from s; by deleting the first k characters of s;. Let S be the set of strings
Bijk- For a string m we define S(7) = {s € S|s is a substring of 7}. The underlying set of elements of the
set cover is S. The specified subsets of S are the sets S(w) for each # € SUS. The weight of each set S(m)
is |m|, the length of the string.

We can now apply the greedy set cover algorithm to find a collection of sets S(m;) and then simply
concatenate the strings m; to find a superstring. The approximation factor of this algorithm can be shown

to be 2H (n).

3 PRIMAL-DUAL METHODS 4
3 Primal-Dual Methods

In this section we study a powerful technique, namely the primal-dual method, for designing approximation
algorithms [12]. Duality provides a systematic approach for bounding OPT, a key task in proving any
approximation ratio. The approach underlies many approximation algorithms. In this section, we illustrate
the basic method via a simple example.

A closely related method, one that we don’t explore here, is the “local-ratio” method developed by Bar-
Yehuda [3]. Tt seems that most problems that have been solved by the primal-dual method appear amenable
to attack by the local-ratio method as well.

We use as our example another fundamental NP-hard problem, the VERTEX COVER problem. Given a
graph G = (V, E) with weights on the vertices given by w(v), we wish to find a minimum-weight vertex
cover. A vertex cover is a subset of vertices, S C V, such that for each edge (u,v) € E, eitheru € Sorv € S
or both. This problem is equivalent to the special of the set cover problem where each element appears in
exactly two of the given sets.

We describe a 2-approximation algorithm. First, write an integer linear program (IP) for this problem.
For each vertex v in the given graph, the program has a binary variable z, € {0,1}. Over this space of
variables, the problem is to find

min { Zw(v)xv DLy + 2y >1 (V(u,v) € E) }

veV

It is easy to see that an optimal solution to this integer program gives an optimal solution to the original
vertex cover problem. Thus, the integer program is NP-hard to solve. Instead of solving it directly, we
relax IP to a linear program (LP), which is to optimize the same objective function over the same set of
constraints, but with real-valued variables z, € [0,1].

Each linear program has a dual. Let N(v) denote the neighbor set of v. The dual of LP has a variable
Y(u,v) > 0 for each edge (u,v) € E. Over this space of variables, the dual of LP is to find

max {3 pue t Y vw Swl) (wev)}
(u,v)EE uEN(v)

The key properties of these programs are the following:

3 PRIMAL-DUAL METHODS)

1. Weak duality: the cost of any feasible solution to the dual is a lower bound on the cost of any feasible
solution to LP. Consequently, the cost of any feasible solution to the dual is a lower bound on the cost

of any feasible solution to IP.

2. If we can find feasible solutions for IP and the dual, where the cost of our solution to IP is at most «

times the cost of our solution to the dual, then our solution to IP has cost at most a OPT.

One way to get an approximate solution is to solve the vertex cover LP optimally (e.g., using a network
flow algorithm [38]), and then round the obtained fractional solution to an integral solution. Here we describe
a different algorithm — a greedy algorithm that computes solutions to both IP and the dual. The solutions
are not necessarily optimal, but will have costs within a factor of 2.

The dual solution is obtained by the following simple heuristic: Initialize all dual variables to 0, then
simultaneously and uniformly raise all dual variables, except those dual variables that occur in constraints
that are currently tight. Stop when all constraints are tight. The solution to IP is obtained as follows:
Compute the dual solution above. When the constraint for a vertex v becomes tight, add v to the cover.
(Thus, the vertices in the cover are those whose constraints are tight.)

The constraint for vertex v is tight if 3°, ¢ n(,) Y(u,v) = w(v). When we start to raise the dual variables,
the sum increases at a rate equal to the degree of the vertex. Thus, the first vertices to be added are those
minimizing %. These vertices and their edges are effectively deleted from the graph, and the process
continues.

The algorithm returns a vertex cover because, in the end, for each edge (u,v) at least one of the two
vertex constraints is tight. By weak duality, to see that the cost of the cover is at most 20PT, it suffices
to see that the cost of the cover S is at most twice the cost of the dual solution. This is true because each
node’s weight can be charged to the dual variables corresponding to the incident edges, and each such dual
variable is charged at most twice:

Z’U)(U) = Z Z Y(u,v) <2 Z Y(u,v)-

vES vES uEN (v) (u,v)EE
The equality above follows because w(v) = > uc N(v) Y(u) for each vertex added to the cover. The inequality

follows because each dual variable y, ,) occurs at most twice in the sum.

