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Abstract 1 Introduction 

Given an undirected graph with edge costs and a subset of 
k 2 3 nodes called terminals, a multiway, or k-way, cut is 
a subset of the edges whose removal disconnects each ter- 
minal from the others. The multiway cut problem is to find 
a minimum-cost multiway cut. This problem is Max-SNP 
hard. Recently Calinescu, Karloff, end Rabbi (STOC’98) 
gave a novel geometric relaxation of the problem and a round- 
ing scheme that produced a (312 - l/k)-approximation algo- 
rithm. 

In this paper. we study their geometric relaxation. In par- 
ticular, we study the worst-case ratio between the value of 
the relaxation and the value of the minimum multicut (the 
so-called integrality gap of the relaxation). For k = 3, we 
show the integrality gap is 12/11. giving tight upper and lower 
bounds. That is, we exhibit a graph with integrality gap 12/11 
and give an algorithm that finds a cut of value 12/11 times 
the relaxation value. This is the best possible perfom~ance 
guarantee for any algorithm based purely on the value of the 
relaxation and improves on Calinescu et al.‘s factor of 716. 

As the field of approximation algorithms matures, meth- 
odologies are emerging that apply broadly to many NP- 
hard optimization problems. One such approach(e.g., [7, 
8, 1, 6, 51) has been the use of metric and geometric 
embeddings in addressing graph optimization problems. 
Faced with a discrete graph optimization problem, one 
formulates a relaxation that maps each graph node into a 
metric or geometric space, which in turn induces lengths 
on the graph’s edges. One solves this relaxation opti- 
mally, and then derives from the relaxed solution a near- 
optimal solution to the original problem. 

We also improve the upper hounds for all larger values of 
k. Fork = 4,5, our best upper bounds are based on computer 
constructed and analyzed rounding schemes, while fork > 6 
we give an algorithm with performance ratio 1.3438 - a. 

Our results were discovered with the help of computa- 
tional experiments that we also describe here. 

This approach has been applied successfully [2] to 
the min.cost multiway cutpmblem, a natural generaliza- 
tion of the minimum (s, t)-cut problem to more than two 
terminals. An instance consists of a graph with edge- 
costs and a set of distinguished nodes (the rerminals). 
The goal is to find a minimum-cost set of edges whose 
removal separates the terminals. If the number of termi- 
nals is k, we call such a set of edges a k-way cut. 

The first approximation algorithm for the multiway 
cut problem in general graphs was given by Dahlhous, 
Johnson, Papadimitriou, Seymour, and Yannakakis [41. 
It used a traditional minimum (s, t)-cut algorithm as a 
subroutine and had a performance guarantee of 2 -2/k. 

In the work that prompted ours, Calinescu. Karloff, 
and Rabani [2] used a novel geometric relaxation of k- 
way cutina (3/2-l/k)-approximationalgorithm. Their 
relaxation uses the k-simplex A = {z E R’ : z 2 0, 
Ci zi = l}, which has k vertices; the ith vertex is the 
point z in A with zi = 1 (and all other coordinates 0). 
The relaxation is as follows: map the nodes of the graph 
to points in A such that terminal i is mapped to the ith 
vertex of A. Each edge is mapped to the straight line be- 
tween its endpoints. The goal is to minimize the volume 
of G, 

WI(G) f c cost(e) lel 
cdgcr e 

where lel denotes the length of the embedded edge e, 
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defined as half the LI distance between its endpoints, 
and cost(e) is the cross-sectional area of edge e. 

To see that the above is a relaxation of minimum k- 
way cut, consider any k-way cut and let S, be the set 
of nodes reachable from terminal i in the graph with the 
cut-edges removed. Consider a geometric embedding in 
which all nodes in S, are mapped to vertex i of A. For 
any edge, the distance between its edges is either 0, if 
the endpoints lie in the same S,, or 1, if the endpoints lie 
in distinct sets 5’;. Hence the volume of this embedding 
equals the cost of the k-way cut. 

The algorithm of Calinescu et al. finds a minimum 
volume embedding by linear programming. It then uses 
a randomized rounding scheme to extract a cut from this 
embedding. Ignoring the graph, the scheme chooses 
(from a carefully selected distribution) a k-way cut of 
the simplex-a partition of the simplex into k subsets, 
each containing exactly one vertex of the simplex. The 
k-way cut of the simplex naturally induces a k-way cut 
in the embedded graph--namely, the set of edges with 
endpoints in different blocks of the partition. This cut 
has expected cost at most 312 - l/k times the volume 
of the embedding. 

Our results. Our goal is to further understand the ge- 
ometric relaxation, with the hope of developing better 
approximation algorithms. We aim to determine the in- 
tegraliry gap of the relaxation and to find an algorithm 
whose approximation ratio matches the integrality gap. 
Note the the integrality gap is the best approximation ra- 
tio we can achieve for an algorithm that compares itself 
only to the embedding volume. 

In this paper, we resolve this question for 3-cut and 
provide improved results for the general k-cut problem. 
For k = 3 we give a rounding algorithm with perfor- 
mance ratio 12/11, improving Calinescu et al’s bound 
of 312 -l/3 = 716. We also show that 12/11 is the best 
possible bound, exhibiting a graph with a gap of 12/11 
between its embedded volume and minimum 3.way cut. 
Thus, fork = 3, we determine the exact integrality gap 
and give an optimal algorithm. 

For larger k, we obtain results based on both compu- 
tation and analysis. Fork = 4,5, we use LP-derived and 
-analyzed rounding schemes to give bounds of 1.1539 
and 1.2161 respectively, improving the corresponding 
bounds of Calinescu et al. of 1.25 and 1.3. For larger k 
we give a single algorithm obtaining a (analytic) bound 
of 1.3438 - LQ where Q > 0. The quantity Q can be 
evaluated computationally for any fixed k; we use this 
to prove that 1.3438 - ek < 312 - l/k for all k. 

