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Abstract

Given an undirected graph with edge costs and a subset of
k > 3 nodes called terminals, a multiway, or k-way, cut is
a subset of the edges whose removal disconnects each ter-
minal from the others. The multiway cut problem is to find
a minimum-cost multiway cut. This problem is Max-SNP
hard. Recently Calinescu, Karloff, and Rabani (STOC'98)
gave a novel geometric relaxation of the probletn and a round-
ing scheme that produced a (3/2 — 1/k)-approximation algo-
rithm.

In this paper, we study their geometric relaxation. In par-
ticular, we study the worst-case ratio between the value of
the relaxation and the value of the minimum multicut (the
so-called integrality gap of the relaxation). For k = 3, we
show the integrality gap is 12/11, giving tight upper and lower
bounds. That is, we exhibit a graph with integrality gap 12/11
and give an algorithm that finds a cut of value 12/11 times
the relaxation value. This is the best possible performance
guarantee for any algorithm based purely on the value of the
relaxation and improves on Calinescu et al.’s factor of 7/6.

We also improve the upper bounds for all larger values of
k. For k = 4,5, our best upper bounds are based on computer
constructed and analyzed rounding schemes, while for £ > 6
we give an algorithm with performance ratio 1.3438 — .

QOur results were discovered with the help of computa-
tional experiments that we also describe here.
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1 Introduction

As the field of approximation algorithms matures, meth-
odologies are emerging that apply broadly to many NP-
hard optimization problems. One such approach (e.g.. [7,
8, 1, 6, 5]) has been the use of metric and geometric
embeddings in addressing graph optimization problems.
Faced with a discrete graph optimization problem, one
formulates a relaxation that maps each graph node into a
metric or geometric space, which in turn induces lengths
on the graph’s edges. One solves this relaxation opti-
mally, and then derives from the relaxed solution a near-
optimal solution to the original problem,

This approach has been applied successfully [2] to
the min-cost multiway cut problem, a natural generaliza-
tion of the minimum (s, t)-cut problem to more than two
terminals. An instance consists of a graph with edge-
costs and a set of distinguished nodes (the rerminals).
The goal is to find a minimum-cost set of edges whose
removal separates the terminals. If the number of termi-
nals is k, we call such a set of edges a k-way cut.

The first approximation algorithm for the multiway
cut problem in general graphs was given by Dahlhous,
Johnson, Papadimitriou, Seymour, and Yannakakis [4].
It used a traditional minimum (s, ¢)-cut algorithm as a
subroutine and had a performance guarantee of 2 — 2/k.

In the work that prompted ours, Calinescu, Xarloff,
and Rabani [2] used a novel geometric relaxation of k-
way cutin a (3/2—1/k)-approximation algorithm. Their
relaxation uscs the k-simplex A = {z € R* : z > 0,
3.,z = 1}, which has k vertices; the ith verlex is the
point z in A with z; = 1 (and all other coordinates 0).
The relaxation is as follows: map the nodes of the graph
to points in A such that terminal ¢ is mapped to the i
vertex of A. Each edge is mapped to the straight line be-
tween its endpoints. The goal is to minimize the volume

of G,
Z cost(e) - |e]

edges e

where |e| denotes the length of the embedded edge e,

vol((F)



defined as half the L, distance between its endpoints,
and cost{e) is the cross-sectional area of edge e.

To see that the above is a relaxation of minimum k-
way cut, consider any k-way cut and let 5; be the set
of nodes reachable from terminal ¢ in the graph with the
cut-edges removed. Consider a geometric embedding in
which all nodes in S; are mapped to vertex ¢ of A. For
any edge, the distance between its edges is either 0, if
the endpoints lie in the same S;, or 1, if the endpoints lie
in distinct sets S;. Hence the volume of this embedding
equals the cost of the k-way cut.

The algorithm of Calinescu et al. finds a minimum
volume embedding by linear programming. It then uses
arandomized rounding scheme to extract a cut from this
embedding. Ignoring the graph, the scheme chooses
(from a carefully selected distribution) a k-way cut of
the simplex—a partition of the simplex into k subsets,
each containing exactly one vertex of the simplex. The
k-way cut of the simplex naturally induces a k-way cut
in the embedded graph—namely, the set of edges with
endpoints in different blocks of the partition. This cut
has expected cost at most 3/2 — 1/k times the volume
of the embedding.

Our results. Qur goal is to further understand the ge-
ometric relaxation, with the hope of developing better
approximation algorithms. We aim to determine the in-
tegrality gap of the relaxation and to find an algorithm
whose approximation ratio matches the integrality gap.
Note the the integrality gap is the best approximation ra-
tio we can achieve for an algorithm that compares itself
only to the embedding volume.

In this paper, we resolve this question for 3-cut and
provide improved results for the general k-cut problem.
For & = 3 we give a rounding algorithm with perfor-
mance ratio 12/11, improving Calinescu et al.’s bound
of 3/2-1/3 = 7/6. We also show that 12/11 is the best
possible bound, exhibiting a graph with a gap of 12/11
between its embedded volume and minimum 3-way cut.
Thus, for k = 3, we determine the exact integrality gap
and give an optimal algorithm.

For larger k, we obtain results based on both compu-
tation and analysis. For k = 4, 5, we use LP-derived and
-analyzed rounding schemes to give bounds of 1.1539
and 1.2161 respectively, improving the corresponding
bounds of Calinescu et al. of 1.25 and 1.3. For larger &
we give a single algorithm obtaining a (analytic) bound
of 1.3438 — €3, where €5 > 0. The quantity €; can be
evaluated computationally for any fixed k; we use this
1o prove that 1.3438 — ¢, < 3/2 — 1/k for all k.

Our efforts to find geometric cutting schemes that
achieve good guarantees were guided by experiments:
we formulated the problem of determining an optimal
probability distribution on k-way cuts of the simplex as
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an infinite-dimensional linear program, and solved dis-
crete approximations of this linear program and its dual.
From these solutions we were able to deduce the lower
bound and, using that, the upper bound for £ = 3. These
experiments also guided our search for cutting schemes
that work for larger values of k.

