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Abstract 

It is well known that every 2-edge-connected graph can be oriented so that the resulting digraph is strongly connected. 
Here we study the problem of orienting a connected graph with cut edges in order to maximize the number of ordered 
vertex pairs (x, y) such that there is a directed path from x to y. After transforming this problem, we prove a key theorem 
about the transformed problem that allows us to obtain a quadratic algorithm for the original orientation problem. We also 
consider how to orient graphs to minimize the number of ordered vertex pairs joined by a directed path. After showing 
this problem is equivalent to the comparability graph completion problem, we show both problems are NP-hard, and even 
NP-hard to approximate to within a factor of 1 + E, for some E > 0. @ 1997 Published by Elsevier Science B.V. 
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1. Introduction 

Our terminology and notation is standard except as 
indicated. We mention only that if X is a subset of the 

vertices in a graph, we use (X) to denote the subgraph 
induced by X. Good references for any other undefined 
terms are [ 1,2]. 

Let G be any connected graph. Given an orientation 
G of G, we will use R(G) to denote the number of 
ordered vertex pairs (x, y ) such that there is a directed 
path from x to y in G. We call R(G) the reachability 

of G. 
Robbins [ 121 showed that G can be oriented so that 

G is strongly connected (i.e., R(G) = (VI ( IV1 - 1) ) 
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if and only if G is 2-edge-connected. In the following 
section (Section 2), we study the problem of how to 
orient an arbitrary graph G to obtain a digraph G with 
R(G) as large as possible. We first transform the prob- 
lem into an equivalent orientation problem on vertex- 
weighted trees. Although this transformed version is 
NP-hard, we prove a key theorem (Theorem 2) which 
allows us to get a quadratic algorithm for the original 
problem, as well as a fully polynomial approximation 
scheme for the transformed problem. 

In Section 3, we consider the analogous problem 
of how to orient G so as to minimize R(G) for the 
resulting digraph G. We show this problem is equiv- 
alent to comparability graph completion (adding the 
fewest edges so the resulting graph can be transitively 
oriented), and then show that both problems are NP- 
hard, and even NP-hard to approximate within a fac- 
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tor of 1 + E, for some E > 0. Related hardness results 
appear in [6,10]. 

2. Orienting graphs to maximize reachability 

Suppose we are given a connected graph G on n 

vertices with cut edges. Our goal is to orient G to 
obtain a digraph G with R(G) as large as possible. 

It will be useful to first transform this basic problem. 
Let Cl,C2,. . . , cb denote the components left when 
the cut edges of G are removed from G. By Robbins’ 
Theorem [ 121 each Ci can be oriented into a strongly 
connected digraph. Let us contract each non-trivial 
Ci into a single vertex xi, giving xi weight wt(xi) = 
) V( Ci) 1. The resulting contracted graph is, of course, 
a b-vertex tree T = T(G) with integer weights on the 
vertices. Our original problem is now easily seen to 
be equivalent to the following problem: How should 
we orient T to maximize c wf(Xi) . wt(xj), the sum 
being taken over all vertex pairs (xi, xi> in T such 
that there is a directed path from xi to xj in T? Note 
that the input size of the transformed problem may be 
exponentially smaller than the input size of the original 
problem (roughly, 6( 1 + log n) versus n) . 

We begin by showing that this transformed prob- 
lem is NP-hard. In particular, consider the following 
decision problem: 

Weighted Tree Orientation (WTO). 
Instance: Tree T, weight function wt : V(T) + Zf, 

integer B > 0. 

Question: Is there an orientation T such that ,u(T) k 
C wt( u) . wt( w) 2 B, the sum taken over all pairs 
(u, w) with a directed path from u to w in T? 

Theorem 1. WTO is W-complete. 

