
SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1281-1292, December 1996

() 1996 Society for Industrial and Applied Mathematics
008

PREFIX CODES: EQUIPROBABLE WORDS, UNEQUAL LETTER
COSTS*

MORDECAI J. GOLIN AND NEAL YOUNG

Abstract. We consider the following variant of Huffman coding in which the costs of the
letters, rather than the probabilities of the words, are nonuniform: "Given an alphabet of r letters of
nonuniform length, find a minimum-average.length prefix-free set of n codewords over the alphabet";
equivalently, "Find an optimal r-ary search tree with n leaves, where each leaf is accessed with
equal probability but the cost to descend from a parent to its ith child depends on i." We show
new structural properties of such codes, leading to an O(n log2 r)-time algorithm for finding them.
This new algorithm is simpler and faster than the best previously known O(nr min{log n, r})-time
algorithm, due to Perl, Garey, and Even [J, Assoc. Comput. Mach,, 22 (1975), pp. 202--214],

Key words, algorithms, Huffman codes, prefix codes, trees

AMS subject classification. 68Q25

1. Introduction. The well-known Huffman coding problem [3] is the following:
given a sequence of access probabilities (pl, p2,..., Pnl, construct a binary prefix code
(wl, w2,..., Wn) minimizing the expected length iPi’ length(wi). A binary prefix
code is a set of binary strings, none of which is a prefix of another.

A natural generalization of the problem is to allow the words of the code to be
strings over an arbitrary alphabet of r _> 2 letters and to allow each letter to have
an arbitrary nonnegative length. The length of a codeword is then the sum of the
lengths of its letters. For instance, the "dots and dashes" of Morse code are a variable-
length alphabet with length corresponding to transmission time, (See Figure 1.) This
generalization of Huffman coding to a variable-length alphabet has been considered
by many authors, including Altenkamp and Mehlhorn [1] and Karp [5]. Apparently,
no polynomial-time algorithm for it is known, nor is it known to be NP-hard.

A prefix code in which the codewords (wl, w2,..., w) are in alphabetical order is
called alphabetic [1], In this case, the underlying tree represents an r-ary search tree.
The length of the ith letter corresponds to the time required to descend from a node
into its ith subtree. This time is often a function of in search-tree algorithms, for
instance, when the subtree to descend into is chosen by sequential search. An optimal
alphabetic code thus corresponds to a minimum-expected-cost search tree.

In this paper, we consider the special case in which the codewords occur with
equal probability, i.e., .each p equals 1In. With this restriction, the alphabetic and
nonalphabetic problems are equivalent. The problem may be viewed as a variant
of Huffman coding in which the lengths of the letters, rather than the codeword
probabilities, are nonuniform. Alternatively, it may viewed as the problem of finding
an optimal r-ary search tree, where the search queries are uniformly distributed but
the time to descend from a parent to its ith child depends on i. For the complexity
results stated in this paper, the algorithms return a tree representing an optimal code.

Received by the editors May 25, 1994; accepted for publication (in revised form) March 1, 1995.
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

(golin@cs.ust.hk). The research of this author was partially supported by HK RGC Competitive
Research grant HKUST 181/93E.

UMIACS, University of Maryland, College Park, MD 20742. Current address: Department of
Computer Science, Dartmouth College, Hanover, NH 0375573510 (neal.young@dartmouth.edu). The
research of this author was partially supported by NSF grants CCR-8906949 and CCR-9111348.

1281

1282 MORDECAI J. GOLIN AND NEAL YOUNG

Depth

1 e f

a b c d

FI(. 1. Two trees for the six symbols a, b, c, d, e, and f, each occurring with probability 1/6.
The tree on the left is the optimal tree that uses the alphabet {0, 1}, with length(O) length(I) 1,
while the tree on the right is for the alphabet {.,_} with length(.) 1 and length(_) 2. The
corresponding sets of codewords are

a=000, b=001, c=011, d=011, e=10, f=11
and

a= b= c d= e= f

In 1989, Kapoor and Reingold [4] described a simple O(n)-time algorithm for the
binary case r 2. In 1975, Perl, Garey, and Even [7] gave an O(rn min{r, log n})-time
algorithm (though due to a typographical error, their abstract incorrectly claims an

O(rn)-time algorithm). In the same year, Cot [2] described an O(r2n)-time algorithm.
In 1971, Varn [8] gave an algorithm without analyzing its complexity. It appears
Varn’s algorithm requires t2(rn) time.