The upper and lower bounds for k& = 3 were discov-
ered independently by Cunningham and Tang [3].

Presentation overview. InSection2 we discuss the
geometric ideas underlying the problem. In Section 3
we describe the computational experiments we under-
took and the results it gave for small k. In Sections 4
and 5 we solve the 3-terminal case, giving matching up-
per and lower bounds. Finally, in Section 6, we present
our improved algorithm for general &.

2 The geometric problem

Finding the integrality gap of and a rounding scheme for
the relaxation turns out to be expressible as a geometric
question, That is, we can express integrality gaps and
algorithmic performance purely in terms of the simplex,
without considering particular graphs or embeddings.

2.1 Density

Recall that a k-way cut of the simplex is a partition of
the simplex into k subsets, each containing a unique ver-
tex of the simplex, and that such a cut induces a k-way
cut of any embedded graph. By a cutting scheme, we
mean a probability distribution P on k-way cuts of the
simplex. For any line segment e, the density of P on
segment e, denoted 7 (P, e), is the expected number of
times a random cut from P cuts e, divided by the length!
le] of e. Define the maximum density of P, 7 (P) and
the minimal maximum density T; as follows:

7%(P) = supti(P,e) and 17 = ir}ljf Ti(P),
[-4

It is easy to see that the maximum density line segment
will in fact be an edge of infinitesimal length, since any
segment can be divided into two edges, one of which
has density no less than the original. Thus, in the re-
mainder of this paper, we will focus discussion on such
infinitesimal segments.

The relevance of 77 is the following (this is implicit
in the work of Calinescu et al.):

Lemma 2.1 For any cutting scheme P and embedded
graph G, the expected cost of the k-way cut of G induced
by a random k-way cut from P is at most T (P) times
the cost of the embedding of G.

IBy analogy to the length of an edge, the length of a segment is
defined as half the L distance between its endpoints.



Corollary 2.2 Any cutting scheme P yields an approxi-
mation algorithm with approximation ratio at most 74 ( P).

Proof Sketch: The endpoints of any edge e are em-
bedded at two points in the simplex, so the edge corre-
sponds to a segment connecting those two points. The
expected number of times the edge is cutis 7 (P, e) - |e].
By the Markov inequality this upper bounds the proba-
bility that the edge is cut. Thus, the expected cost of
the k-way cut is at most y__(7x(P,€) - |e|)cost(e) <
(P} 3 |e| - cost{e) = 7 { P}vol(G). O

In fact, one can show that 7} is both the integral-
ity gap of the geomelric relaxation and the bhest per-
formance guarantee obtainable by any cutting scheme.
That is, there is an embedded graph whose volume is ar-
bitrarily close to 7} times its minimum k-way cut and
there is a cutting scheme with maximal density (and
therefore performance guarantee) arbitrarily close to ;.
This is a consequence of Yac’s principle (i.e. von Neu-
mann’s min-max theorem, or equivalently strong linear
programming duality, applied in the context of complex-
ity theory). It also follows that a cutling scheme with
optimum integrality gap can be defined obliviously, in-
dependent of the input graph.

Calinescu et al’s algorithm gives a cutting scheme
showing that 7; < 3/2 — 1/k. In this paper we show
that 7 = 12/11, and that, for all &, 7} < 1.3438.

2.2 Alignment

We have just argued that the key question to study is the
maximum density of line segments relative to a cutting
scheme. Calinescu et al. showed that one can restrict
attention to segments in certain orientations. We say a
segment e in A is i, j-aligned if e is parallel to the edge
connecting vertices ¢ and j of A. We say it is aligned
if it is 1, j-aligned for some pair of vertices. Calinescu
et al. observed that since length is proportional to the
Ly -norm, and since the aligned edges are the geodesics
of the norm, the endpoints of any segment e can be
connected by a piecewise linear path of total length |e|
whose segments are aligned. The segment e is cut iff
some edge on this path is cut. Given any embedding of
a graph, Calinescu et al. apply this transformation sep-
arately to each segment connecting two embedded ver-
tices, without changing the volume of the embedding.
Thus, without loss of generality one may restrict atten-
tion to embeddings in which all edges are aligned.

Fact 2.3 Segment e (z,y) is i, j-aligned iff |e|] =
lyi — =il = ly; — x5l and |ye — ze| = 0 for £ # 4, .

2.3 Side parallel cuts (SPARCS)

In this paper, we mainly restrict attention to a particular
set of cutting schemes. Define Ay, = {z € A :
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z; = pland Az>, = {z € A : z; > p}. Note
that A, —, is a hyperplane that runs parallel to the face
opposite terminal £ and is at distance p from that face; it
divides the simpiex into two parts, of which A;, >, is the
“corner’”’ containing terminal ¢. An i, j-aligned segment
{z,y) is cut by the hyperplane A,,—, iff £ € {7,7} and
p 1s between z; and yy.

We define a side-parallel cut (sparc) of the simplex:

1. Choose a permutation ¢ of the vertices;

2. For each vertex ¢ in order by o {except possibly the
last), choose some p; € [0, 1];

. Assign to vertex 7 all points of Az;>, not already
assigned to a previous terminal. We say terminal ¢
captures all these points, and that terminal ¢ cuts an
edge ¢ if it captures some but not all of e.

Thus we are slicing up the simplex using hyperplanes
Agz;=p. In this context, we call each A, a slice.

We consider algorithms that sample randomly from
some probability distribution over sparcs. Our restric-
tion to sparcs was motivated by several factors. The
rounding algorithm of Calinescu et al. uses only sparcs.
Furthermore, our computational study of the 3-terminal
problem (discussed below) and some related analytic
work gave some evidence that the optimal algorithm was
a distribution over sparcs. Lastly, sparcs have concise
descriptions (as a sequence of & — 1 slicing distances)
that made them easy to work with computationally and
analytically. It is conceivable, though, that one might do
better with cuts that are not sparcs.