Proof. WTO is obviously in NP, and so it suffices 
to show it is NP-hard. For this we reduce PARTI- 
TION [4, p. 2331 to WTO. Given positive integers 
al,a2,..., a,,, with even sum S, consider the weighted 
tree T in Fig. 1 and set B = 5( S/2)2. Given any I c 
{1,2,. . . , m}, consider the orientation T obtained by 
orienting toward (respectively, away from) the vertex 
with weight S each edge whose other end vertex has 
weight ai for i E I (respectively, i E { 1,2, . . . , m} - 
I = 1). We then find 

s 

A\ . . . 
al a2 an1 

Fig. 1. Tree T(al,. . . ,a,,,). 

p(T) =S(Cai+Cai) +Cai.Cai 
iEI iEi iEI id 

with equality precisely if CiEI ai = CiEIai = 
s/2. cl 

We now wish to develop a key result which will 
allow us to obtain a quadratic algorithm for the origi- 
nal orientation problem, as well as a fully polynomial 
approximation scheme for WTO. First, however, we 
need some terminology and notation. Let T be any tree 
with positive integer vertex weights. An optimal ori- 

entation T is one which maximizes ,u( T) . Given an 
orientation T and a vertex w E V(T), define 

Inr( w) G {x E V(T) 1 there exists a directed 

path from x to w in T}, 

Outr( w) A {x E V(T) 1 there exists a directed 

path from w to x in T}. 

In particular, w E Inr( w) II Outr( w) . Define 

Ink(w) hint - {w} and 

Out;(w) A Outr(w) - {w}. 

We will usually drop the subscript T if it is clear from 
the context. Finally, given any subgraph with vertex 
set X C V(T), let 1 IX] I A xxEX wt(x> be called the 
total weight of that subgraph. A centroid in a vertex 
weighted tree is any vertex c whose removal minimizes 
the maximum total weight of any component in T-c. 

Our goal now is to prove the following. 

Theorem 2. Let c be a centroid of T. In every optimal 
orientation T, we have Inr(c> U Outr(c) = V(T). 
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Fig. 2. Double reversal on P. 
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Before proving this, we require the following result. 

Lemma. Let T be any optimal orientation of T, and 
let P be any undirected path in T. Then there are no 
two vertices x, y on P such that the edges of P inci- 
dent to x (respectively, y) are both directed toward x 
(respectively, away from y) in T. 

Briefly, there are no “double reversals” on any path 
in T (see Fig. 2). 

Proof. Otherwise, let x, y be a closest such pair on 
P, so the edges of P between x and y form a directed 
path from y to x. Let e, denote the edge at x on the 
path from y to x. Let X = {w E V(T) 1 there is an 
undirected path in T between w and x which does not 
contain e,} and let X’ = X rl In(x) . 

Let z denote the neighbor of y on P which does not 
occur on the directed path from y to x (see Fig. 2). 
Thinking of T as rooted at z, consider the subtree Ty 
rooted at y. Note that IIIn’(y) ]I 3 IlOut’( y) rl TYll 
(else we could reverse the orientations of all edges 
in TY to obtain an orientation better than T). Reverse 
all edges in (X’), and consider the gain and loss in 
p(T) in doing so, where the loss in p(T) is the sum 
of the terms in p(T) which no longer exist under 
the new orientation, and the gain in p(T) is defined 
analogously. Since Out’(x) c Out’(y) n ‘I;, we find 

Loss in p(T) < IlX’ll . IlOut’(x)ll 

< IIX’II . IlOut’ n Tyll 
6 llx’ll . IIIn’W II 
< Gain in p(T) 

and thus we would have a better than optimal orien- 
tation. This proves the lemma. cl 

Proof of Theorem 2. Throughout, think of T 
as rooted at centroid c. If the theorem fails for 
some optimal orientation T, there must be a ver- 

tex x $! In(c) U Out(c) adjacent to a vertex u E 
In’(c) U Out’(c). (We will call (u, x) a dangling 
edge at u.) We now consider two cases, assuming 
(lOut( c) I/ 2 IIIn( c) I( (else reverse the orientation of 
all edges of T) . 

Case 1: There is a dangling edge (u, x) at u E 
In’(c). 