Our efforts to find geometric cutting schemes that 
achieve good guarantees were guided by experiments: 
we formulated the problem of determining an optimal 
probability distribution on k-way cuts of the simplex as 

an infinite-dimensional linear program, and solved dis- 
crete approximations of this linear program and its dual. 
From these solutions we were able to deduce the lower 
bound and, using that, the upper bound fork = 3. These 
experiments also guided our search for cutting schemes 
that work for larger values of k. 

Tote upper and lower bounds for k = 3 were discov- 
ered independently by Cunningham and Tang [3]. 

Presentation overview. In Section 2 we discuss the 
geometric ideas underlying the problem. In Section 3 
we describe the computational experiments we under- 
took and the results it gave for small k. In Sections 4 
and 5 we solve the 3-terminal case, giving matching up- 
per and lower bounds. Finally, in Section 6, we present 
our improved algorithm for general k. 

2 The geometric problem 

Finding the integrality gap of and a rounding scheme for 
the relaxation turns out to be expressible as a geometric 
question. That is, we can express integrality gaps and 
algorithmic performance purely in terms of the simplex, 
without considering particular graphs OT embeddings. 

2.1 Density 

Recall that a k-way cut of the simplex is a partition of 
the simplex into k subsets, each containing a unique ver- 
tex of the simplex, and that such a cut induces a k-way 
cut of any embedded graph. By a cutting scheme, we 
mean a probability distribution P on k-way cuts of the 
simplex. For any line segment e, the density of P on 
segment e, denoted Q(P, e), is the expected number of 
times a random cut from P cuts e, divided by the length] 
lel of e. Define the maximum density of P, n(P) and 
the minimal maximum density T; as follows: 

It is easy to see that the maximum density line segment 
will in fact be an edge of infinitesimal length, since any 
segment can be divided into two edges, one of which 
has density no less than the original. Thus, in the re- 
mainder of this paper, we will focus discussion on such 
infinitesimal segments. 

The relevance of 7; is the following (this is implicit 
in the work of Calinescu et al.): 

Lemma 2.1 For any cutting scheme P and embedded 
graph G, the expected cost of the k-way cut of G induced 
by a random k-way cut from P is at most Q(P) times 
the cost of the embedding of G. 
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Corollary 2.2 Any cutting scheme P yields an appmxi- 
mation algorithm with approximation ratio at most sk (P). 

Proof Sketch: The endpoints of any edge e are em- 
bedded at two points in the simplex, so the edge com- 
sponds to a segment connecting those two points. The 
expected number of times the edge is cut is ok (P, e) jel. 
By the Markov inequality this upper bounds the proba- 
bility that the edge is cut. Thus, the expected cost of 
the k-way cut is at most C,(7k(P,e) lel)cost(e) 5 
Q(P) C lel cost(e) = ~k(P)vol(G). 0 

In fact, one can show that T; is both the integral- 
ity gap of the geometric relaxation and the best per- 
formance guarantee obtainable by any cutting scheme. 
That is, there is an embedded graph whose volume is ar- 
bitmrily close to 7; times its minimum k-way cut and 
there is a cutting scheme with maximal density (and 
therefore performance guarantee) arbitrarily close to T; 
This is a consequence of Yao’s principle (i.e. van Neu- 
mann’s min-max theorem, or equivalently strong linear 
programming duality, applied in the context of complex- 
ity theory). It also follows that a cutting scheme with 
optimum integrality gap can be defined obliviously, in- 
dependent of the input graph. 

Calinescu et al’s algorithm gives a cutting scheme 
showing that 7; 5 3/2 - l/k. In this paper we show 
that ~3’ = 12/11, and that, for all k, T; < 1.3438. 

2.2 Alignment 

We have just argued that the key question to study is the 
maximum density of line segments relative to a cutting 
scheme. Calinescu et al. showed that one can restrict 
attention to segments in certain orientations. We say a 
segment e in A is i, j-aligned if e is parallel to the edge 
connecting vertices i and j of A. We say it is aligned 
if it is i,j-aligned for some pair of vertices. Calinescu 
et al. observed that since length is proportional to the 
L1-norm, and since the aligned edges are the geodesics 
of the norm, the endpoints of any segment e can be 
connected by a piecewise linear path of total length lel 
whose segments are aligned. The segment e is cut iff 
some edge on this path is cut. Given any embedding of 
a graph, Calinescu et al. apply this transformation sep- 
arately to each segment connecting two embedded ver- 
tices, without changing the volume of the embedding. 
Thus, without loss of generality one may restrict atten- 
tion to embeddings in which all edges are aligned. 

Fact 2.3 Segment e = (z, y) is i,j-aligned ifl lel = 
Iy; -zil = (yj -zjlandlyt-z~l = Ofore#i,j. 

2.3 Side parallel cuts (SPARCS) 

In this paper, we mainly restrict attention to a pxticular 
set of cutting schemes. Define Azizp & {z E A : 

zi = p} and A.<>@ A {z E A : z< > p}. Note 
that Azizp is a hyperplane that runs parallel to the face 
opposite terminal i and is at distance p from that face; it 
divides the simplex into two parts, of which A,; zp is the 
“comer” containing terminal i. An i, j-aligned segment 
(s, y) is cut by the hyperplane A.,=,, iff e E {i, j} and 
p is between z( and ye. 

We define a side-parallel cut (spare) of the simplex: 

1. Choose a permutation o of the vertices; 

2. For each vertex i in order by n (except possibly the 
last), choose wme pi E [0, 11; 

3. Assign to vertex i all points of Azizp not already 
assigned to a previous terminal. We say terminal i 
captures all these points, and that terminal i cuts an 
edge e if it captures some but not all of e. 

Thus we are slicing up the simplex using hyperplanes 
Azizp. In this context, we call each Azgzp a slice. 