Our key idea is expressed in the following fact. For
segment e, let e; be the interval {z¢|z € e} and let
min e; denote the smaller endpoint of this interval.

Fact 2.4 An i, j-aligned segment e is cut by a sparc if
and only if it is cut by terminal i or j. Furthermore, for
£ € {i, 7}, the following conditions are all necessary for
segment e to be cut by terminal £:

(1) pt €Eer
(2) For all terminals h preceding £, py, > min eg.

(3) Terminal £ is not last in the order

For probability distributions P on sparcs, one can
obtain bounds on 7 { P, &) by using Conditions 1-3 above.
For example, we can restrict our attention to Condition 1:
If p; and p; are uniformly distributed, Condition 1 holds
for terminal 7 with probability |e| and independently for
terminal § with probability |e}. Thus, the expected num-
ber of times e is cut is at most 2|e|.

Next, consider adding Condition 3. Suppose that
the ordering of terminals is random, meaning that ¢ is



last with probability 1/k. The probability that e is cut
by i becomes (1 — 1/k)|e|, so (P, e) < (2 — 2/k).
Thus, uniformly random p,’s and a random ordering
gives a performance guarantee of of 2 — 2/k, matching
the bound of Dahlhous et al. [4].

To improve these bounds, one must use Condition 2,
Calinescu et al. choose a sparc by selecting p uniformly
at random in {0, 1], setting p¢ = p for each terminal
£, and slicing off terminals in random order. A naive
analysis again derives a density bound of 2 for any 1, j-
aligned segment e, with a contributicn of 1 from the £
and j slices. Calinescu et al. improve this analysis as
follows. Suppose that the edge is farther from j than
from i. Suppose that p is such that 7 appears to cut e.
Then if ¢ (which is closer to e} precedes j in the ran-
dom slice ordering (probability 1/2), ¢ will capture all
of e and prevent j from cutting it. This reduces the den-
sity contribution of terminal 7 to 1/2, and leads to their
3/2 — 1/k bound.

To improve on the 3/2 bound, we made stronger use
of Condition 2. The analysis of Calinescu et al. only
considers that a segment may be captured by the two
terminals with which it is aligned. We derive stronger
results by observing that other terminals may capture
the edge as well. To do so, we had to change the cut
distribution as well as the analysis. It can be shown that
no distribution that holds all p; equal can do better in
the limit than 3/2 of Calinescu et al. But their idea of
making the p; into dependent random variables is useful.
We explore other schemes based on dependent distribu-
tions. One such scheme for 3-way cut gives us a bound
of 12/11, which is optimal over all schemes for 3-way
cut. Another scheme gives us a bound of 1.3438 that
holds for any number & of terminals, This latter scheme
is designed for large k.

2.4 Additional Observations

We now mention some additional observations whose
full proofs must await the fuil paper.

What is the best embedding? Perhaps the first
natural question to ask is whether the embedding cho-
sen by Calinescu et al. is the best possible.

Lemma 2.5 Among all embeddings in the simplex that
minimize some norm (without adding other constraints)
the Ly norm has the smaliest possible integrality gap.

Space limitations require that we omit the (straightfor-
ward) proof of this lemma, which basically relies on
breaking any segment into aligned segments and trans-
lating them and scaling them to the simplex sides.

Symmetry. A second observation is that there is no
benefit in trying to identify a “good terminal order” in
which to cut up the simplex.
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Lemma 2.6 There is an optimum sparc cutting scheme
of the following form:

L. choose slice distances (dy,. .. ,dk—1)

2. apply the slice distances (in order) to a uniform
random permutation of the terminals

An analogous “order independence” statement holds for
the best possible (possibly non-sparc) algorithm.
Proof: Consider a best sparc with integrality gap p.
Consider any input embedding. We can “symmetrize”
the embedding, without changing its volume, by aver-
aging it over all permutations of the coordinates. Our
sparc achieves integrality gap p on the symmetrized em-
bedding. Since the embedding is symmetric, the order
in which the sparc slices terminals is irrelevant. So we
can assume it is some fixed order.

Note, however, that cut value achieved on the sym-
metrized graph but slicing in some fixed order is just the
expected cut value achieved by applying the same slices
to the original embedding under a random ordering of
the terminals. O

The above lemma shows that there is no worst-case
benefit to considering specific terminal ordering. The
duality argument of Section 2.1 carries over to show that
a sparc with optimum expected integrality gap can be
specified simply as a distribution over slicing distances,
withoul reference to an input graph embedding.

3 Our Computational Study

In this section we describe some computational experi-
ments we carried out to help us understand the behavior
of the geometric embedding. One need read this section
in order to understand the following ones.

As discussed above, our goal was to find a distribu-
tion over cuts of the k-simplex that minimized the den-
sity of any segment in the simplex. This problem can
be formulated as an infinite dimensional linear program,
with one variable per cut of the simplex, corresponding
to the probability that that cut is chosen, and one con-
straint for every (aligned, infinitesimally small) line seg-
ment inside the simplex, which measures the expected
number of times the chosen cut will cut that segment, Of
course, it is not tractable 1o solve the infinite LP compu-
tationally, but we expected that discretized versions of it
would be informative.

We applied this approach in two distinct ways. For
the 3-terminal case, we devised an LP that exploited
the planarity of the 3-terminal relaxation, and used it
1o home in on the optimal solution, which we then an-
alytically proved to be optimal. For the general case,



we devised an LP whose solutions are (provable) up-
per bounds on the performance of certain rounding al-
gorithms. We solved this LP for small numbers of ter-
minals (3-9), deriving algorithms with (computer aided)
proofs of the best known performance ratios for these
problems. The solution suggested certain properties that
appear 1o hold in the “optimal” rounding scheme; we
used these suggestions in our development of (analytic)
solutions for arbitrary numbers of terminals.