Note that since c E In(c) - (T, nIn(c)), we have 

IlOWd II 2 IIInW II > IIT, n In(c) Il. 
Reverse (u,x) and the edges in T,. We find 

Gain in p(T) 2 lJOut(c)I) . IlOut(x)II 

> IK n In(c) ll - Ilout ll 
2 Loss in p(T) 

contradicting the optimality of T. 
Case 2: There are no dangling edges at any vertex 

of In’(c). 
Let (x, U) be a dangling edge at u E Out’(c). If 

outdeg( c) 2 2, then T contains a path which violates 
the Lemma (with u, c playing the roles of x, y in the 
Lemma). Hence we may assume outdeg( c) = 1. But 
then, since c is a centroid and there are no dangling 
edges off vertices in In’(c), and since {x} u (T, n 
Out(c)) C V(T) -In(c), we find 

/In(c) II Z I(V(T) - In(c) II > IIT, n Out(c) I). 

Reverse (x, u) and the edges in T,. We find 

Gain in AT) 2 IIIn(c) II . /In(x) )I 

> IIC n Out(c) II . IlWx) II 
> Loss in p(T) , 

contradicting the optimality of T. 0 

It is well known that the centroid of a vertex- 
weighted tree can be found in linear time, and that 
the centroid consists of either a single vertex or two 
adjacent vertices [9]. In the latter case, Theorem 2 
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Fig. 3 

implies that the optimal orientation may be repre- 
sented schematically as in Fig. 3, where ci and c2 
denote the adjacent centroids. 

In the former case, we have essentially an instance 
of PARTITION. Let T be rooted at c, and let ~1, . . . , Uk 
denote the neighbors of c. Consider an optimal orien- 
tation of T of T. By Theorem 2, the subtree T,, must 
be oriented entirely toward (respectively, away from) 
c if and only if the edge between Ui and c is oriented 
toward (respectively, away from) c. Thus, 

14’) = II4 . IIT - cl1 + (c llr,ill) (c ilr,ill) 
iEI iET 

k 

+ C/-q), 

i=l 

where I = {i I Tui is oriented toward c in T} and 
T: denotes T,, oriented entirely towards (respectively, 

away from) c if i E I (respectively, i E 7). To 
maximize p(T), we need to find a partition I U 7 

of {1,2,..., k) such that Cic, llTu,ll and Cicl llT,ill 
are as equal as possible. There is, of course, a well- 
known dynamic programming algorithm to find such 
a partition [4, Section 4.21. Since ‘& llTu, 11 < n, the 
running time of this dynamic programming algorithm 
is 0( kn) = 0( n2). Since all other tasks in the orig- 
inal orientation algorithm (e.g., finding the 2-edge- 
connected components in G, giving these components 
strongly-connected orientations, etc.) can easily be 
done in 0( ]E]) time using standard depth-first search 
techniques, we see that the original orientation prob- 
lem can be solved in 0( n2) time; i.e., quadratic in the 
original input size n. On the other hand, there is also a 
well-known fully polynomial approximation scheme 
for the above partition problem [7], which in turn 
provides a fully polynomial approximation scheme for 
the NP-complete problem WTO. 

3. Orienting graphs to minimize reachability 

Let G be a connected graph, and let r(G) = 
min R(G), the minimum being taken over all orienta- 
tions of G. We call an orientation G a minimal orien- 
tation if R(G) = r(G). We begin with the following 
result. 

Theorem 3. Every minimal orientation of G is 
acyclic. 

Proof. Suppose to the contrary there exists a mini- 
mal orientation G which is not acyclic. Since G is 
not acyclic, at least one of the strongly-connected 
components of G, say C, is not a single vertex. Let 
E’ denote a set of edges in C whose reversal ren- 
ders (V(C)) not strongly connected, and let G’ de- 
note G with the edges in E’ reversed. It is easy to 
see every ordered pair of vertices joined by a di- 
rected path in G’ is joined by a directed path in G, 
while clearly there is a pair of vertices in V(C) which 
are joined by a directed path in G but not in G’. 
Thus, R( G’) < R(G), which violates the minimality 
ofG. 0 

Obviously r(G) > [E(G) 1, and it is known that 
r(G) = I E( G) I if and only if G is a comparability 
graph [ 1,5], or, equivalently, if G is transitively ori- 
entable [ 31. It is known that comparability graphs can 
be recognized in polynomial time [ 31. 