We consider algorithms that sample randomly from 
some probability distribution over spares. Our restric- 
tion to spares was motivated by several factors. Tbe 
rounding algorithm of Calinescu et al. uses only spares. 
Furthermore, our computational study of the 3-terminal 
problem (discussed below) and some related analytic 
work gave some evidence that the optimal algorithm was 
a distribution over sparcs. Lastly, spares have concise 
descriptions (as a sequence of k - 1 slicing distances) 
that made them easy to work with computationally and 
analytically. It is conceivable, though, that one might do 
better with cuts that are. not spares. 

Our key idea is expressed in tbe following fact. For 
segment e, let et be the interval {& E e} and let 
min et denote the smaller endpoint of this interval. 

Fact 2.4 An i, j-aligned segment e is cut by a spare if 
and only if it is cut by terminal i or j. Furihermore, for 
e E {i, j}, the following conditionsare all necessaryfor 
segment .S to be cut by terminal e: 

(1) 6% E et 

(2) For all terminals h preceding e, PI, > min eh. 

(3) Terminal e is not last in the order 

For probability distributions P on spares, one can 
obtain bounds on 76 (P, e) by using Conditions l-3 above. 
For example, we can restrict our attention to Condition 1: 
If pi and pi are uniformly distributed, Condition 1 holds 
for terminal i with probability lel and independently for 
terminal j with probability /e/. Thus, the expected num- 
ber of times e is cut is at most 2lel. 

Next, consider adding Condition 3. Suppose that 
the ordering of terminals is random, meaning that i is 
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last with probability l/k. The probability that e is cut 
by i becomes (1 - l/k)lel, so ~k((P,e) 5 (2 - 2/k). 
Thus, uniformly random pi’s and a random ordering 
gives a performance guarantee of of 2 - 2/k, matching 
the bound of Dahlhous et al. 141. 

To improve these hounds, one must use Condition 2. 
Calinescu et al. choose a spare by selecting p uniformly 
at random in (0, 11, setting pt = p for each terminal 
!, and slicing off terminals in random order. A naive 
analysis again derives a density bound of 2 for any i, j- 
aligned segment e, with a contribution of 1 from the i 
and j slices. Calinescu et al. improve this analysis as 
follows. Suppose that the edge is farther from j than 
from i. Suppose that p is such that j appears to cut e. 
Then if i (which is closer to e) precedes j in the ran- 
dom slice ordering (probability l/2), i will capture all 
of e and prevent j from cutting it. This reduces the den- 
sity contribution of terminal j to l/2, and leads to their 
312 - I/k bound. 

To improve on the 312 bound, we made stronger use 
of Condition 2. The analysis of Calinescu et al. only 
considers that a segment may be captured by the two 
terminals with which it is aligned. We derive stronger 
results by observing that other terminals may capture 
the edge as well. To do so, we had to change the cut 
distribution as well as the analysis. It can be shown that 
no distribution that holds all pi equal can do better in 
the limit than 312 of Calinescu et al. But their idea of 
making the pi into dependentrandom variables is useful. 
We explore other schemes based on dependent distribu- 
tions. One such scheme for 3.way cut gives us a bound 
of 12/11, which is optimal cwer all schemes for 3-way 
cut. Another scheme gives us a bound of 1.3438 that 
holds for any number k of terminals. This latter scheme 
is designed for large k. 

2.4 Additional Observations 

We now mention some additional observations whose 
full proofs mltst await the full paper. 

What is the best embedding? Perhaps the first 
natural question to ask is whether the embedding cho- 
sen by Calinescu et al. is the best possible. 

Lemma 2.5 Among all embeddings in the simplex that 
minimize some norm (without adding other constraints) 
the L1 norm has the smallest possible integrality gap. 

Lemma 2.6 There is an optimum spare cutting scheme 
of the following form: 

I. choose slice distances (dl, , dk-,) 

2. apply the slice distances (in order) to a uniform 
random permutation of the terminals 

An analogous “order independence” statement holds for 
the best possible (possibly non-spare) algorithm. 
Proof: Consider a best spare with integrality gap p. 
Consider any input embedding. We can “symmetrize” 
the embedding, without changing its volume, by aver- 
aging it over all permutations of the coordinates. Our 
spare achieves integrality gap p on the symmetrized em- 
bedding. Since the embedding is symmetric, the order 
in which the spare slices terminals is irrelevant. So we 
can assume it is some fixed order. 

Note, however, that cut value achieved on the sym- 
metrized graph but slicing in some fixed order is just the 
expected cut value achieved by applying the same slices 
to the original embedding under a random ordering of 
the terminals. cl 

The above lemma shows that there is no worst-case 
benefit to considering specific terminal ordering. The 
duality argument of Section 2.1 carries over to show that 
a spare with optimum expected integrality gap can be 
specified simply as a distribution cwer slicing distances, 
without reference to an input graph embedding. 

3 Our Computational Study 

In this section we describe some computational experi- 
ments we carried out to help us understand the behavior 
of the geometric embedding. One need read this section 
in order to understand the following ones. 

As discussed above, our goal was to find a distribu- 
tion over cuts of the k-simplex that minimized the den- 
sity of any segment in the simplex. This problem can 
be formulated as an infinite dimensional linear program, 
with one variable per cut of the simplex, corresponding 
to the probability that that cut is chosen, and one con- 
straint for every (aligned, infinitesimally small) line seg- 
ment inside the simplex, which measures the expected 
number of times the chosen cut will cut that segment. Of 
course, it is not tractable to solve the infinite LP compu- 
tationally, but we expected that discretized versions of it 
would be informative. 

We applied this approach in two distinct ways. For 
the 3-terminal case, we devised an LP that exploited 

Space limitations require that we omit the (straightfor- 
ward) proof of this lemma, which basically relies on 
breaking any segment into aligned segments and trans. 
Ming them and scaling them to the simplex sides. 