3.1 The three-terminal case

For the 3-terminal problem we exploited planarity. The
3-simplex can be viewed as a triangle in the plane. We
discretized the linear program by defining a triangular
mesh over the simplex and considering only edges of
the mesh instead of all line segments in the simplex.

To approximate the best cutting scheme, we com-
puted the best distribution over 3-way cuts of the mesh.
We used the planarity of the 3-simplex to simplify our
LP formulation. Any 3-way cut of the mesh corresponds
to a collection of paths (representing the boundary of
the cut) through the planar dual of the mesh. Thus the
distribution of cuts corresponds to a packing of these
paths, which can be seen as a kind of flow. So instead
of enumerating all possible cuts, we could define a lin-
ear program that assigned a (multicommodity) flow to
each edge of the dual mesh. This gave us a tractable
representation of the linear program.

We also found it helpful to solve the dual of our
flow-based linear program, which assigns weights to the
mesh edges to minimize the total weight such that every
3-cut has value at least 1. Since each 3-cut corresponds
to a set of two or three paths in the planar dual of the
mesh, the latter constraint can be represented efficiently
by constraining shortest-path lengths (as a function of
the variable edge lengths) in the planar dual. A solu-
tion to the dual can be interpreted as an embedded graph
demonstrating the integrality gap. The dual showed us
the important idea of “ball cuts” versus “corner cuts”
which we will discuss in the following sections, and thus
led to the discovery of the optimum cutting scheme for
three terminals,

3.2 The general case

In the general case, the lack of a planar embedding pre-
vented us from exploiting nice properties of its cuts; we
were faced with the problem of enumerating cuts as well
as edges. Based on the work of Calinescu et al. and
our own results for the optimal 3-terminal solution, we
decided to limit our exploration to sparcs as discussed
above.

There is still an infinite space of possible sparcs, so
we discretized our problem. Fix an integer grid size N.
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A discrete sparc is described by a vector (¢1, ..., gr—1)
where each g; is an integer in the range [0, N —1]. Given
such a vector, we choose a random sparc by setting d;
uniformly in the range [gi/N, (g; + 1)/N]. This defines
a probability distribution on (continuous) sparcs. We
now define a linear program to search for a probability
distribution over discrete sparcs (which induces a prob-
ability distribution over continuous sparcs). We define a
variable for each discrete sparc, which reflects the prob-
ability of choosing that discrete sparc, and provide con-
straints that aim to minimize the density of any segment
under the probability distribution.

There still appear to be infinitely many constraints
(segments) but we reduce this to a finite number as fol-
lows. The slices at distances g/ for each ierminal that
determine our sparc distribution partition the simplex
into cells. For a given distribution on the discrete sparcs,
we can compute a (linear) upper bound on the density
induced on any segment with a given alignment within
a cell, and specify one constraint saying that this upper
bound should be small. Since the cells are small, we ex-
pect all segments with a given alignment to have roughly
the same density under our cutting scheme, so we hope
that the upper bound is reasonable tight. With this sim-
plification, the number of constraints is bounded by the
number of cells times the number of segment alignments
per cell, which is at most k2N,

We determine the upper bound for a cell as follows.
For any discrete cut, the slices generated from it will fall
into one of three categories. If the i** coordinate of the
discrete cut is different from that of the cell, then the
it* slice will not pass through that cell: depending on
whether the coordinate is larger or smaller it will either
capture the entire cell or none of the cell. If the i** coor-
dinates are the same, then the slice might pass through
the cell; we can use that the slice is uniformly distributed
over a range to determine its density contribution.

If we consider an 1, j-aligned segment, it can only be
cut if the slices for terminal 7 or j go through its cell. If
only one of the two slices goes through the terminal then
its contribution to a segment’s density is at most 1/N.
If both slices go through the cell, their contribution is at
most 2/N. We ignore the fact that different slices within
the cell might capture the segment before it can be cut,
thus introducing some slack in our upper bound.

We can exploit symmetry to further reduce the num-
ber of constraints we consider. Since by assumption our
sparc slices terminals in random order, two segments
that are identical under permutation of coordinates will
have the same densities, so we need consider only one
of them. Thus, we restrict our constraints to 1, 2-aligned
segments in which the remaining coordinates are in non-
decreasing order.
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Figure 1: This figure illustrates the cuts used for the case & = 3. The leftmost diagram shows how r might be chosen
for the bal! cut. The middle diagram shows one possible resulting ball cut (in bold). The rightmost diagram shows a

corner cut (in bold).

3.3 LPResulls

Exploiting symmetry as discussed above, we were able
to solve relatively fine discretizations of the problem.
We wrote a simple program to generate the linear pro-
grams automatically, and used CPLEX to solve them,
While it is difficult to “prove” programs correct, our
computations did converge to the correct 12/11 approx-
imation ratio for the 3-terminal case.

We give our results below in tabular form. We de-
rived improved bounds for 4§ terminals. Note that (un-
der the assumption that the programs were correct) these
are provable upper bounds. In fact, since the programs
output a particular distribution over discrete cuts, their
performance ratio could be proven analytically via a te-
dious case analysis (which we have not performed).

k| Grid | LPGap | 3/2~1/k | corner cut probability
3 90 | 1.0541 1.16666 2849
4 36 | 11539 | 1.25 2891
5 18 | 1.2161 1.3 3144
6 12 | 1.2714 | 1.33333 3760
7 9| 1.320 1.357 3973
8 6| 1.3322 | 1.375 4146

Our experiments also revealed one interesting fact:
in all cases, the optimum cut distribution made use of
“corner cuts.” That is, the output distribution had the fol-
lowing form: with some probability, place each slice at
a distance chosen uniformly between 0 and 1/3 from its
terminal; otherwise, use a (joint) distribution that places
every slice at distance greater than 1/3 from its terminal.