3 PRIMAL-DUAL METHODS 6

To implement the algorithm, it suffices to keep track of the current degree D(v) of each vertex v, as well
as the slack W (v) remaining in the constraint for v. In fact, with a little bit of effort the reader can see
that the following pseudo-code implements the algorithm described above, without explicitly keeping track

of dual variables. This algorithm was first described by Clarkson [8]:

GREEDY-VERTEX-COVER(G, S)
1 for allv € V do W(v) + w(v); D(v) + deg(v)
2 S«

3 while E #0 do

4 Find v € V for which v[‘;((s)) is minimized.

5 for all u € N(v) do

6 E + E\ (u,v)

7 W (u) W(u) — B and D(u) D(u) — 1
8 end

9 S+« SU{v}and V « V \ {v}

10 end

More sophisticated applications of the primal-dual method require more sophisticated proofs. In some
cases, the algorithm starts with a greedy phase, but then has a final round in which some previously added
elements are discarded. The key idea is to develop the primal solution hand in hand with the dual solution
in a way that allows the cost of the primal solution to be “charged” to the cost of the dual.

Because the vertex cover problem is a special case of the set cover problem, it is also possible to solve
the problem using the greedy set cover algorithm. This gives an approximation ratio of at most H(|V|),
and in fact there are vertex cover instances for which that greedy algorithm produces a solution of cost
Q(H(|V])) OPT. The greedy algorithm described above is almost the same; it differs only in that it modifies
the weights of the neighbors of the chosen vertices as it proceeds. This slight modification yields a significantly

better approximation ratio.

4 GREEDY ALGORITHMS VIA THE PROBABILISTIC METHOD 7
4 Greedy Algorithms via the Probabilistic Method

In their book on the probalistic method, Alon, Spencer, and Erdés [1] describe probabilistic proofs as follows:

In order to prove the existence of a combinatorial structure with certain properties, we construct an
appropriate probability space and show that a randomly chosen element in the space has the desired

properties with positive probability.

The method of conditional probabilities is used to convert those proofs into efficient algorithms [30].

For some problems, elementary probabilistic arguments easily prove that good solutions exist. In some
cases (especially when the proofs are based on iterated random sampling) the probabilistic proof can be
converted into a greedy algorithm. This is a fairly general approach for designing greedy algorithms. In this

section we give some examples.

4.1 Max cut

Given a graph G = (V, E), the MAX-CUT problem is to partition the vertices into two sets S and S so as
to maximize the number of edges “cut” (crossing between the two sets). The problem is NP-hard.
Consider the following randomized algorithm: For each vertex, choose the vertex to be in S or S indepen-
dently with probability 1/2. We claim this is a (1/2)-approximation algorithm, in expectation. To see why,
note that the probability that any given edge is cut is 1/2. Thus, by linearity of expectation, in expectation

|E|/2 edges are cut. Clearly the optimal solution cuts at most twice this many edges.

Next we apply the method of conditional probabilities [30, 1] to convert this randomized algorithm into a
deterministic one. We replace each random choice made by the algorithm by a deterministic choice that does

“as well” in a precise sense. Specifically, we modify the algorithm to to maintain the following invariant:

After each step, if we were to take the remaining choices randomly, then the expected number of

edges cut in the end would be at least |E|/2.

Suppose decisions have been made for vertices V; = {v1,v2,...,v:}, but not yet for vertex vyy;. Let S
denote the vertices in V; chosen to be in S. Let S; = V; — S, denote the vertices in V; chosen to be in S.

Given these decisions, the status of each edge in V; x V; is known, while the rest still have a 1/2 probability

4 GREEDY ALGORITHMS VIA THE PROBABILISTIC METHOD 8

of being cut. Let z; = |EN(S; x S;)| denote the number of those edges that will definitely cross the cut. Let
et = |E — V; x V| denote the number of edges which are not yet determined. Then, given the decisions made
so far, the expected number of edges that would be cut if all remaining choices were to be taken randomly

would be

Gy = w4 +€t/2.

The z; term counts the edges cut so far, while the e;/2 term counts the e; edges with at least one undecided
endpoint: each of those edges will be cut with probability 1/2.

Our goal is to replace the random decisions for the vertices with deterministic decisions that guarantee
¢rr1 > ¢ at each step. If we can do this, then we will have |E|/2 = ¢g < ¢1 < -+ < ¢y, and, since ¢, is
the number of edges finally cut, this will ensure that at least |E|/2 edges are cut.

Consider deciding whether the vertex vy, goes into S;;1 or Syy1. Let s be the number of v;,;’s neighbors

in S¢. Let s be the number of v;1’s neighbors in §t+1. By calculation,

s/2 —35/2 if vg4q is added to Sti1
41— P =
5/2—s/2 otherwise.
Thus, the following strategy ensures ¢y11 > @: if s < 3, then put viyq in Spy1; otherwise put vy in Spyq.
By doing this at each step, the algorithm guarantees that ¢, > ¢,_1 > --- > |E|/2.
We have derived the following greedy algorithm: Start with S = S = (). Consider the vertices in turn.

For each vertex v, put the vertex v in S or S, whichever has fewer of v’s neighbors. We know from the

derivation that this is a 1/2-approximation algorithm.

4.2 Independent set

Although the application of the method of conditional probabilities is somewhat technical, it is routine, in
the sense that it follows a similar form in every case. Here is another example.