In this paper, we describe an O(n log2 r)-time algorithm based on new insights
into the structure of optimal trees. In 2, we define shallow and proper trees and
prove that some proper shallow tree is optimal. In 3, we develop the algorithm,
which efficiently constructs all proper shallow trees and returns one representing an
optimal prefix code.

2. Shallow trees. Fix an instance of the problem, given by the respective lengths
{cl <_ c2 < <_ cr) of the r letters in the alphabet and the number n of (equiprobable
and prefix-free) codewords required. We assume the standard tree representation of
prefix codes, as described in the following definition.

DEFINITION 2.1. The infinite r-ary tree is the infinite, rooted, r-ary tree. Each
tree edge has a length and a label--an edge going from a node to its i th child has length
ci and is labeled with the th letter in the alphabet.

A node is a node of the infinite r-ary tree. The finite words over the alphabet
of r letters correspond to the nodes. The labels along the path from the root to any
node spell the corresponding word and the length of the path is the length of this
word. A prefix code corresponds to a set of nodes none of which is a descendant of
another. (See Figure 1.)

DEFINITION 2.2. A tree is any subtree T of the infinite r-ary tree containing
the root. In any tree, n of the leaves will be identified as terminals; their correspond-
ing words form a prefix code. The remaining nodes in the tree are referred to as
nonterminals.

PREFIX CODES 1283

Given a node u, the notation childi(u) denotes u’s ith child; depth(u) denotes the
depth (the length of the corresponding codeword); parent(u) denotes the parent.

The cost c(T) of such a tree is the sum of the depths of the terminals--also called
the external weighted path length of the tree.

A proper tree is a tree in which every nonterminal has at least two children.
The goal is to find an optimal tree with n terminals. It is easy to see that some

optimal tree is proper; thus we restrict our attention to proper trees.
Our basic tool for understanding the structure of optimal trees is a swapping

argument. For example, in any proper optimal tree, no nonterminal is deeper than
any terminal. Otherwise, the terminal and the subtree rooted at the nonterminM
could be swapped, decreasing the average depth of the terminals.

We use a swapping argument to prove that an optimal proper tree has the follow-
ing form for some m. The nonterminals are the rn shallowest (i.e., least-depth) nodes
of the infinite tree, while the terminals are the n shallowest available children of these
nodes in the infinite tree. We call such a tree shallow; here is the precise definition.

DEFINITION 2.3. A tree T is shallow provided that
(i) for any nonterminal u E T and any node w (not necessarily in T) that is

not a nonterminal, depth(u) <_ depth(w) and
(ii) for any terminal u T and any node w that is not in T but is a child of a

nonterminal, depth(u)<_ depth(w).
Note that a nonterminal of an (improper) shallow tree might have no children in

the tree. This is why we refer to "terminal" and "nonterminal" nodes in place of the
more common "internal nodes" and "leaves."

As a simple example, consider the basic binary tree; r 2, cl c2 1. A
proper binary tree T will be shallow if and only if there is some depth such that
(a) every node u in the infinite tree with depth(u) < is a nonterminM in T and (b)
all terminals of T are on levels and + 1. Conditions (a) and (b) are necessary and
sufficient conditions for T to have minimum external path length among all binary
trees with the same number of leaves; see, e.g., [6, 5.3.1]. So, a binary tree has
minimum external path length for its number of leaves if and only if it is shallow.
For example, the binary tree on the left-hand side of Figure 1 has minimum external
path length among all trees with six leaves because it fulfills conditions (a) and (b)
with 2. As we will see later, though, for most values of r and c, shallowness
alone does not imply optimality. However, if a shallow tree has the right number of
nonterminals, then it is optimal.

LEMMA 2.4. Let m* be the minimum number of nonterminals in any optimal
tree. Then any shallow tree with m* nonterminals is optimal and proper.

Proof. Fix a shallow tree T with m* nonterminals. We will show the existence of
an optimal tree with the same nonterminals as T. Since T is shallow, by property (ii),
this will imply that T is optimal. By the choice of m*, T is also proper (otherwise
there would be an optimal proper tree with fewer nonterminals).