Adding constraints that forced the corner cuts to op-
erate over a range other than 1/3 of the way from the ter-
minals worsened the computed performance ratio, hint-
ing that perhaps the optimal algorithm uses corners of
size exactly 1/3. This result is consistent with the op-
timal 3-terminal algorithm, however it could be a mis-
leading artifact of working with a discretized problem.

4 UpperBoundfork =23

Qur analytic upper bound of 12/11 for & = 3 comes
from a new cutting scheme that we call the ball/corner
scheme. Though for simplicity we present a non-sparc

scheme, there is a similar scheme using sparcs that achieves

the same bound.

For & = 3, the simplex A can be viewed as a trian-
gle in the plane, which simplifies our pictures. However,
we continue to use the original three-dimensional coor-
dinate system to locate points in the simplex. Our cut of
the simplex is determined by some lines and rays drawn
through the triangle; we refer to them as boundaries. We
will show that no segment has high density with respect
to our random choice of boundaries.

As iltustrated in Figure 1, denote the vertices of the
simplex 1,2, 3. Letpoints a, b, . . ., f divide the edges in
thirds, so that a—b— f—d—c—e—a is the hexagon in A with
side length 1/3. Note that the hexagon is (a scaled ver-
sion of) the unit ball for our distance metric. The points
on the boundary of the hexagon are each at distance 1/3
from the hexagon’s center.?

The ball/corner scheme chooses a ball cut with prob-
ability 8/11, otherwise it chooses a corner cut. These
two types of cuts are defined next. The scheme is illus-
trated in Figure 1.

Ball cut: Choose a point » uniformly at random from ¢i-
ther line a—c or line b—d. Consider the three lines Ay, —r,
(i = 1,2, 3) parallel to the triangle’s sides and passing
through the point r. Each such line is divided at the
point r into two rays. Thus we get six rays. Each side of
the triangle intersects two of these rays. For each side,
randomly choose of the two rays that hit it. This gives
three rays; they form the boundary of the 3-way cut.
Corner Cut; Choose two terminals in {1,2,3}, and a
value p € {2/3, 1], uniformly at random. For each of
the two chosen lerminals 4, let [; = Ag,=,. The two
lines !; form the boundaries of the 3-way cut.

2Remember that we measure length as half the Ly norm.
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Figure 2: The lower bound for & = 3 (here N = 7). The paths from 2 to 3 are on the left. The entire graph is on the
right. On the border, overlapping paths are drawn side-by-side for clarity, so line width represents edge cost.

Analysis. We first state two simple properties of the
ball cut that we need to analyze the performance of the
cutting scheme:

Fact4.1 Each of the 3 coordinates of the random point
7 is uniformly distributed in {0,2/3)].

Fact 4.2 Oncer is chosen, each one of the six candidate
rays connecting r to one side of the triangle is chosen
with probability 1/2.

Theorem 4.3 The maximum density of the ball/corner
scheme is 12/11, so 73 < 12/11.

Proof: We show that the expected density of any seg-
ment e is at most |e| - 12/11, For the ball cuts, we use
only the two facts claimed above. Since these two facts,
as well as the corner cut scheme, are symmetric with
respect to the three coordinates, it suffices to prove the
claim only for a 1, 2-aligned segment e. We will con-
sider several cases, depending on where e is located.

First, assume e is located entirely in the hex. Such a
segment cannot be cut by a corner cut, so we need only
consider the density when a ball cut is made and mul-
tiply by the probability of choosing a ball cut, namely
8/11. Assume a ball cut is made. Then e can only be
cut by rays of in Ag,=,, fori = 1,2. By Fact 4.1, r;
is uniformly distributed in {0,2/3]. Hence, the proba-
bility that A, -, goes through e is |e|/(2/3) since e is
1, 2-aligned. If A, ., touches e, it is at a single point.
By Fact 4.2, the ray of A, —,, containing this point is
picked for the cut with probability 1/2. Thus the ex-
pected number of times e is cutis 72 475 - 1 = 13lel.

Exactly the same argument applies if the edge is in
the corner closest to terminal 3. The ball cut contributes
the same 12/11 density, while the corner cut contributes
nothing (note that a 1, 2-atigned edge is parallel to the
line A, ., so cannot be cut by it).

Second, suppose segment e is in the comner closest
to terminal 1 (a symmetric argument applies if e is in
the corner closest to terminal 2). In this case, if a ball
cut is made, the above analysis applies except that only
the line Az, ., can cut e {the line A, -, never enters
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the corner), so the density contribution of the ball cut is
halved to je| 16—1. But the edge can also be cut by a corner
cut. A corner cut is chosen with probability 3/11. When
it is, two of the three terminals are chosen, so terminal 1
is chosen with probability 2/3. If terminal 1 is chosen,
then, since the cutting line near terminal 1 is of the form
Ag,=1-p, where p is chosen uniformly in {0,1/3], the
probability that the line cuts e is |e|/(1/3). Thus, the
expected number of times that the edge e is cut (by a
ball cut or corner cut) is |e| & + 2 - 2+ {% = le| 2.
Finally, if e spans several regions (e.g. it lies in a
corner and in the hex), e can be partitioned into sub-
segments each contained entirely in one region, and the
previous analysis applied to the sub-segments. 0

5 Lower Boundfork =3

Theorem 5.1 For k = 3, the minimum maximum den-
sity 73 > 12/11. Hence, the integrality gap for the geo-
metric relaxation is 12/11.

Note that this theorem applies to all cutting schemes, not
just sparcs.
Proof: Fix N to be any positive integer. We construct
an embedded weighted graph G with no 3-way cut of
cost less than 12V — 3, but with an embedding of cost
11N + 3. This implies that no cutting scheme has maxi-
mum density less than (12N —3) /(11N +3), because by
Lemma 2.1 such a cutting scheme applied to G would
yield a 3-way cut with expected cost less than 12N — 3,
a contradiction. Since N is arbitrary, the result follows.
Our construction (for ¥ = 7) is shown in Figure 4.