The problem of finding a MAXIMUM INDEPENDENT SET in a graph G = (V, E) is one of the most basic
problems in graph theory. An independent set is defined as a subset S of vertices such that there are no
edges between any pair of vertices in S. The problem is NP-hard. Turan’s theorem states the following: Any

graph G with n nodes and average degree d has an independent set I of size at least n/(d+1). Next we sketch

4 GREEDY ALGORITHMS VIA THE PROBABILISTIC METHOD 9

a classic proof of the theorem using the probabilistic method. Then we apply the method of conditional
probabilities to derive a greedy algorithm.

Let N (v) = N(v) U {v} denote the neighbor set of v, including v. Consider this randomized algorithm:
Start with I = (. Consider the vertices in random order. When considering v, add it to I if Z/\\T(v) NnI=4.

For a vertex v to be added to I, it suffices for v to be considered before any of its neighbors. This happens
with probability |]\Af (v)|~L. Thus, by linearity of expectation, the expected number of vertices added to I is
at least

DN
v

A standard convexity argument shows this is at least n/(d + 1), completing the proof of Turan’s theorem.

Now we apply the method of conditional probabilities. Suppose the first ¢ vertices V; = {v1,v2,..., 0t}
have been considered. Let I; = V; N I denote those that have been added to I. Let R, = V' \ (V; U N(L))
denote the remaining vertices that might still be added to I and let N, (v) = N (v) N Ry denote the neighbors
of v that might still be added. If the remaining vertices were to be chosen in random order, the expected

number of vertices in I by the end would be at least

g = L] + D IN(w)| "

vER,

We want the algorithm to choose vertex vy;1 to ensure ¢y11 > ¢¢. To do this, it suffices to choose the vertex
w € Ry minimizing | N,(w)], for then

=g 21— > [N >1- Y [Nw)l!=o.

vEJ/\}z(w) veﬁz(w)

This gives us the following greedy algorithm: Start with I = (). Repeat until no vertices remain: choose
a vertex v of minimum degree in the remaining graph; add v to I and delete v and all of its neighbors from
the graph. Finally, return I. It follows from the derivation that this algorithm ensures n/(d + 1) < ¢g <
¢1 < -+ < ¢p, so that the algorithm returns an independent set of size at least n/(d + 1), where d is the
average degree of the graph.

As an exercise, the reader can give a different derivation leading to the following greedy algorithm (with
the same performance guarantee): Order the vertices by increasing degree, breaking ties arbitrarily. Let I

consist of those vertices that precede all their neighbors in the ordering.

4 GREEDY ALGORITHMS VIA THE PROBABILISTIC METHOD 10

4.3 Unweighted set cover

Next we illustrate the method on the set cover problem.

We start with a randomized rounding scheme that uses iterated random sampling to round a fractional
set cover (a solution to the relaxed problem) to a true set cover. We prove an approximation ratio for the
randomized algorithm, then apply the method of conditional probabilities to derive a deterministic greedy
algorithm.

We emphasize that, in applying the method of conditional probabilities, we remove the explicit depen-
dence of the algorithm on the fractional set solution. Thus, the final algorithm does not in fact require first
solving the relaxed problem.

Recall the definition of the set cover problem from the beginning of the chapter. For this section, we will
assume all weights w(S;) are 1.

Consider the following relaxation of the problem: assign a value z; € [0,1] to each set S; so as to
minimize }~; z; subject to the constraint that, for every element z;, -, cg, 2 > 1. We call a z meeting
these constraints a fractional set cover.

The optimal set cover gives one possible solution to the relaxed problem, but there may be other fractional
set covers that give a smaller objective function value. However, not too much smaller. We claim the
following: Let z be any fractional set cover. Then there exists an actual set cover C of size at most T =
[In(n)|z|], where |z| = >, 2;.

To prove this, consider the following randomized algorithm: given z, droaw T sets at random from the
distribution p defined by p(S;) = z;/|z|. With non-zero probability, this random experiment yields a set
cover. Here is why. A calculation shows that, with each draw, the chance that any given element e is covered

is at least 1/|z|. Thus, the expected number of elements left uncovered after T' draws is at most
n(1=1/|z)T < nexp(=T/|s]) < L.

Since on average less than 1 element is left uncovered, it must be that some outcome of the random experiment
covers all elements.

Next we apply the method of conditional probabilities. Suppose that ¢ sets have been chosen so far, and

4 GREEDY ALGORITHMS VIA THE PROBABILISTIC METHOD 11

let n; denote the number of elements not yet covered. Then the conditional expectation of the number of

elements left uncovered at the end is at most

¢t = nt(l -]./|Z|)T_t.

We want the algorithm to choose each set to ensure ¢; < ¢;—1, so that in the end ¢r < ¢p < 1 and the
chosen sets form a cover.

Suppose the first ¢ sets have been chosen, so that ¢; is known. A calculation shows that, if the next
set is chosen at random according to the distribution p, then E[¢1] < ¢. Thus, choosing the next set
to minimize g1 will ensure ¢s1 < ¢¢. By inspection, choosing the set to minimize ¢¢4; is the same as
choosing the set to minimize ng41.