Given a connected graph G, let c(G) (respec- 
tively, Z(G) ) denote the minimum number of edges 
which must be deleted from (respectively, added to) 
G to obtain a comparability graph. We now apply 
Theorem 3 to establish a connection between r(G) 
and T(G). 

Theorem 4. r(G) = IE(G)) +Z(G). 

Proof. Suppose we add c(G) edges to G to obtain 
a comparability graph G’, and then orient G’ so that 
R(G’) = IE(G’)I = IE(G)I + C(G). But, of course 
r(G) < R(G’), and so r(G) < ]E(G)] +i?(G). 

On the other hand, consider a minimal orientation 
G of G, so that r(G) = R(G). By Theorem 3, G is 
acyclic. Consider the transitive closure cl(G) of G. 
We then find 
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r(G) = R(G) = R(cl(G)) 

= (E(G) I+ (no. of edges added to G to 

obtain cl(G) ) 

> JE( G) 1 + (min. no. of edges which need to 

be added to G to obtain a transitively 

orientable graph) 

= /E(G)1 +Z(G). 

Thus, r(G) = IE(G)I +i?(G), as asserted. •i 

We now turn to the complexity of computing r(G) . 
Consider the following decision problem. 

Minimum Reachability Orientation (MRO). 
Instance: Graph G, integer k > JE( G) 1. 
Question: Is r(G) < k? 

In a moment we will prove 

Theorem 5. MRO is NP-complete. 

It follows immediately from Theorems 4 and 5 that 
the following problem is also NP-complete. 

Comparability Graph Completion (CGC). 
Instance: Graph G, integer k 3 0. 

Question: Is there a superset E’ of E such that IE’ - 

E( < k and G = (YE’) is a comparability graph 
(i.e., is Z(G) 6 k)? 

(Previously, it was known only that COMPARA- 
BILITY SUBGRAPH (i.e., deciding if c(G) 6 k) 

is NP-complete [ 4, p. 1971. For the optimization ver- 
sions of MRO and CGC, the goal is to compute (or 
approximate) the minimum k such that (G, k) is a 
positive instance of the decision problem.) 

Proof of Theorem 5. Clearly MRO E NP. To show 
MRO is NP-hard, we will reduce NOT-ALL-EQUAL 
3SAT [ 4, p. 2591. 

Let I be an instance of NAE3SAT with m clauses. 
Construct a graph G, as follows. Each variable x will 
be represented by an edge (XT, xF) in GI, and ori- 
enting this edge towards XT (respectively, xF) will 
correspond to setting x to T (respectively, F). Bach 
clause C will be represented by a 9-cycle in G,. The 
three literals in C will be assigned to three equally 

spaced edges ( lT, 1 F) , (2T, 2F), (3T, 3F) on C’s 9- 
cycle, as shown in Fig. 3. If the literal assigned to the 
edge ( lT, 1 F) is X (respectively, 52) , add two 2-paths 
joining 1T to xF and 1 F to XT (respectively, joining 
1T to XT and 1F to xF) to GI. Make analogous con- 
nections for the other two literals of C, as well as for 
the remaining clauses of I, to complete G,. 

Note that however we orient GJ, each of the m 

9-cycles will contain a directed 2-path, and thus 
r(Gl) 3 (E(G,)(+m.Infact,r(GI) =(E(G,)(+m 

if and only if I has a satisfying truth assignment in 
the not-all-equal sense. Indeed, given a satisfying 
truth assignment for I, we can obtain such an orien- 
tation for GI as follows: Orient the edges (XT, xF) to 
correspond to the truth assignment, and orient all the 
6-cycles in GI containing these edges so that none 
contains a directed 2-path. Note that the edges in 
each 9-cycle to which a literal was assigned are now 
oriented to reflect the truth value of that literal under 
the truth assignment. Since each clause contains both 
a true and a false literal, it is trivial to complete the 
orientation of the 9-cycles so each contains exactly 
one directed 2-path passing through a darkened vertex 
on the 9-cycle. Conversely, any orientation of G, with 
only IE( G,) I + m reachable pairs must have exactly 
one directed 2-path per 9-cycle, and so corresponds 
to a satisfying truth assignment. Cl 

We also observe that it remains NP-hard even to 
approximate I(G) to within a factor of 1 +E, for some 
E > 0. Consider the following optimization problem. 