For any pair of distinct terminals ¢, j and number
d € [0,1], define embedded path p(i, j, d) as follows.
Let £ be the terminal in {1,2,3} — {i,7}; let @ be the
point on segment if at distance d from ¢; let b be the
point on segment j£ at distance d from 7. Then p(, j, d)
is the union of the three segments ia, ab, and bj.

We form the graph from 9N paths p(i, j,d) for 0 £
d < 2/3; where d is an integer multiple of 1/(3N).
Although we describe the graph as a set of paths, tech-
nically it is a planar graph consisting of nodes and edges



as follows: for every point in A whose coordinates are
integer multiples of 1/(3NV), there is a node in the graph
embedded at that point; for every pair of nodes embed-
ded 1/(3N) units apart, G has an edge with cost equal
to the number of paths that pass through both nodes.

With this understanding, we now specify the graph.
For each of the 3 distinct pair of terminals 1, j, there
are 3V paths. Of these paths, /N run directly between
the terminals; that is, there are N copies of p(i, 7,0).
The remaining 2N paths are the paths p(i, j,m/(3N))
wherem = 1,2, .. 2N,

The total cost of the embedding is the total length
of the paths. Since a path p(i, 7,m/(3N}) has length
1+ m/{3N), a direct calculation shows that the total
length of the pathsis 11N/3 4 1.

Next we lower bound the cost of any 3-way cut.
Since the graph is planar, any minimal 3-way cut cor-
responds either to a disconnected cut {meaning that the
cut is the union of two disjoint 2-way cuts, each separat-
ing some terminal from both other terminals), like our
upper bound’s corner cut, or a connected cut (meaning
that the cut edges give, in the planar dual, three paths
connecled at some central node and going to the three
sides of the triangle), like our upper bound’s bali cut.

Any 3-way cut must cut all of the 9V paths at least
once. To finish the proof, we will argue that for either
type of 3-way cut (connected or not), at least 3N — 3
paths are cut twice, so that the edges cut by the 3-way
cut cost at least 12NV — 3. This is easy to verify for a
disconnected cut: a disconnected cut is the union of two
2-way cuts, so the 3V paths running between the two
terminals that are cut off must be cul twice.

Now consider any connected cut. In the planar dual
of G, the connected cut corresponds to a central node
and three paths from the node to each side of the trian-
gle. Let x = (21, T2, T3) be any point inside the face of
(' corresponding to the central node. Consider a path
p(i,j,d) such that d > x,, where £ # 7,j. Thatis, X
is inside the cycle formed by the union of p{i, j, d) and
p(i, 7,0). Then the path p(i, j, d) is cut twice by the con-
nected cut. For fixed ¢ and j, the number of such paths
{with d > z4) is at least (2/3 — 2,)N/3 — 1. Thus, the
total number of such paths is at least (2/3 —x; +2/3 —
Ty +2/3—123)3N -3=3N-3. O

6 Improvement for general

Theorem 6.1 For all k, 7; < 1.3438. Moreover, there

is a k-way cut approximation algorithm with an approx-
imation guarantee of 1.3438.

Our bound improves on the Calinescu et. al. bound of
1.5 ~2/kforall k > 14, For3 < k < 14, we can
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also obtain improvements by taking advantage of k be-
ing small (see Section 6.1).

As discussed in Section 2.3, the essential observa-
tion in this analysis is that many slices can capture an
edge before it has a chance 10 be cut.

We will use a (sparc) cutting scheme called ICUT:
we choose & slicing thresholds p;, and apply the slices
Ag.=p; 10 arandom permutation o of the terminals.

To bound the cutting density of our scheme, we will
bound the density of every segment. As justified in Sec-
tion 2.2, we consider a segment of length ¢ > 0, and let
€ approach zero. As in the ball/corner scheme, by sym-
melry we can assume without loss of generality that the
segment is 1, 2-aligned.

Define dy.(z1, .. ., zx) to be the density which which
ICUT cuis a 1, 2-aligned segment of infinitesimal length
located at 21, T2, . . . , Tx. We will show:

Theorem 6.2

2.012096
11/12

ifx,x2 < 6/11

di(z1,--.,28) < { otherwise.

The final cutting scheme chooses to ICUT with proba-
bility & = 0.66719 and otherwise chooses a corner cut.
The corner cut is chosen by the natural generalization of
the scheme for k = 3: choose a value p € [6/11,1].
The k-cut consists of the hyperplanes I; = A;,—,, for
each 7. Note that the last corner cut need not technically
be made but it simplifies the analysis.

This combined scheme gives a maximum density
of max{(2.012096)c, (11/12) a + (11/5)(1 — @)} <
1.3438, proving Theorem 6.1. It remains to prove The-
orem 6.2.

The cumulative probability distribution function for
any p; is is F(z) = min{{11/6)z, 1}. The correspond-
ing probability density function is

PWA:{IUGiHEWﬁﬂH

0 otherwise.
Consider a }, 2-aligned segment of length ¢ with one
endpoint fixed at z1, %2, ..., T As € goes to zero, the
density of this segment goes to

dk(xlr-“ ,1313)

(Fen

= (1 = F(z:))]

&

+ F'(z2)

11

g (i)<ao(l)

II u-p@m) (1

Lo (f)<o(2)

where the sum is over all £! orderings of the terminals.
This formula is true for any F and accounts for the prob-
ability of the 1, 2-aligned edge being captured by the ter-
minals that go before 1 or 2. This savings is the key to
improving on the factor of 3/2 for large k.