We have derived the following greedy algorithm: Repeat T times: add a set to the collection so as to
minimize the number of elements remaining uncovered. In fact, it suffices to do the following: Repeat until
all elements are covered: add a set to the collection so as to minimize the number of elements remaining
uncovered. (This suffices because we know from the derivation that a cover will be found within T rounds.)

We have proven the following fact: The above greedy algorithm returns a cover of size at most min, [In(n)|z[],
where z ranges over all fractional set covers. Since the minimum-size set cover OPT corresponds to a z with
|z| = |OPT|, we have the following corollary: The above greedy algorithm returns a cover of size at most
[In(n)OPT].

This algorithm can be generalized to weighted set cover, and slightly stronger performance guarantees
can be shown [19, 36, 24, 7]. This particular greedy approach applies to a general class of problems called

“minimizing a linear function subject to a submodular constraint” [27].

Comment: In many cases, applying the method of conditional probabilities will not yield a greedy algorithm,
because the conditional expectation ¢; will depend on the fractional solution in a non-trivial way. In that
case, the derandomized algorithm will first have to compute the fractional solution (typically by solving a
linear program). That is Raghavan and Thompson’s standard method of randomized rounding [31]. The
variant we see here was first observed in [39]. Roughly, to get a greedy algorithm, we should apply the
method of conditional probabilities to a probabilistic proof based on repeated random sampling from the

distribution defined by the fractional optimum.

4 GREEDY ALGORITHMS VIA THE PROBABILISTIC METHOD 12

4.4 Lagrangian relaxation for fractional set cover

The algorithms described above fall naturally into a larger and technically more complicated class of al-
gorithms called Lagrangian relaxation algorithms. Typically, such an algorithm is used to find a structure
meeting a given a set of constraints. The algorithm constructs a solution in small steps. Each step is made
S0 as to minimize (or keep from increasing) a penalty function that approximates some of the underlying
constraints. Finally, the algorithm returns a solution that approximately meets the underlying constraints.

These algorithms typically have a greedy outer loop. In each iteration, they solve a subproblem that is
simpler than the original problem. For example, a multicommodity flow algorithm may solve a sequence of
shortest-path subproblems, routing small amounts of flow along paths chosen to minimize the sum of edge
penalties that grow exponentially with the current flow on the edge.

Historical examples include algorithms by von Neumann, Ford and Fulkerson, Dantzig-Wolfe decompo-
sition, Benders’ decomposition, and Held and Karp. In 1990, Shahrokhi and Matula proved a polynomial
time bound for such an algorithm for multicommodity flow. This sparked a long line of work generalizing
and strengthening this result (e.g. [29, 14, 40]). See the recent text by Bienstock [4]. These works focus
mainly on packing and covering problems — linear programs and integer linear programs with non-negative
coefficients.

As a rule, the problems in question can also be solved by standard linear programming algorithms such
as the simplex algorithm, the ellipsoid algorithm, or interior-point algorithms. The primary motivation for
studying Lagrangian relaxation algorithms has been that, like other greedy algorithms, they can often be
implemented without explicitly constructing the full underlying problem. This can make them substantially
faster.

As an example, here is a Lagrangian relaxation algorithm for fractional set cover (given an instance of
the set cover problem, find a fractional set cover z of minimum size |z| = }_, z;; see the previous subsection
for definitions). Given a set cover instance and ¢ € [0,1/2], the algorithm returns a fractional set cover of

size at most 1 + O(g) times the optimum:

4 GREEDY ALGORITHMS VIA THE PROBABILISTIC METHOD 13

1. Let N = 21n(n)/e?, where n is the number of elements.
2. Repeat until all elements are sufficiently covered (min; ¢(j) > N):

3. Choose a set S; maximizing > (1- E)c(j), where ¢(j) denotes

z;ES;
the number of times any set containing element z; has been chosen so far.

4. Return z, where z; is the number of times S; was chosen divided by N.

The naive implementation of this algorithm runs in O(nM log(n)/e?) time, where M = " |S;| is the size
of the input. With appropriate modifications, the algorithm can be implemented to run in O(M log(n)/e?)
time.

For readers who are interested, we sketch how this algorithm may be derived using the probabilistic
framework. To begin, we imagine that we have in hand any fractional set cover z*, to which we apply the
following randomized algorithm: Define probability distribution p on the sets by p(S;) = z¥/|2*|. Draw sets
randomly according to p until every element has been covered (in a drawn set) at least N = 21n(n)/e? times.
Return z, where z; is the number of times set S; was drawn, divided by N. (The reader should keep in mind
that the dependence on z* will be removed when we apply the method of conditional probabilities.)

Claim: With non-zero probability the algorithm returns a fractional set cover of size at most (1+0(g))|z*|.
Next we prove the claim. Let T' = |2*|N/(1 — €). We will prove that, with non-zero probability, within T
draws each set will be covered at least N times. This will prove the claim because then the size of z is at
most T/N = |z*|/(1 —¢€).

Fix a given element ;. With each draw, the chance that z; is covered is at least 1/|z*|. Thus, the
expected number of times x; is covered in T draws is at least T'/|2*| = N/(1 —¢€). By a standard Chernoff
bound, the probability that z; is covered less than N times in T rounds is at most exp(—e*>N/2(1—¢)) < 1/n.