It remains to show the existence of an optimal tree with the same nonterminMs
as T. Let T* be an optimal (and therefore proper) tree with m* nonterminals. Let
N and N* be the sets of nonterminals of T and T*, respectively. If N N*, we are
done. Otherwise, let u be a minimum-depth node in N- N*, so that u’s parent is in
N*. Let u* be a node in N* -N. Note that, since T is shallow, depth(u*) >_ depth(u)
but that, in T*, u* is a nonterminal (with at least two terminal descendants) while u
is either a terminal or not present.

In T*, swap the subtrees rooted at u and u*. Specifically, make u a nonterminM

1284 MORDECAI J. GOLIN AND NEAL YOUNG

11

I2

FI. 2. The top of a labeled infinite tree with r 3, cl 2, c2 2, and C3 5.

and, for each descendant v* of u*, delete it and add the corresponding descendant v
of u. If v* was a terminal, make v a terminal; otherwise, make v a nonterminal. If u
was a terminal, make u* a terminal; otherwise, delete u*. Call the resulting tree T.

From depth(u*) >_ depth(u), it follows that c(T’) <_ c(T*). Thus T’ is also optimal.
Note that T shares one more nonterminal with T than does T*. Thus repeated
swapping produces an optimal tree with the same nonterminals as T.

Note that m* _> (n- 1)/(r- 1) since each node has degree at most r.
COROLLARY 2.5. Let mmin [(n--1)/(r--1). Let (rmmin,rrnmin_t_l,rrnmin_t_2,

be any sequence of shallow trees such that for each m, Tm has rn nonterminals. Then
one of the Tm is proper and optimal.

The algorithm generates a sequence of shallow trees as above and returns the one
which has minimum cost. The lemma guarantees that this tree will be optimal. The
rest of the paper is devoted to examining the properties of shallow trees which enable
the enumeration of the proper shallow trees in O(n log2 r) time.

PREFIX CODES 1285

2.1. Defining the trees.
Ordering the nodes. Label the nodes of the infinite tree as 1, 2, 3,... in order of

increasing depth. Break ties arbitrarily, except that if two nodes u and w are of equal
depth, both are ith children of their respective parents, and parent(u) < parent(w),
then let u < w (this is needed for Lemma 3.2). For the sake of notation, identify each
node with its label so that 1 is the root, 2 is a minimum-depth child of the root, etc.
Figure 2 illustrates the top section of such a labeling for r 3, Cl 2, c2 2, and
c3 5. These values of r and cj are the ones we use in all later examples.

DEFINITION 2.6. For each m >_ mmin, define T, to be the tree whose nontermi-
nals are {1,..., m} and whose terminals are the minimum n nodes among the children

of {1,...,m} in {m + l,m + 2,...}.
Thus Tm is the "shallowest" tree with m nonterminals with respect to the ordering

of the nodes. Since the ordering of the nodes respects depth, each Tm is shallow.
Figure 3 presents T5, T6, TT, and Ts for n 10 using the labeling of Figure 2.

2.2. Relation of successive trees. Next, we turn our attention to the relation
of Tm+l to T,.

LEMMA 2.7. For m >_ mmin, the new nonterminal (node rn + 1) in Tm+l is the
minimum terminal of Tin.

Proof. The parent of rn + 1 is in {1,..., m}, so m + 1 is the minimum child of
{1,..., m} in {m + 1, m + 2,...}. The result follows from the definition of T,.

LEMMA 2.8. For m >_ mmin, provided the new nonterminal (node rn + 1) in
has at least one child, each terminal of Tn+l is either a child of m + 1 or a terminal

of T..
Proof. Let node m + 1 have d children in T,+I. Let C denote the set of children

of nodes {1,... ,m} in {m + 1, m + 2,...}. The terminals of tree T,+I consist of
the minimum d children of node m / 1 together with the minimum n d nodes in
C {m + 1}. These n d nodes together with node m + 1 (the minimum node in
are the n d + 1 minimum nodes in C. If d >_ 1, then by the definition of T,, each
such node is a terminal in Tm.

The main significance of Lemmas 2.7 and 2.8 is that they will allow an efficient
construction of Tn+l. Moreover, they imply that if T, is not proper, then neither is
any subsequent tree.

LEMMA 2.9. One of the trees {Tmmin,Tmmin+l,...,Tmmax is optimal and proper,
where mmax min{m T,+I is improper}.

Proof. By Lemma 2.8, if T, is improper, then so is T,+l--either node m + 1 has
no children in T,+I or the nonterminal in T, that had less than two children also
has less than two children in T,+I. Hence, for each m > mmax, tree T, is improper.
Thus Corollary 2.5 implies that one of the trees (Trnmi., Trnmin-}-l,. Trnmax is proper
and optimal. [l

For n 10 mmin 10--1-]
-5:-i- 5 and (as shown in Figure 3) Ts is improper.