Note that di(zy,...,2;,0,...,0) = di(z1,...,2:)
(provided i > 2), because x; = 0 implies terminal j
cannot save the edge. Note also that dg 1s symmetric
with respect to the variables z; for ¢ > 2. Define

Dk(mls$2) = x;:na}:ik dk($1:$23'--rmk)
Crlza,32) = di{zi,22,6,...,0)
where ¢ = (1 — z; — x2)/(k — 2),
Doo(zy,22) = MNm Dyi(zy,z2),
k—o0
Coo(ml,ﬂlz) = lim Ck(l'.],.’ﬂz).
k—o0
In these definitions, (1, 22, .. ., Z) is required to lie in

the k-simplex.

Dy, is the maximum density of any 1, 2-aligned in-
finitesimal segment with an endpoint whose first two co-
ordinates are x;,rz. Note that the maximum is well-
defined and achieved by some z3, ...,z because the
simplex is closed under limit.

To understand ICUT, our first goal is to characterize
Dy, We consider Cy. as it is one candidate for Dy,

Lemma 6.3 Dk(:n,mg) < Dk_;_l(:x:l,zg)forail k.

Proof: di(xy,...,2x) = dpp1(z1, ..., 28, 0), |

Thus the D) are a nondecreasing sequence bounded
from above (by 2). This implies that D, is well-defined.
We will see later that C, is also well-defined.

Next we show that for fixed z; and zs, the worst
case occurs at either the “central point” £, %2, ¢,¢,...,¢€
or the “three-terminal” point 2y, 2, 1—y—%2,0,...,0.
(Analogous results hold for any convex or concave F.)

Lemma 6.4

Cr(z1,z2)
03(1’1: ﬂfz)

di(r.... Ik)<{ fVi>2:x; <6/11

Proof: Fixz; and @y. Lete= (1 — xy — z2)/(k — 2).

Claim 1: Among all x5, ..., %y suchthat 0 < x; <
6/11 foralli > 2{and x,, 2, .. ., Tk is in the simplex),
the unique maximizer of dy(x1, T2, X3, ..., Tt} satisfies
T3 = x4 = -+ = Tp. Suppose for contradiction that
some other such z3,Z4,...,Zr maximizes dig. Then
x; < z; forsome 4, § > 2. Considered just as a function
of #; and z; (holding the other coordinates fixed)

p+q(l = F(zi)] +r[l - F(z;)]
+s(l = Fz)][l - Fz;)] ()

dk(xl?""lxk)

where p, g, r and s are nonnegative and independent of
z; and x;. Furthermore ¢ = r because dj, is symmetric
in x; and z;. Consider increasing x; and decreasing z;

i3 >2:3; >6/1L
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at equal rates. This maintains 0 < z;,z; < 6/11 but
increases dy, at a rate proportional to

dF (2;) - F (0]
+5(F(e)l1 - P@)] - Pl - Fa))-

This is positive because F'{z) = 11/6 for z < 6/11
and F'(z;) > F(z;) (recall that ; < ; < 6/11). This
contradicts the choice of z3, ...,z

Claim 2: Among all 3, . ..,z such that z; > 6/11
for some i > 2 (and x),...,x} is in the simplex), the

unique maximizer of di.{z1, T2, 23, .. ., T} ) satisfies x;
1—m — 2z andz; = 0 for j # i. Suppose for contra-
diction that some other such x3,24,...,%; maximizes
dy. Fix some j > 2such that ¢ < z; < 6/11 <
z;. Since F(z;) = 1, the expression (2) reduces to
p+ g(1 ~ F(z;)). If we increase z; and decrease z; at
the same rate, the rate of increase in dy, is ¢F'(z;) > 0,
contradicting the choice of 3, ..., 4.

The two claims together prove the lemma.

O

Lemma 6.5 Fork > 4, C'k(a:l,:rg) < Ck.;..l(:t:l,ﬂfz).

Proof:Cy (2, z3) ,€)

1))

de(z1,T2,¢, - -
di41(z1, 2,0,
Crt1{z1,T2)-

<

Here ¢ = (1 — z; — z2)/(k — 2). The last inequality
follows from Lemma 6.4 (using c < 1/2 < 6/11).

An immediate corollary is that Coo(Z1, 22) is well-
defined and Cx (21, 22) £ Coo(z1,x2) for all k. Using
this and Lemma 6.4, to bound D, it suffices to bound
(g and C',. We begin with C.

Lemma 6.6

2.012096
11/12

Coofz1,32) < { Lf‘z:;:fses 6/11
Proof: Fix x; and z;. Our first goal is to derive a
closed-form expression for Cy (1, z3) for any k. Fix k
for now and let z; = ¢ = (1 — =1 — x3)/{k — 2) for
i>2.

For j = 1,2, let S; denote the probability that the
segment at (1, X2, . . . x3) is not captured by a terminal
other than j before the jth cut is made:

s,-ﬁ%z [l 1-F@).

e peli)<al(d)

Then C' (2’.‘1,3.72) = S],F"(Il) + SgF’(.Tg).



We will derive a closed-form expression for S; (and
by symmetry for S2). Recall that z; = cfori > 2. We
thus rewrite

k-1
I e g =i _
Si=1 5‘__0 g7 (1~ F@)"[1 - F(z2)]
=

-2 yq- ¢

+{1 k—l)(l F(c))s.
Here we condition on g, the number of j such that o(5) <
a(1). Note that g is uniform in [0, k ~ 1] while 25 is

the probability that o(2) < o(1), given g.
A change of variables and rewriting give

5 = ( ~F(z) ) Z (- Fr

Now we let kK —+ co. The two sums above have
standard closed forms that tend respectively to

[1—e%a! and 1 - (1 +a)e a2,
wherea = limg_, o, k F(¢) = (1—z1 —2x5) F'(0). Thus,
S1 =l —e e - Fap)[l - (1 + a)e a2

Of course S; is the above with z; replacing #5. This
gives us our closed-form expression for Coo (71, Z2):

—-a

l—e

Coo(z1,22) = [F' (1) + F'(22)] %
1-(1+ a)e_“.