By linearity of expectation, the expected number of elements that are covered less than N times in T
rounds is less than 1. Thus, with non-zero probability, all elements are covered at least NV times in T rounds.

This proves the claim. Next we apply the method of conditional probabilities to derive a greedy algorithm.

Let X;; be an indicator variable for the event that x; is covered in round ¢, so that for any j the Xj;’s

are independent with E[Xj;] > 1/|2*|. Let p = N/(1 —¢). The proof of the Chernoff bound bounds

5 STEINER TREES 14

Pr[}", Xj: < (1 —€)p] by the expectation of the following quantity:

(L—e)2uXit (1) X

1-gl= = (1-gN

Thus, the proof of our claim above implicitly bounds the probability of failure by the expectation of

(1- E)Et Xie
¢ = Zw-

J

Furthermore, the proof shows that the expectation of this quantity is less than 1.

To apply the method of conditional probabilities, we will choose each set to keep the conditional expec-
tation of the above quantity ¢ below 1.

After the first ¢ sets have been drawn, the random variables X, for s <t are determined, while X, for
s >t are not yet determined. Using the inequalities from the proof of the Chernoff bound, the conditional

expectation of ¢ given the choices for the first ¢ sets is at most

[T (1=)% x Hs>t(]‘ —e/[z*])
Z <

o = 1-e)N)

J
This quantity is initially less than 1, so it suffices to choose each set to ensure ¢ry1 < ¢y If the ¢ + 17st set
is chosen randomly according to p, then E[¢¢11] < ¢¢. Thus, to ensure ¢p11 < ¢y, it suffices to choose the
set to minimize ¢.y1. By a straightforward calculation, this is the same as choosing the set S; to maximize
Dzyes(L— 6)28575 X, This gives us the algorithm in question (at the top of this section). From the
derivation, we know the following fact: The algorithm above returns a fractional set cover of size at most

(14 O(g)) min,« |2*|, where z* ranges over all the fractional set covers.

5 Steiner Trees

The STEINER TREE problem is defined as follows. Given an edge-weighted graph G = (V, E) and a set of
terminals S C V, find a minimum-weight tree that includes all the nodes in S. (When S = V, then this
is the problem of finding a minimum-weight spanning tree. There are several very fast greedy algorithms
that can be used to solve this problem optimally.) The Steiner tree problem is NP-hard and several greedy
algorithms have been designed that give a factor 2 approximation [22, 37]. We briefly describe the idea

behind one of the methods. Let 77 = {s1} (an arbitrarily chosen terminal from S). At each step T;4; is

6 K-CENTERS 15

computed from T; as follows: attach the vertex from S — T; that is the “closest” to T; by a path to T; and
call the newly added special vertex s;y+1. Thus T; always contains the vertices si, s2,...,s;. It is clear that
the solution produces a Steiner tree. It is possible to prove that the weight of this tree is at most twice the
weight of an optimal Steiner tree.

Zelikovsky [41] developed a greedy algorithm with an approximation ratio of 11/6. This bound has been
further improved subsequently, but by using more complex methods.

A generalization of Steiner trees called NODE-WEIGHTED STEINER TREES is defined as follows. Given a
node weighted graph G = (V, E) and a set of terminals S C V, find a minimum-weight tree that includes
all the nodes in S. Here, the weight of a tree is the sum of the weights of its nodes. It can be shown that
this problem is at least as hard as the Set-Cover problem to approximate [20]. Interestingly, this problem is
solved via a greedy algorithm similar to the one for the Set Cover problem with costs. We define a “spider”
as a tree on ¢ terminals where there is at most one vertex with degree more than 2. Each leaf in the tree
corresponds to a terminal. The weight of the spider is simply the weight of the nodes in the spider. The
algorithm at each step greedily picks a spider with minimum ratio of weight to number of terminals in it. It
collapses all the terminals spanned by the spider into a single vertex, makes this new vertex a terminal and
repeats until one one terminal remains. The approximation guarantee of this algorithm is 21n |S|. Further

improvements appear in [16]. For more on the Steiner tree problem, see the book by Hwang et al. [18].

6 K-Centers

The K-CENTER problem is a fundamental facility location problem and is defined as follows: given an edge-
weighted graph G = (V, E) find a subset S C V of size at most K such that each vertex in V is close to

some vertex in S. More formally, the objective function is defined as follows:

min max min d(u, v)
S5CV ueV veS

where d is the distance function. For example, one may wish to install K fire stations and minimize the
maximum distance (response time) from a location to its closest fire station.

Gonzalez [13] describes a very simple greedy algorithm for the basic K-center problem and proves that

7 CONNECTED DOMINATING SETS 16

it gives an approximation factor of 2. The algorithm works as follows. Initially pick any node vy as a center
and add it to the set C. Then for i =1 to K do the following: in iteration i, for every node v € V, compute
its distance d’(v,C') = min.cc d(v,c) to the set C. Let v; be a node that is farthest away from C, i.e., a
node for which di(v;, C) = max,cy d(v,C). Add v; to C. Return the nodes vg,v1,...,vK_1 as the solution.