Symmetry. A second observation is that there is no the planarity of the 3-terminal relaxation, and ;sed it 
benefit in trying to identify a “good terminal order” in to home in on the optimal solution, which we then an- 
which to cut up the simplex. alytically proved to be optimal. For the general case, 

671 



we devised an LP whose solutions are (movable) UD- 
per bounds on the performance of cat& rounding al- 
gorithms. We solved this LP for small numbers of ter- 
minals (3-9), deriving algorithms with (computer aided) 
proofs of the best known performance ratios for these 
problems. The solution suggested certain properties that 
appear to hold in the “optimal” rounding scheme; we 
used these suggestions in our development of (analytic) 
solutions for arbitrary numbers of terminals. 

3.1 The three-terminal case 

For the 3.terminal problem we exploited planarity. The 
3-simplex can be viewed as a triangle in the plane. We 
discretized the linear program by defining a triangular 
mesh over the simplex and considering only edges of 
the mesh instead of all line segments in the simplex. 

To approximate the best cutting scheme, we com- 
puted the best distribution over 3.way cuts of the mesh. 
We used the planarity of the 34mplex to simplify our 
LP formulation. Any 3.way cut of the mesh corresponds 
to a collection of paths (representing the boundary of 
the cut) through the planar dual of the mesh. Thus the 
distribution of cuts corresponds to a packing of these 
paths, which can be seen as a kind of flow. So instead 
of enumerating all possible cuts, we could define B lin- 
ear program that assigned a (multicommodity) flow to 
each edge of the dual mesh. This gave us a tractable 
representation of the linear program. 

We also found it helpful to solve the dual of our 
flow-based linear program, which assigns weights to the 
mesh edges to minimize the total weight such that every 
3.cut has value at least 1. Since each 3.cut corresponds 
to a set of two or three paths in the planar dual of the 
mesh, the latter constraint can be represented efficiently 
by constraining shortest-path lengths (as a function of 
the variable edge lengths) in the planar dual. A solu- 
tion to the dual can be interpreted as an embedded graph 
demonstrating the integrality gap. The dual showed us 
the important idea of “ball cuts” versus “comer cuts” 
which we will discuss in the following sections, and thus 
led to the discovery of the optimum cutting scheme for 
three terminals. 

3.2 The general case 

In the general case, the lack of a planar embedding pre- 
vented us from exploiting nice properties of its cuts; we 
were faced with the problem of enumerating cuts as well 
as edges. Based on the work of Calinescu et al. and 
our own results for the optimal 3-terminal solution, we 
decided to limit our exploration to spares as discussed 
above. 

There is still an infinite space of possible spares, so 
we discretized our problem. Fix an integer grid size N. 

A discrete spar-c is described by a vector (91,. , qb-1) 
where each q; is an integer in the range [0, N - 11. Given 
such a vector, we choose a random spare by setting d; 
uniformly in the range [q;/N, (pi + 1)/N]. This defines 
a probability distribution on (continuous) sparcs. We 
now define a linear program to search for a probability 
distribution over discrete spares (which induces a prob- 
ability distribution over continuous spares). We define a 
variable for each discrete spare, which reflects the prob- 
ability of choosing that discrete spare, and provide con- 
straints that aim to minimize the density of any segment 
under tbe probability distribution. 

There still appear to be infinitely many constraints 
(segments) but we reduce this to a finite number as fol- 
lows. The slices at distances q/N for each terminal that 
determine our spare distribution partition the simplex 
into cells. For a given distribution on the discrete spares, 
we can compute. a (linear) upper bound on the density 
induced on any segment with a given alignment within 
a cell, and specify one constraint saying that this upper 
bound should be small. Since the cells are small, we ex- 
pect all segments with a given alignment to have roughly 
the same density under our cutting scheme, so we hope 
that the upper bound is reasonable tight. With this sim- 
plification, the number of constraints is bounded by the 
number of cells times the number of segment alignments 
per cell, which is at most k2N”. 

We determine the upper bound for a cell as follows. 
For any discrete cut, the slices generated from it will fall 
into one of three categories. If the ith coordinate of the 
discrete cut is different from that of the cell, then the 
i”’ slice will not pass through that cell: depending on 
whether the coordinate is larger or smaller it will either 
capture the entire cell or none of the cell. If the ith coor- 
dinates are the same, then the slice might pass through 
the cell; we can use that the slice is uniformly distributed 
over a range to determine its density contribution. 

If we consider an i, j-aligned segment, it can only be 
cut if the slices for terminal i or j go through its cell. If 
only one of the two slices goes through the terminal then 
its contribution to a segment’s density is at most I/N. 
If both slices go through the cell, their contribution is at 
most 2/N. We ignore the fact that different slices within 
the cell might capture the segment before it can be cut, 
thus introducing some slack in our upper bound. 

We can exploit symmetry to further reduce the num- 
ber of conshaints we consider. Since by assumption our 
spare slices terminals in random order, two segments 
that are identical under permutation of coordinates will 
have the same densities, so we need consider only one 
of them. Thus, we restrict our constraints to 1,24gned 
segments in which the remaining coordinates are in non- 
decreasing order. 
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2~32~32~3 
Figure 1: This figure illustrates the cots used for the case k = 3. The leftmost diagram shows how T might be chosen 
for the ball cut. The middle diagram shows one possible resulting ball cut (in bold). The rightmost diagram shows a 
corner cut (in bold). 

3.3 LP Results 

Exploiting symmetry as discussed above, we were able 
to solve relatively fine discretizations of the problem. 
We wrote a simple program to generate the linear pro- 
grams automatically, and used CPLEX to solve them. 
While it is difficult to “prove” programs correct, our 
computations did converge to the correct 12/11 approx- 
imation ratio for the 34erminal case. 

We give our results below in tabular form. We de- 
rived improved bounds for 49 terminals. Note that (un- 
der the assumption that the programs were correct) these 
are provable upper bounds. In fact, since the programs 
output a particular distribution over discrete cuts, their 
performance ratio could be proven analytically via a te- 
dious case analysis (which we have not performed). 

k Grid LP Gap 312 - 1/k corner cut probability 
3 90 1.0941 1.16666 2849 
4 36 1.1539 1.25 .2891 
5 18 1.2161 1.3 .3144 
6 12 1.2714 1.33333 .3760 
7 9 1.320 1.357 .3973 
8 6 1.3322 1.375 .4146 

Our experiments also revealed one interesting fact: 
in all cases, the optimum cut distribution made use of 
“comer cuts.” That is, the output distribution had the fol- 
lowing form: with some probability, place each slice at 
a distance chosen uniformly between 0 and l/3 from its 
terminal; otherwise, use a (joint) distribution that places 
every slice at distance greater than l/3 from its temkud. 