The lemma then implies that one of T5, T6, or T7 must have minimum external path
length. Calculation shows that T with c(T6) 59 is the optimal one.

3. Computing the trees. The algorithm uses the following two operations to
compute the trees.

To SPROUT & tree is to make its minimum terminal a nonterminal and to add the
minimum child of this nonterminal as a terminal.

To LEVEL a tree is to add c children of the maximum nonterminal to the tree as
terminals and to remove the c largest terminals in the tree. The c children are the

1286 MORDECAI J. GOLIN AND NEAL YOUNG

Depth

32456
1 2 3

u[i] 3 3 1
w[i] 5 5 4

1 2 3
4 3 1
6 6 3

Depth Depth1

69

1 2 3
4 4 1 u[i]
7 7 e

1 2 3
4 4 2
8 7 2

FIG. 3. The trees T5, T6, TT, and Ts for r 3, cl 2, c2 2, C3 5, and n 10. The
node numbering is that of the previous figure. Calculating the external path lengths, we find that
c(T5) 60, c(T6) 59, c(TT) 60, and c(Ts) 62.

minimum c children not yet in the tree, where c is maximum such that all children
added are less than all terminals deleted.

The algorithm computes the initial tree Tmmin and then repeatedly SPROUTS and
LEVELS to obtain successive trees until the tree so obtained is not proper. Lemmas
2.7 and 2.8 imply that, as long as node m + 1 has at least one child in Tm+l (it will if

Tm+l is proper), SPROUTing and LEVELing Tm yields Tm+l. Figure 4 illustrates this
operation.

OBSERVATION 3.1. Let m rnmax. If node m + 1 has at least one child in Tm.+l
then SPROUTing and LEVELing Tm yields tree Tm+. If node m + 1 has no children
in Tm+, then the maximum terminal in Tm is less than the minimum child of node
m + 1 and SPROUTing and LEVELing Tm yields a tree in which nonterminal m + 1
has one child. Hence the algorithm always correctly identifies Ttmax and terminates

PREFIX CODES 1287

Depth

32456
Depth

Depth
T6 LEVEL(SPROUT(T5))

FIG. 4. SPROUTing and LEVELing T5 yields T6.

correctly, having considered all relevant trees.
To SPROUT requires identification and conversion of the minimum terminal of the

current tree, whereas to LEVEL requires identification and replacement of (no more
than r) maximum terminals by children of the new nonterminal. One could identify
the maximum and minimum terminals in O(logn) time by storing all terminals in
two standard priority queues (one to detect the minimum, the other to detect the
maximum). At most r terminals would be replaced in computing each tree and,
because mmax <_ n- 1, only O(n) trees would be computed. This approach yields an
O(rn log n)-time algorithm.

By a more careful use of the structure of the trees, we improve this in two ways.
First, we give an amortized analysis showing that in total, only O(n log r), rather
than O(rn), terminals are replaced. Second, we show how to reduce the number of
nonterminals in each priority queue to at most r. This yields an O(n log2 r)-time
algorithm.

Both improvements follow from the tie-breaking condition on the ordering of the
nodes, which guarantees that T, must have the following structure.

LEMMA 3.2. In any Tin, if u and w are nonterminals with u < w and the ith child
of w is in the tree, then so is the th child of u. If the th child of w is a nonterminal,
then so is the th child of u.

1288 MORDECAI J. GOLIN AND NEAL YOUNG

Proof. The proof is straightforward from the definition of Tm and the condition
on breaking ties in ordering the nodes (in 2.1).

COROLLARY 3.3. Node m has a minimum number of children among all nonter-
minals in Tin.

3.1. Only O(n log r) replacements total. The number of terminals replaced
while obtaining Tm from Tin-1 is at most the number of children of nonterminal m
in T,. Although this might be r for many m, the sum of the numbers of children is
O(nlogr).

LEMMA 3.4. Let dm be the number of children of nonterminal m in tree Tm.
Then r dm is O(n log r).