The above greedy algorithm is a 2-approximation for the K-center problem. First note that the radius
of our solution is d¥ (vk, C), since by definition v is the node that is farthest away from our set of centers.
Now consider the set of nodes vg,vs,-..,vk. Since this set has cardinality K + 1, at least two of these
nodes, say v; and v;, must be covered by the same center c in the optimal solution. Assume without loss of
generality that ¢ < j. Let R* denote the radius of the optimal solution. Observe that the distance from each
node to the set C' does not increase as the algorithm progresses. Therefore d¥ (vx,C) < d’ (vk, C). Also we

must have d’ (vg,C) < d(vj,C) otherwise we would not have selected node v; in iteration j. Therefore
d(c,v;) +d(c,v;) > d(vi,v;) > d (v;,C) > d* (vk, C)

by the triangle inequality and the fact that v; is in the set C' at iteration j. But since d(c,v;) and d(c,v;)

are both at most R*, we have the radius of our solution = d¥ (vk,C) < 2R*.

7 Connected Dominating Sets

The connected dominating set (CDS) problem is defined as follows. Given a graph G = (V, E), find a
minimum size subset S of vertices, such that the subgraph induced by S is connected and S forms a
dominating set in G. This problem is known to be N P-hard. Recall that a dominating set is one in which
each vertex is either in the dominating set, or adjacent to some vertex in the dominating set.

We describe a greedy algorithm for this problem [15]. The algorithm runs in two phases. At the start of
the first phase all nodes are colored white. Each time we include a vertex in the dominating set, we color
it black. Nodes that are dominated are colored gray (once they are adjacent to a black node). In the first
phase the algorithm picks a node at each step and colors it black, coloring all adjacent white nodes gray. A
piece is defined as a white node or a black connected component. At each step we pick a node to color black

that gives the mazimum (non-zero) reduction in the number of pieces.

7 CONNECTED DOMINATING SETS 17

It is easy to show that at the end of this phase if no vertex gives a non-zero reduction to the number of
pieces, then there are no white nodes left.

In the second phase, we have a collection of black connected components that we need to connect.
Recursively connect pairs of black components by choosing a chain of vertices, until there is one black
connected component. Our final solution is the set of black vertices that form the connected component.
Key Property: At the end of the first phase if there is more than one black component, then there is
always a pair of black components that can be connected by choosing a chain of two vertices.

It can be shown that the connected dominating set found by the algorithm is of size at most (In A + 3) -
|OPTcps|, where A is the maximum degree of a node.

Let a; be the number of pieces left after the i** iteration, and ag = n. Since a node can connect up
to A pieces, |OPTcps| > 2. (This is true if the optimal solution has at least two nodes.) Consider the
i + 1%t iteration. The optimal solution can connect a; pieces. Hence the greedy procedure is guaranteed to

pick a node which connects at least fm] pieces. Thus the number of pieces will reduce by at least

[\OP‘JI"W-I — 1. This gives us the recurrence relation,
< @i +1<a;(l LI
a; a;— | —=———— i(l— ——— .
il = |0PTCD5| = |0PTCD5|
Its solution is,
< ap(1 !)+ §(1 L)I
a; ag(l — ————— -7
i+1 > 40 |OPTC’DS| =0 |OPTCDS|

Notice after |OPT¢pgs| - In I()P%#sl iterations, the number of pieces left is less than 2 - |OPT¢ps|. After
this, for each node we choose, we will decrease the number of pieces by at least one until the number
of black components is at most |OPT¢pg|, thus at most |OPTcps| more vertices are picked. So after
|OPT¢ps| - In oPTens] T |OPT¢ps| iterations at most |OPT¢ops| pieces are left to connect. We connect
the remaining pieces choosing chains of at most two vertices in the second phase. The total number of nodes

chosen is at most |OPT¢pg|-1n ‘O}Df}#ﬂ + |OPTeps| +2|0PTeps|, and since A > M#SP the solution

found has at most |OPT¢ps| - (In A + 3) nodes.

8 SCHEDULING 18
8 Scheduling

We consider the following simple scheduling problem [2]. There are k identical machines. We are given a
collection of n jobs. Job J; is specified by the following vector: (r;,d;, p;,w;). The job has a release time of
ri, a deadline of d; and a processing time of p;. The weight of the job is w;. Our goal is to schedule a subset
of the jobs such that each job starts after its release time and is completed by its deadline. If S is a subset
of jobs that are scheduled, then the total profit due to set S is }_; . gw;. We do not get any profit if the
job is not completed by its deadline. Our objective is to find a maximum-profit subset of jobs that can be
scheduled on the & machines. The jobs are scheduled on one machine, with no pre-emption. In other words
if job J; starts on machine j at time s;, then r; < s; and s; + p + ¢ < d;. Moreover, each machine can be
executing at most one job at any point of time.