Adding constraints that forced the corner cuts to op- 
erate over a range other than 113 of the way from the ter- 
minals worsened the computed performance ratio, hint- 
ing that perhaps the optimal algorithm uses corners of 
size exactly l/3. This result is consistent with the op- 
timal 34erminal algorithm, however it could be a mis- 
leading artifact of working with a discretized problem. 

4 Upper Bound fork = 3 

Our analytic upper bound of 12111 for k = 3 comes 
from a new cutting scheme that we call the ball/comer 
scheme. Though for simplicity we present a non-spare 
scheme, there is a similar scheme using spares that achieves 
the same bound. 

For k = 3, the simplex A can be viewed as a trian- 
gle in the plane, which simplifies our pictures. However, 
we continue to use the original three-dimensional coor- 
dinate system to locate points in the simplex. Our cut of 
the simplex is determined by some lines and rays drawn 
through the triangle; we refer to them as boundaries. We 
will show that no segment has high density with respect 
to our random choice of boundaries. 

As illustrated in Figure 1, denote the vertices of the 
simplex 1,2,3. Let points a, b, . , f divide the edges in 
thirds, so that a-&f-d-e-e-a is the hexagon in A with 
side length l/3. Note that the hexagon is (a scaled ver- 
sion of) the unit ball for our distance metric. The points 
on the boundary of the hexagon are each at distance l/3 
from the hexagon’s center.’ 

The ball/comer scheme chooses a ball cut with prob- 
ability S/11, otherwise it chooses a comer CM. These 
two types of cuts are defined next. The scheme is illus- 
trated in Figure 1. 

a Choose a point T uniformly at random from ei- 
ther line a-c or line &d. Consider the three lines Azi=,. 
(i = 1,2,3) parallel to the triangle’s sides and passing 
through the point T. Each such line is divided at the 
point r into two rays. Thus we get six rays. Each side of 
the triangle intersects two of these rays. For each side, 
randomly choose of the two rays that hit it. This gives 
three rays; they form the boundary of the 3-way cut. 

Comer Cut: Choose two terminals in {1,2,3), and a 
value p E [2/3,1], uniformly at random. For each of 
the two chosen terminals i, let 1; = Azizp. The two 
lines l; form the boundaries of the 3-way cut. 
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Figure 2: The lower bound for Ic = 3 (here N = 7). The paths from 2 to 3 are on the left. The entire graph is on the 
right. On the border, overlapping paths are drawn side-by-side for clarity, so line width represents edge cost. 

Analysis. We tint state two simple properties of the 
ball cut that we need to analyze the performance of the 
cutting scheme: 

Fact 4.1 Each of the 3 coordinates of the random point 
r is uniformly distributed in [0,2/3]. 

Fact 4.2 Once T is chosen, each one of the six candidate 
rays connecting T to one side of the triangle is chosen 
with probability 1/Z. 

Theorem 4.3 The maximum density of the bail/comer 
scheme is 12/11, so T; 5 12/11. 

Proof: We show that the expected density of any seg- 
ment e is at most lel 12/11. For the ball cuts, we use 
only the two facts claimed above. Since these two facts, 
as well as the caner cut scheme, are symmetric with 
respect to the three coordinates, it suffices to prove the 
claim only for a 1,2-aligned segment e. We will con- 
sider several cases, depending on where e is located. 

First, assume e is located entirely in the hex. Such a 
segment cannot be cut by a corner cut, so we need only 
consider the density when a ball cut is made and mul- 
tiply by the probability of choosing a ball cut, namely 
S/11. Assume a ball cut is made. Then e can only he 
cut by rays of in Azizri for i = 1,2. By Fact 4.1, T< 
is uniformly distributed in [0,2/3]. Hence, the proba- 
bility that AzizTi goes through e is lej/(2/3) since e is 
1, Z-aligned. If A,,,vj touches e, it is at a single point. 
By Fact 4.2, the my of Azizri containing this point is 
picked for the cut with probability l/2. Thus the ex- 

pected number of times e is cut is fi ‘2’ 1%. $ = g/e/. 
Exactly the same argument applies if the edge is in 

the corner closest to terminal 3. The ball cut contributes 
the same 12/l 1 density, while the corner cut contributes 
nothing (note that a 1, Z-aligned edge is parallel to the 
line Azszri, so cannot be cut by it). 

Second, suppose segment e is in the corner closest 
to terminal 1 (a symmetric argument applies if e is in 
the corner closest to terminal 2). In tbis case, if a ball 
cut is made, the above analysis applies except that only 
the line A,,=,, can cute (the line A,,=,, never enters 

the corner), so the density contribution of the ball cut is 
halved to je.l+, But the edge can also be cut by a comer 
cut. A corner cut is chosen with probability 3/11. When 
it is, two of the three terminals are chosen, so terminal 1 
is chosen with probability Z/3. If terminal I is chosen, 
then, since the cutting line near terminal 1 is of the form 
Az,=l-,,. where p is chosen uniformly in [O, l/3], the 
probability that the line cuts e is lej/(l/3). Thus, the 
expected number of times that the edge e is cut (by a 
ball cut orcornercut) is [elfi + & $ $ = IeIe. 

Finally, if e spans several regions (e.g. it lies in a 
comer and in the hex), e can he partitioned into sub- 
segments each contained entirely in one region, and the 
previous analysis applied to the sub-segments. 0 

5 Lower Bound for k = 3 

Theorem 5.1 For k = 3, the minimum maximum den- 
sity r.. 2 12111. Hence, the integrality gapfor the gee- 
metric relaxation is 12/11. 