Proof. By Corollary 3.3, within Tin, node m has the fewest children. The total
number of children of the m nonterminals is m+n- 1. Thus dm is at most the average
(rn + n- 1)/m 1 + (n- 1)(1/m).

mmx

n--1 n 1.The result follows from mmin r--’L--fl and mmax

3.2. Limiting the relevant terminals. To reduce the number of terminals
that must be considered in finding the-minimum and maximum terminals, we partition
the terminals into r groups. The ith group consists of the terminals that are ith
children (i 1,..., r).

LEMMA 3.5. If any Tin, for any i, the set of nonterminals whose ith children
are terminals is of the form {u, u + 1,..., w} for some u and w. The minimum
among terminals that are ith children is child(u) (the ith child ofu). The maximum
among these terminals is child(w).

Proof. This is a straightforward consequence of Lemma 3.2. E]
Figure 3 presents ui and wi for the trees T5, T6, TT, and Ts when n 10.
This lemma implies that the minimum terminal in Tm is the minimum among

{child(u) 1,...,r}. Our algorithm finds the minimum terminal in T by
maintaining these r particular children (rather than all n terminals) in a priority
queue. This reduces the cost of finding the minimum from O(log n) to O(log r). Sim-
ilarly, the algorithm finds the maximum terminal in O(logr) time by maintaining
{child(w) :i 1,..., r} in an additional priority queue.

OBSERVATION 3.6.1 As an aside, one can prove using Lemma 3.5 that, for any
m such that mmin < m < mmax, c(Tm+l)- c(Tm) >_ c(Tm)- c(Tm_l).. That is,
the sequence of tree costs is unimodal. To prove this, consider building Tm+l from
Tin. SPROUTing increases the cost by cl; LEVELing decreases the cost with each swap.
For each swap in building Tm+l from Tin, one can show there was a corresponding
swap in building Tm from Tin-1 and that the decrease in cost (from Tm to Tin+!)
due to the former is bounded by the decrease in cost (from Tin-1 to Tin) due to the
latter. Thus, in practice, the algorithm could be modified to stop and return Tr-I
when c(Tm) >_ c(T,_I).

This observation is due to R. Fleischer.

PREFIX CODES 1289

3.3. The algorithm in detail. The full algorithm has two distinct phases. The
first phase constructs the base tree Tmmin. The second phase starts with Tmmin and,
by SPROUTing and LEVELing, iteratively constructs the sequence of shallow trees

(Tmmin,Tmin-l,Tmmin22,’’", Tmax
and returns one which has smallest external path length. Tmmx is the last proper tree
in the sequence, i.e., Tmmx+1 is improper. Lemma 2.9 guarantees that the algorithm
returns an optimal tree. We now describe how to implement the first part of the
algorithm in O(n log r) time and the second in O(n log2 r) time; the full algorithm
therefore runs in O(n log2 r) time.

The skeleton of the final algorithm is shown in Figure 5. Procedure CREATE-Tmmin
creates tree Tmmi,, the variable C contains the external path length of current tree
Tin, and mDeg contains the number of children of node m in tree Tin. As presented,
the algorithm computes only the cost of an optimal tree. It can easily be modified
to compute the actual tree. Note that to check that the current tree Tm is proper,
by Observation 3.1 and Corollary 3.3, it suffices to check that nonterminal m has at
least two children.

COMPUTE-TREES(<Cl, C2,... Cr>)
I. CREATE-Tmmin
2. WHILE (mDeg :> 2) DO

Compute Tin+ from Tm--
3. SPROUT(T)
4. LEVEL(T)
5. Cmin - min{C, Cmin }
6. RETURN Cmin

FIG. 5. Algorithm to find an optimal variable-length prefix code.

The routines SPROUT and LEVEL are shown in Figure 6.
Recall that the nodes of the infinite tree are labeled in order of increasing depth

with ties broken arbitrarily except for the requirement that if u and v are both of
equal depth and both are ith children of their respective parents, then u < v if and
only if parent(u) < parent(v). Depending upon c, c2,..., cr, there may be many such
labelings. The algorithm we present breaks ties lexicographically--suppose u and v
have the same depth and let u child(u’) and v childj(v’); then u < v if and only
if u’ < v’ (or u v and < j). Figure 2 illustrates this labeling for r 3, cl 2,
c2 2, and c3 5. The sequence of shallow trees is fully determined by this labelling.
Figure 3 illustrates the shallow trees with 10 nonterminals for these r and c values.

The algorithm represents the current tree Tm with the following data structures:
N is the number of terminals.
m is the number of nonterminals. It is also the rank of the maximum nonterminal.
C is the sum of the depths of the terminals.
mDeg is the number of children of nonterminal m.