A number of algorithms for the problem are based on LP rounding [2]. A special case of interest is when
all jobs have unit weight (or identical weight). In this case, we simply wish to maximize the number of
scheduled jobs. The following greedy algorithm has the property that it schedules a set of jobs such that
the total number of scheduled jobs is at least pg times the number of jobs in an optimal schedule. Here
pr=1— @ Observe that when k = 1, then pj, = 1 and this bound is tight for the greedy algorithm.

The algorithm considers each machine in turn and finds a maximal set of jobs to schedule for the machine;
it removes these jobs from the collection of remaining jobs, then recurses on the remaining set of jobs. Now
we discuss how a maximal set of jobs is chosen for a single machine. The idea is to pick a job that can be
finished as quickly as possible. After we pick this job, we schedule it, starting it at the earliest possible time.
Making this choice might force us to reject several other jobs. We then consider starting a job after the end
of the last scheduled job, and again pick one that we can finish at the earliest possible time. In this way, we

construct the schedule for a single machine.

9 Minimum-degree spanning trees (MDST)

In this problem, the input is a graph G = (V, E), with non-negative weights w : E — R on its edges. We

are also given an integer d > 1. The objective of the problem is to find a minimum-weight spanning tree of

10 MAXIMUM-WEIGHT B-MATCHINGS 19

G in which the degreee of every node is at most d. It is a generalization of the Hamiltonian path problem,
and is therefore NP-hard. It is known that the problem is not approximable to any ratio unless P=NP
or the approximation algorithm is allowed to output a tree whose degree is larger than d. Approximation
algorithms try to find a tree whose degree is as close to d as possible, but whose weight is not much more
than an optimal degree-d tree.

Greedy algorithms usually select one edge at a time, and once an edge is chosen, that decision is never
revoked and the edge is part of the output. Here we add a subset S of edges at a time (e.g. a spanning forest)
where S is chosen to minimize a relaxed version of the objective function. We get an iterative solution and
the output is a union of the edges selected in each of the steps. This approach typically provides a logarithmic
approximation. For MDST, the algorithm finds a tree of degree O(dlogn), whose weight is within O(logn)
of an optimal degree-d tree, where the graph has n vertices. The ideas have appeared in [11, 32]. Such
algorithms in which two objectives (degree and weight) are approximated are called bicriteria approximation
algorithms.

A minimum-weight subgraph in which each node has degree at most d and at least 1 can be computed
using algorithms for matching. Except for possibly being disconnected, this subgraph satisfies the other
properties of an MDST: degree constraints and weight at most OPT. A greedy algorithm for MDST works
by repeatedly finding d-forests, where each d-forest is chosen to connect the connected components left from
the previous stages. The number of components decreases by a constant factor in each stage, and, in O(logn)

stages, we get a tree of degree at most dlogn.

10 Maximum-weight b-matchings

In this problem, we are interested in computing a maximum-weight subgraph of a given graph G in which
each node has degree at most b. The classical matching problem is a b-matching with b = 1. This problem
can be solved optimally in polynomial time, but the algorithms take about O(n®) time. We discuss a
1/2-approximation algorithm that runs in O(bE + ElogE) time. The edges are sorted by weight, with
the heaviest edges considered first. Start with an empty forest as the initial solution. When an edge is

considered, we see if adding it to the solution violates the degree bound of its end vertices. If not, we add it

11 CONCLUSIONS 20

to our solution. Intuitively, each edge of our solution can displace at most 2 edges of an optimal solution,

one incident to each of its end vertices, but of smaller weight.

11 Conclusions

In this chapter we surveyed a collection of problems and described simple greedy algorithms for several of
these problems. In several cases, the greedy algorithms described do not represent the state of the art for
these problems. The reader is referred to other chapters in this handbook to read in more detail about
the specific problems and the techniques that yield the best worst-case approximation guarantees. In many
instances, the performance of greedy algorithms may be better than their worst-case bounds suggest. This
and their simplicity make them important in practice.

For some problems (e.g. set cover) it is known that a greedy algorithm gives the best possible approxi-
mation ratio unless NP C DTIME(n'°81°8 ™). But for some problems no such intractability results are yet
known. In these cases, instead of proving hardness of approximation for all polynomial-time algorithms, one
may try something easier: to prove that no greedy algorithm gives a good approximation. Of course this
requires a formal definition of the class of algorithms. (A similar approach has been fruitful in competitive
analysis of online algorithms.) Such a formal study of greedy algorithms with an eye towards lower bound
results has been the subject of several recent papers [6].

For additional information on Combinatorial Optimization, the reader is referred to books by Papadim-
itriou and Steiglitz [28], Cook et al. [9], and a series of three books by Schrijver [34]. For more on ap-
proximation algorithms, there is a book by Vazirani [38], lecture notes by Motwani [25], and a book edited
by Hochbaum [17]. There is a chapter on greedy algorithms in several textbooks, such as Kleinberg and
Tardos [21], and Cormen et al. [10]. More on randomized algorithms can be found in a book by Motwani

and Raghavan [26], and a survey by Shmoys [35].