Note that this theorem applies to all cutting schemes, not 
just spares. 
Proof: Fix N to be any positive integer. We construct 
an embedded weighted graph GJV with no 3-way cut of 
cost less than 12N - 3, but with an embedding of cost 
11N + 3. This implies that no cutting scheme has maxi- 
mumdensitylesstban(12N-3)/(11N+3),becauseby 
Lemma 2.1 such a cutting scheme applied to G,v would 
yield a 3.way cut with expected cost less than 12N - 3, 
a contradiction. Since N is arbitrary, the result follows. 
Our constntction (for N = 7) is shown in Figure 4. 

For any pair of distinct terminals i>j and number 
d E [O, I], define embedded path p(i, j, d) as follows. 
Let !? be the terminal in { 1,2,3} - {i,j}; let a be the 
point on segment it! at distance d from i; let b be the 
point on segment jt! at distance d from j. Then p(i, j, d) 
is the union of the three segments ia, ab, and bj. 

We form the graph from 9N paths p(i,j, d) for 0 5 
d 5 Z/3; where d is an integer multiple of 1/(3N). 
Although we describe the graph as a set of paths, tech- 
nically it is a planar graph consisting of nodes and edges 
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as follows: for every point in A whose coordinates are 
integer multiples of 1/(3N), there is a node in the graph 
embedded at that point; for every pair of nodes embed- 
ded 1/(3N) units apart, G has an edge with cost equal 
to the number of paths that pass through both nodes. 

With this understanding, we now specify the graph. 
For each of the 3 distinct pair of terminals i, j, there 
are 3N paths. Of these paths, N run directly between 
the terminals; that is, there arc N copies of p(i, j, 0). 
The remaining 2N paths are the paths p(i,j,m/(3N)) 
where m = 1,2, ,2N. 

Tbe total cost of the embedding is the total length 
of the paths. Since a path p(i,j, m/(3N)) has length 
1 + m/(3N), a direct calculation shows that the total 
length of the paths is llN/3 + 1. 

Next we lower bound the cost of any 3-way cut. 
Since the graph is planar, any minima1 3.way cut car- 
responds either to a disconnected cut (meaning that the 
cut is the union of two disjoint Z-way cuts, each separat- 
ing some terminal from both other terminals), like our 
upper bound’s corner cut, or a connected cut (meaning 
that the cut edges give, in the planar dual. three paths 
connected at some central node and going to the three 
sides of the triangle), like our upper bound’s ball cut. 

Any 3-way cut must cut all of the 9N paths at least 
once. To finish the proof, we will argue that for either 
type of 3-way cut (connected or not), at least 3N - 3 
paths are. cut twice, so that the edges cut by the 3.way 
cut cost at least 12N - 3. T%is is easy to verify for a 
disconnected cut: a disconnected cut is the union of two 
2-way cuts, so the 3N paths running between the two 
terminals that are cut off must be cut twice. 

Now consider any connected cut. In the planar dual 
of G,v. the connected cut corresponds to a central node 
and three paths from the node to each side of the trian- 
gle. Let z.t = (I~, z2, 53) be any point inside the face of 
G,v corresponding to the central node. Consider a path 
p(i,j, d) such that d _> Q, where ! # i,j. That is, X 
is inside the cycle formed by the union of p(i,j, d) and 
p(i, j, 0). Then the path p(i, j, d) is cut twice by the con- 
nected cut. For fixed i and j, the number of such paths 
(with d 2 50 is at least (2/3 - zl)N/3 - 1. Thus, the 
total number of such paths is at least (2/3 - x1 + 2/3 - 
22 + 213 - 23)3N - 3 = 3N - 3. 0 

6 Improvement for general k 

Theorem 6.1 For all k, 7; 5 1.3438. Moreover; there 
is a k-way cut approximation algorithm with an approx- 
imation guarantee of 1.3438. 

Our bound improves on the Calinescu et. al. bound of 
1.5 - 2/k for all k 2 14. For 3 < k < 14, we can 

also obtain improvements by taking advantage of k be- 
ing small (see Section 6.1). 

As discussed in Section 2.3, the essential observa- 
tion in this analysis is that many slices can capture an 
edge before it has a chance to be cut. 

We will use a (spare) cutting scheme called ICUT: 
we choose k slicing thresholds pi, and apply the slices 
AzizPi to a random permutation 0 of the terminals. 

To bound the cutting density of our scheme, we will 
bound the density of every segment. As justified in Sec- 
tion 2.2, we consider a segment of length E > 0, and let 
e approach zero. As in the ball/corner scheme, by sym- 
metry we can assume without loss of generality that the 
segment is 1,2-aligned. 

Define dk (x1,. ,511) to be the density which which 
ICUT cuts a 1,2-aligned segment of infinitesimal length 
located at XI, ~2,. , zk. We will show: 

Theorem 6.2 

The final cutting scheme chooses to ICUT with proba- 
bility a = 0.66719 and otherwise chooses a comer cut. 
The corner cut is chosen by the natural generalization of 
the scheme for k = 3: choose a value p E [6/11,1]. 
The k-cut consists of the hyperplanes 1; = AzizP, for 
each i. Note that the last comer cut need not technically 
be made but it simplifies the analysis. 

This combined scheme gives a maximum density 
of max{(2.012096)a, (11/12)a + (11/5)(1 - a)} 5 
1.3438, proving Theorem 6.1. It remains to prove Tbe- 
orem 6.2. 

The cumulative probability distribution function for 
any pi is is F(t) = min{(ll/s)z, 1). The correspond- 
ing probability density function is 

if t E [0,6/11] 
otherwise. 