— [F'{z1)F(x2) + F'(z2) F{x1)] % =
@)
where a = (1 — x; — z2)F'(0).
The above equality holds for any F. Using this closed
form and our particular choice of ¥, we now show the

two desired bounds on Co
Case 1: z,,z; < 6/11. In this case o = 11/6(1 —

Ty — Za), F'(zy) = F'(xe) = 11/6, and F(z,) +
F(zq) =11/6(xy + z2) = 11/6 — a. So (3) gives

1—g*
Cool{z1,22) = 11/3
_ —-a
121 (1 _B_a)l {(1+a)e
T 36 11 a?

where a = 11/6 (1 — 21 — z2) so a € [0,11/6]. Let
Cla) = Coolz1,22). In the rest of this case {Case 1),
we will prove that C'(a) < 2.012096 for a € (0,11/6).
The cases a = 0 and a = 11/6 follow by the conti-
nuity of C. The claim is “obvious” from a plot but the
somewhat technica proof appears below.
We show that C () is strictly concave fore € (0,11/6).

It therefore has 2 unique maximum at some ag, where
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C'(ag) = 0. By substitution, C*(.294) > 0.00045 > 0
and C'(.295) < —~0.00009 < 0, so ap € (.294,.295).
Hence

max C(a) < C(.205)—0.001-C'(.295) < 2.012006
a€l0,11/8)
To show ('(a) is strictly concave, we show that C"'(a) is

2 —a
strictly negative. Now, C'(a) = i ¢ ‘?“ telay

il e " 3:t22 22e”° ,nd C'"(a) 36a (Te % 34
3 e““a - 36a —30e~% + 6e%a* + 66 — 66e79).

To show that C"'(a) is negative, it suffices to prove
that

D(@) = —Te®a®—3e %’ +36a+30e %
~6e%a’ — 66 +66e™"
is negative. By substitution, D(0) = 0 and D(11/6) =

0, so it suffices to show that D' has only one zero a,,
D'(a) < 0fora < ay and D'(a) > 0 fora > ay. Here

D'{a) = —17e%a®—18¢ %% —36e %a + 36
~36e™* 4+ 6e %"

and D"(a) = e %*(—6a® + 4la ~ 33). Fora €
{0,11/86], D" has only one zero a; = %‘/@1 ~ 0.93
and D'"(a) < O fora < az and D”(a) > 0 fora > as.
That is, I is first decreasing and then increasing. Since
D’(0) = 0 and £¥(11/6) > 4.108 > 0 it follows that
D' has only one zero e fora € (0,11/86).

Case 2: «x), or zp > 6/11. Assume z; > 6/11 (the
case zz > 6/11 is symmetric). In this case, F'{z1) =0
and F(x,) = 1, so we get

111-¢e 111~(1+a}e™®

Coo($1,$2)=‘g'—“a % Py

As before, let C(a) = Coo(z),22). We will prove that
C(a) < 11/12fora € [0,11/6]. First, limg0 Cla) =
11/12, so C(a) < 11/12 follows if we can show that
C'(a) < 0fora € (0,11/6]. We have

= 61;3 (—a—e"%a+2-2e7%).

Define E(a) = —a— e %a+2—2e™%. Since o > 0
fora > 0, C{a) < 0if and only if E{a) < 0. Since
E(0) = 0, we can infer E{a) < 0if E'{a) < O for all
a € {0,11/6}]. We have E'(a) = =1+e~%(a+1). Note
that E'(0) = 0, so E'(a) < 0 follows if E"(a) < 0 for
a € (0,11/6]. We have E”(a) = —e™%a, so E"(a) <
0. We conclude that Coo (1, 73) < 11/6if 2y > 6/11.

O

C'(a) =

Lemmas 6.4 through 6.6 prove that, for z such that
z; <6/11foralli > 2,

dk(l‘l,---,l’k} < Coo(-’f-'i,ﬁz)

2.012096 ifzi,z2 < 6/11
11/12 otherwise.

IA




The remaining case is when z; > 6/11 for some ¢ > 2.
In this case by Lemma 6.4,

dk(:r:l,.

and z; + x4 < 5/11. Thus, to finish the proof of the
theorern, it suffices to show the following lemma.

oy @g) < Ca(z1,22) = da(zy, 22,1 ~ 2y — 22)

Lemma 6.7 Ifzy + x2 < 5/11, Cs(z,z2) < 11/6.

Proof: Letzs =1—x) — g > 6/11.

Then F'(z3} = 1 while F(z,) = 11/6z, F(xz,) =
11/6 z2, and F'(z,) = F'(z2)} = 11/6.

By inspection of (1), C3(z1, z2) = d3(z1,T2,%3) =
(1/6) (11/6) (6 — 11/6 (z1 + z2)) < 11/6. 03
This proves Theorem 6.2.

6.1 Improvements for small values of &

For particular values of & it is possible to refine the anal-
ysis in the proof of Theorem 6.1 to get improved bounds.
In this case it is useful to modify the algorithm so that it
only uses k — 1 cuts instead of k. In particular, we do
not use the cut for the terminal j with o(j) = k. The
analysis for this case goes similarly, with our definitions
appropriately modified to reflect that we are using & — 1
instead of k cuts.

Then, instead of passing to the limit, Cy(zy, z2) can
be evaluated directly. Following this approach we ob-
tained the following performance guarantees for partic-
ular k:

k  comer p ratio
3 0641 0675 1131
4 0607 0663 1.189
5 0588 0.659 1223
6 0576 0659 1.244
7 0565 0657 1258
8 0557 0656 1.269
9 0557 0659 1277
10 0557 0.661 1.284
12 0554 0661 1.293
20 0554 0666 1314
35 0550 0666 1327

Here, “corner” is the placement of the corner (anal-
ogous to 6/11), p is the probability of choosing ICUT,
and “ratio” is an upper bound on the resulting ratio. The
corner sizes and p's are approximate and only close to
optimal and the ratios were evaluated numerically with-
out formal verification.
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