REFERENCES 21

References

[1]

[8]

[10]

Noga Alon, Joel H. Spencer, and Paul Erdés. The probabilistic method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons, Chichester-New York-Brisbane-Toronto-

Singapore, 1992.

Amotz Bar-Noy, Sudipto Guha, Joseph Naor, and Baruch Schieber. Approximating the throughput of

multiple machines in real-time scheduling. SIAM J. Comput., 31(2):331-352, 2001.

Reuven Bar-Yehuda. One for the price of two: a unified approach for approximating covering problems.

Algorithmica, 27(2):131-144, 2000.

Daniel Bienstock. Potential Function Methods for Approzimately Solving Linear Programming Problems:

Theory and Practice. Kluwer Academic Publishers, Boston, MA, 2002.

Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear approximation of

shortest superstrings. J. ACM, 41(4):630-647, 1994.

A. Borodin, M. Nielsen, and C. Rackoff. (Incremental) priority algorithms. Algorithmica, 37:295-326,

2003.

V. Chvéatal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research,

4(3):233-235, 1979.

K. Clarkson. A modification of the greedy algorithm for vertex cover. Information Processing Letters,

16:23-25, 1983.

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial Optimization.

John Wiley, New York, 1997.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,

2001.

REFERENCES 22

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Martin Fiirer and Balaji Raghavachari. An NC approximation algorithm for the minimum-degree span-
ning tree problem. In Proc 28th Ann Allerton Conference on Communication, Control and Computing,

pages 274-281, 1990.

Michel X. Goemans and David P. Williamson. A general approximation technique for constrained forest

problems. SIAM J. Comput., 24(2):296-317, 1995.

Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci.,

38:293-306, 1985.

M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schemes for convex programs with many
blocks and coupling constraints. Technical Report DCS-TR-273, Rutgers University Computer Science

Department, New Brunswick, NJ, 1991.

Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets. Algorith-

mica, 20(4):374-387, 1998.

Sudipto Guha and Samir Khuller. Improved methods for approximating node weighted Steiner trees

and connected dominating sets. Inf. Comput., 150(1):57-74, 1999.

Dorit Hochbaum, editor. Approzimation Algorithms for NP-hard Problems. PWS Publishing Company,

1997.

Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner Tree Problem. Number 53 in Annals

of Discrete Mathematics. Elsevier Science Publishers B. V., Amsterdam, 1992.

David S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and

System Sciences, 9:256-278, 1974.

Philip N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted Steiner

trees. J. Algorithms, 19(1):104-115, 1995.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley, 2005.

REFERENCES 23

[22] G. Markowsky L. Kou and L. Berman. An fast algorithm for Steiner trees. Acta. Informatica, 15:141—

145, 1981.
[23] Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Wilson, 1976.

[24] Laszlé Lovész. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383-390,

1975.
[25] R. Motwani. Lecture notes on approximation algorithms. Technical report, Stanford University, 1992.
[26] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1997.

[27] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John Wiley

& Sons, New York, 1988.
[28] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice-Hall, 1982.

[29] Serge A. Plotkin, David B. Shmoys, and Eva Tardos. Fast approximation algorithms for fractional

packing and covering problems. Math. Oper. Res., 20(2):257-301, 1995.

[30] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms approximating packing

integer programs. Journal of Computer and System Sciences, 37(2):130-143, October 1988.

[31] Prabhakar Raghavan and C. Thompson. Randomized rounding: A technique for provably good algo-

rithms and algorithmic proofs. Combinatorica, 7:365-374, 1987.

[32] R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, and Harry B. Hunt ITI. Approximation
algorithms for degree-constrained minimum-cost network-design problems. Algorithmica, 31(1):58-78,

2001.

[33] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant error-

probability PCP characterization of NP. In STOC, pages 475-484, 1997.

[34] Alexander Schrijver. Combinatorial Optimization — Polyhedra and Efficiency, Volume A: Paths, Flows,

Matchings, Volume B: Matroids, Trees, Stable Sets, Volume C: Disjoint Paths, Hypergraphs, volume 24

REFERENCES 24

[35]

[36]

[37]

[38]

[39]

[40]

[41]

of Algorithms and Combinatorics. Springer-Verlag, Berlin-Heidelberg-New York-Hong Kong-London-

Milan-Paris-Tokyo, 2003.

David B. Shmoys. Computing near-optimal solutions to combinatorial optimization problems, 1995.

S. K. Stein. Two combinatorial covering theorems. J. Comb. Theory A, 16:391-397, 1974.

H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Math.

Japonica, 24(6):573-577, 1980.

Vijay V. Vazirani. Approzimation algorithms. Springer-Verlag New York, Inc., New York, NY, USA,

2001.

Neal E. Young. Randomized rounding without solving the linear program. In Proceedings of the Sixzth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 170-178, San Francisco, California, 22—

24 January 1995.

Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In IEEE Symposium

on Foundations of Computer Science, pages 538-546, 2001.

Alexander Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica,

9(5):463-470, 1993.