Consider a 1,2-aligned segment of length f with one 
endpoint fixed at x1 ,Q, , zk. As L goes to zero, the 
density of this segment goes to 

+F’(zz) n [I -I+;)] (1) 
i:O(i,<.X(*, 

where the sum is over all k! orderings of the terminals. 
This formula is true for any F and accounts for the prob- 
ability of the 1,2-aligned edge being captured by the ter- 
minals that go before 1 or 2. This savings is the key to 
improving on the factor of 312 for large k. 
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Note that d&l,. ,zi,O,. ,O) = di(sl,. ,zi) 
(provided i 2 2). because zj = 0 implies terminal j 
cannot save the edge. Note also that dk is symmetric 
with respect to the variables zi for i > 2. Define 

In these definitions, (zI,Q,. . , zt) is required to lie in 
the k-simplex. 

I& is the maximum density of any 1,2-aligned in- 
finitesimal segment with an endpoint whose first two co- 
ordinates are zl, $2. Note that the maximum is well- 
defined and achieved by some 23, , zx because the 
simplex is closed under limit. 

To understand ICUT, our first goal is to characterize 
Dx. We consider Ck as it is one candidate for Dk. 

Proof: dk(z,,..., ~b)=d~+l(~l,...,~~rO), q 

Thus the Dk are a nondecreasing sequence bounded 
from above (by 2). This implies that D, is well-defined. 
We will see later that C, is also well-defined. 

Next we show that for fixed 51 and 22, the worst 
case occurs at either the “central point” zl, 22, c, c, , c 
orthe “three-tenninal”point Z~,ZZ, 1-z,-SZ,O, ,O. 
(Analogous results hold for any convex or concave. F.) 

Lemma 6.4 

Proof: Fixzl andzz. L&c= (l- z1 - z~)/(k-2). 
Claim 1: Among all ~3, ,511 such that 0 < zt 5 

G/llforaN i > 2 (andsl ,x2,. ,zk is in the simplex), 
the unique maximizer of da (x1, 52, ~3, ,z1;) satisfies 
53 = zq = ” = 2h. Suppose for contradiction that 
some other such z~,zq, , zk maximizes dk. Then 
zi < zj for some i, j > 2. Considered just as a function 
of zi and zj (holding the other coordinates fixed) 

d&h,...,4 = p + q[l - F(G)] + r[l - F(zj)] 

+Q - Fh)l[l - Fbj)l (2) 

where p, 9. T and s are nonnegative and independent of 
xi and zj. Furthermore q = T because dk is symmetric 
in xi and zj. Consider increasing zi and decreasing zj 

at equal rates. This maintains 0 5 zi,zj 5 6/11 but 
increases da at a rate proportional to 

q[F’(zj) -F’(G)] 

+ 8(F’(Zj)[l - F(s;)] - F’(z;)[l - F(Zj)]). 

This is positive because F’(t) = II/6 for z 5 6/11 
and F(zj) > F(z~) (~~a11 that Z; < Zj 5 6/11). This 
contradicts the choice of 23,. ,zk. 

Claim 2: Among all ~3,. , zk such that z; 16111 
for home i > 2 (and ~1,. , ZL is in the simplex), the 
uniquemarimizerofd~(s,, IZ,Z~, , xk) satisjiessi = 
1 - z, - z2 and zj = 0 forj # i. Suppose for contra- 
diction that some other such 13, ~4,. ,ZL maximizes 
dr. Fix some j > 2 such that 0 < zj < 6/11 5 
5;. Since F(s;) = 1, the expression (2) reduces to 
p + ~(1 - F(zj)). If we increase z; and decrease zj at 
the same rate, the rate of increase in dk is pF’(zj) > 0, 
contradicting the choice of 23, , a. 

The two claims together prove the lemma. 0 

Pmofic, (I,, Q) = &(z1,zz,c,...,c) 

= da+l(z,,zz,c ,..., c,O) 

I ck+l(~l,m). 

Here c = (1 - zI - zz)/(k - 2). The last inequality 
follows from Lemma 6.4 (using c 5 l/2 < 6/11). q 

An immediate corollary is that C, (51 , 52) is well- 
defined and Ck (ZI , 22) 5 C, (XI , 22) for all k. Using 
this and Lemma 6.4, to bound D, it suffices to bound 
CS and C,. We begin with C,. 

Lemma 6.6 

C&l,~Z) I 
2.012096 ifz~,zs 5 6/11 
11112 otherwise. 

Proof: Fix $1 and z2. Our first goal is to derive a 
closed-form expression for Ck (x1, 22) for any k. Fix k 
for now and let xi = c = (1 - ~1 - sz)/(k - 2) for 
i > 2. 

For j = 1,2, let Sj denote the probability that the 
segment at (zl, x2,. 511) is not captured by a terminal 
other than j before the jth cut is made: 
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We will derive a closed-form expression for S1 (and C’(ao) = 0. By substitution, C’(.294) 2 0.00045 > 0 
by symmetry for Sz). Recall that zi = c for i > 2. We and C’(.295) 5 -0.00009 < 0, so a,, E (.294, ,295). 
thus rewrite Hence 

&$g & (1 - F(c))‘-‘[l -F(m)] 
.?=o 

+ (1 - &) (1 - WY. 

Here we condition on 4, the numberofj such that o(j) < 
r(1). Note that q is uniform in [0, k - I] while & is 
the probability that o(2) c o(l), given Q. 