Max Not-All-Equal 3SAT. 
Instance: Boolean formula in 3CNF. 
Question: What is the maximum number of clauses 

that can be satisfied (in a not-all-equal sense) by a 
truth assignment? 

It was established recently [ 8,111 that it is NP-hard 
to approximate MAX NAE3SAT to within a factor 
of 1 .013 (that is, finding an assignment that satisfies, 
in the not-all-equal sense, 1 / 1.013 of the maximum 
possible number of clauses is NP-hard). Using this, 
we can strengthen Theorem 5 as follows: 

Theorem 6. There exists a constant E > 0 such that 
approximating the optimization versions of MRO or 
CGC to within a factor of 1 + E is IW-hard. 
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XT XF YT YF ZT ZF 

Fig. 4. The graph GI. 

Proof (Sketch). Let I be an instance of NAE3SAT 
with m clauses. In the following, “satisfying” a clause 
of I refers to making at least one of its literals true and 
at least one false. Recall that R( Cl) denotes the num- 
ber of ordered pairs of vertices (x, y) with a directed 
path from x to y in an orientation GI of GI. 

Claim 1: Given any assignment satisfying x of the 
clauses of I, there is an orientation GI of GI such that 
R( Cl) = (E( G,) I+ 3m - 2x. 

Claim 1 follows from the proof of Theorem 3.3. 
Claim 2: Given any orientation GZ, there is an as- 

signment satisfyingat least 4( IE(G,)I+~~-R(GI)) 
clauses of I. 

Claim 2 holds because if any clause-subgraph (see 
Fig. 4) in G, has more than one directed 2-path, then 
it has at least three. Thus, any orientation can be con- 
verted into an equally good orientation corresponding 
to a truth assignment (where the only directed 2-paths 
are 2-paths through the darkened vertices on the 9- 
cycles). By simple algebra, the claimed bound holds 
for this assignment. 

Suppose one could find an orientation GI of Gr with 
R(G,) < (l+e)r(G,).ByClaim2,thiswouldyield 
an assignment satisfying at least 

$lIE(G,)I +3m- (1 +~)dG)l (1) 

clauses of I. Let max (I) denote the maximum num- 
ber of clauses in I which can be simultaneously sat- 
isfied in a not-all-equal sense. By Claim 1, r(G,) < 
IE(GI)I + 3m - 2max(Z). Thus expression (1) is 

atleast ~[IE(G,)I+3m-(l+c)(IE(G,)I+3m- 
2max(Z))], which equals 

max(Z) - $e[IE(G,)J + 3m - 2max(Z)]. (2) 

Using IE(G,) I < 24m and m < 2 max(Z) (assuming 
without loss of generality that every clause has at least 
two literals, a random assignment satisfies at least half 
the clauses on average), expression (2) is at least 
max(Z) - $e[48max(Z) +6max(Z) -2max(Z)] = 
( 1 - 268) max( I). From this the claimed hardness of 
approximating MRO follows, with E > 0.00049. 

A similar argument, using Theorem 4 and omitting 
the JE( G,) 1 term in expression ( 1) (and subsequent 
expressions), establishes the claimed hardness of ap- 
proximating CCC, with E > 0.0064. q 

4. Concluding remarks 

It would be interesting to determine the algorithmic 
complexity of completing the orientation of a partially 
oriented graph to maximize reachability. Thus far we 
have made little progress on this problem. The analo- 
gous completion problem to minimize reachability is, 
of course, NP-hard. 

On the other hand, it is very easy to characterize 
partial orientations which can be completed into strong 
orientations. An edge-cut (X, x) in a partially oriented 
graph is called one-way if all the edges in the cut are 



S.L. Hakimi et al. /Information Processing Lerters 63 (1997) 229-235 235 

already oriented, and all are oriented from X to 5? or 
all from x to X. We have 

Theorem 7. A partial orientation of a graph G can 
be completed into a strong orientation if and only if 

G is 2-edge-connected and there are no one-way edge 

cuts in the partial orientation. 
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