A change of variables and rewriting give 

max 
oE[O,LI/G] 

C(a) 5 C(.295)-O.OOlC’(.295) 5 2.012096 

To show C(a) is strictly concave, we show that C”(a) is 
strictly negative. Now, C’(a) = $ 7e-‘a*-~~a-4e-‘a+ 
11 6e-DC.3+22--22e-” and CS,@) - 
Fz 

& (,e-~a3 + 

3e-“a* -56a - 30e-‘a + 6e-“a4 + 66 - 66~“). 
To show that C”(a) is negative, it suffices to prove 

that 

s, = 
( 

1 + 1 ; y 
> 

g (1 - y”q 

p=o 
*-’ q(l -F(c))’ 

-F(4 c ,I$ -2k 
q=o 

D(a) = -7e-“a3 - 3e-“az+36a + 30e-‘a 

-6e-“a4-66+66e-’ 

Now we let k --f co. The two sums above have 
standard closed forms that tend respectively to 

is negative. By substitution, D(0) = 0 and 0(11/6) = 
0, so it suffices to show that D’ has only one zero al, 
D’(a) < 0 for a < al and D’(a) > 0 for a > a~. Here 

D’(a) = -17e-“a3 - Me-“a’ - 36e-‘a + 36 

-36e-“+6e-“a4 

[l - e-‘]a-’ and [l - (1 + +?]a-‘, 

where a G limk,, kF(c) = (l-z1-z#(0). Thus, 

s1 + [l - e-ala-1 - F&)[l - (1 + a)eP] a-2. 

and D”(a) = e-‘az(-6a* + 41a - 33). For a E 

(0,11/6], D” has only one zero a* = q RZ 0.93 
andD”(a)<Ofora<azandD”(a)>Ofora>az. 
That is, D’ is first decreasing and then increasing. Since 
D’(0) = 0 and D/(11/6) 2 4.108 > 0 it follows that 
D’ has only one zero al for a E (0, 11/6]. 

Of course Sz is the above with z1 replacing z2. This 
gives us our closed-form expression for C,(zl, x2): 

C,(Sl,Z2) = [F’(Q) + F’(Q)] x Jzc 

Case 2: 5, or zz > 6/11. Assume x1 > 6/11 (the 
case 52 2 6/11 is symmetric). In this case, F’(sl) = 0 
and F(sl) = 1, so we get 

- [F’(z,)F(z~ + P(z~F(z~] x 
1 _a(1 + a)e? 

a2 
(3) 

where a = (1 - x1 - s#‘(O). 
The above equality holds for any F. Using this closed 

form and our particular choice of F, we. now show the 
two desired bounds on C,. 

c&q z*) = ‘1 l -e-o 
11 1 - (1+ a)P --- 

6 a 6 a2 

As before, let C(a) = C,(s, ,Q). We will prove that 
C(a) < U/12 for a E [0,11/6]. First, lim,,o C(a) = 
11/12, so C(a) 5 11/K’ follows if we can show that 
C’(a) < 0 for a E (0,11/6]. We have 

Case 1: z1,z2 5 6/11. In this case a = 11/6(1- 
21 - x2), F’(q) = F’(Q) = 11/6, and F(zl) + 
F(Q) = 11/6(21 + 52) = 11/6 - a. So (3) gives 

C&,,m) = 11/3- 

-~(I-$y-(l+y” 

where a = 11/6(1 - z1 - 52) so a E [0,11/6]. Let 
C(a) = C,(zl, 52). In the rest of this case (Case I), 
we will prove that C(a) 5 2.012096 for a E (0,11/6). 
The cases a = 0 and a = 1116 follow by the conti- 
nuity of C. The claim is “obvious” from a plot but the 
somewhat technicaf proof appears below. 

C’(a) = -$(-a -e-a + 2 - 2P). 

Define E(a) = -a - e-“a + 2 - 2 emu. Since $ > 0 
for a > 0, C(a) 5 0 if and only if E(a) 5 0. Since 
E(0) = 0, we can infer E(a) 5 0 if E’(a) < 0 for all 
a E (0,11/6]. WehaveE’(a) = -l+e-‘=(a+l). Note 
that E’(0) = 0, so E’(a) 5 0 follows if E”(a) 5 0 for 
a E (0,11/6]. We have E”(a) = +-“a, so E”(a) 5 
0. We conclude that C,(sl, Q) 5 11/6 if %I > 6/11. 

q 

Lemmas 6.4 through 6.6 prove that, for z such that 
z; < 6/11 for all i > 2, 

d&l,...,Zk) 5 cc&l,z2) 
We show that C(a) is strictly concavefora E (0,11/6). 

It therefore has a unique maximum at some a~, where 
2.012096 ifz,,zz 5 6/11 

5 11112 otherwise. 
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The remaining case is when zi 2 6111 for some i > 2. 
In this case by Lemma 6.4, 

dm(s1,. .. ,zd 5 C3(21,4 = d3hr% 1 - 51 - $2) 

and q + z2 5 5/U. Thus, to finish the proof of the 
theorem, it suffices to show the following lemma. 

Proof: Let x3 = 1 - zI - 22 2 6/11. 
Then F(q) = 1 while F(s,) = 11/6st, F(Q) = 

11/6x2, and F’(Q) = F’(Q) = 11/6. 
Byinspectionof(l),C3(q,z2) = I&(zI,z~,z~) = 

(l/6) (11/6) (6 - U/6 (51 + 12)) 5 11/6. q 

This proves Theorem 6.2 

6.1 Improvements for small values of k 

For particular values of k it is possible to refine the anal- 
ysis in the proof of Theorem 6.1 to get improved bounds. 
In this case it is useful to modify the algorithm so that it 
only uses k - 1 cuts instead of k. In particular, we do 
not use the cut for the terminal j with u(j) = k. The 
analysis for this case goes similarly, with our definitions 
appropriately modified to reflect that we are using k - 1 
instead of k cuts. 

Then, instead of passing to the limit, Ck (zt ,x2) can 
be evaluated directly. Following this approach we ob- 
tained the following performance guarantees for partic- 
ular k: 

k corner p ratio 
3 0.641 0.675 1.131 
4 0.607 0.663 1.189 
5 0.588 0.659 1.223 
6 0.576 0.659 1.244 
7 0.565 0.657 1.258 
8 0.557 0.656 1.269 
9 0.557 0.659 1.277 

10 0.557 0.661 1.284 
12 0.554 0.661 1.293 
20 0.554 0.666 1.314 
35 0.550 0.666 1.327 

Here, ‘%omer” is the placement of the corner (anal- 
ogous to 6/11), p is the probability of choosing ICUT, 
and “ratio” is an upper bound on the resulting ratio. The 
corner sizes and p’s are approximate and only close to 
optimal and the ratios were evaluated numerically with- 
out formal verification. 
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