D[u] is the depth of each nonterminal u.

u[i] is the rank of the minimum nonterminal (if any) whose ith child is a terminal
(<_i <_r).

w[i] is the rank of the maximum nonterminal (if any) whose ith child is a terminal
(1

_
i <_ r). If no nonterminal has a terminal ith child, then u[i] > w[i].

1290 MORDECAI J. GOLIN AND NEAL YOUNG

Spaou(T)
--Make the minimum terminal a nonterrninat--

1. na +-- m + 1;
2. Let childi(u[i]) be the minimum terminal in low-queue.
3. Dim] +-- D[u[i]] + ci; u[i] u[i] + 1; UPDITE-QS(T, i)
4. C +- C- Dim]; mDeg +- 0;

--Add smallest child as a terminal--
5. ADD-TEPMINAL(T)

LEVEL(T)
1. WHILE (mDeg < r and childmDeg+l(m) is less than

the max. terminal childi (w [i] in high-queue) DO
2. ADD-TERMINAL(T)

--Delete the maximum terminal--
3. C C- (D[w[i]] + ci)
4. w[i] - w[i]- 1; UPDATE-Qs(T, i)

ADD-TERMINAL(T)
1. mDeg +- mDeg + 1; C C + Dim] + CmDeg;
2. w[mDeg] - m; UPDATE-Qs(T, mDeg)

FIG. 6. Operations SPROUT and LEVEL.

low-queue is a priority queue for finding the minimum terminal. It contains

{childi(u[i]) u[i] < w[i]}.
high-queue is a priority queue for finding the maximum terminal. It contains

{childi(w[i]) u[i] < w[i]}.
For an example, refer back to Figure 3. Tree Ta has

N 10, C 59, mDeg 2,

D[1] 0, D[2] 2, D[3] 3, D[4] 4, D[5] 4, D[6] 4,

u[1] 4, u[2] 3, u[3] 1, will 6, w[2] 6, w[3] 3,

low-queue {child1 (4), child2(3), child3(1)},

high-queue {child (6), child,.(6), child3(3)}.
The priority queues are maintained as follows. In general, a terminal in T, can

have rank (label) arbitrarily larger than m. The algorithm explicitly maintains the
ranks and depths of the m nonterminals in the current tree; the algorithm compares
the ranks of terminals in the priority queues via the ranks and depths of their (non-
terminal) parents. When u[i] or w[i] changes to reflect a new current tree, the queues
are updated by the following routine:

UPDATE-Qs(T, i)
1. IF (u[i] <_ w[i])THEN
2. Update childi(u[i]) in low-queue and childi(w[i]) in high-queue

to maintain the queues’ invariants.
3. ELSE Delete both nodes from their respective queues.

Line 2 replaces the old childi(u[i]) in low-queue (childi(w[i]) in high-queue)

PREFIX CODES 1291

by the new one when u[i] (w[i]) changes. Line 3 will only be executed if childi(u[i]) >
childi(w[i]), which will only happen if the tree no longer contains any ith child as
a terminal. Note that Lemmas 2.8 and 3.2 imply that if, for some and Tin, no
nonterminM has an ith child in T,, then no nonterminal has an ith child in T,+I.

Construction of the first tree. Tree Tmmin has a simple-structure. Its nonterminals
are the nodes (1,2,..., mmin/. Its terminals are the n shallowest children of nodes
(1,2,..., ?Ttmin).

TO construct Tmi, we assume that n > r; otherwise, Tmi is simply the root
and its first n children. For 1 m < mmin, define T to be the tree with nonterminMs
{1,..., m} and all of the (r 1)m + 1 children of {1,..., m} as terminals. The proof
of Lemma 2.7 generMizes easily to these trees; node m + 1 is the minimum terminM
of T.

CREATE-Tmmin (T)
Create T1--

1. ?Ttmin [n--l___] D[1] - 0; C-- Emin{r’n}i__l
2. CREATE low-queue; CREATE high-queue;
3. FOR 1 to rain{r, n} DO

6.
7.
8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.

--Create (T2, T3,..., Tmmi }-
FOR m 2 to (retain 1) DO

Let child(u[i]) be the minimum terminal in low-queue.
Dim] - D[u[i]] + c; u[i] - u[i] + 1; UPDATE-Qs(T, i);
FOR j 1 to r DO

w[j] - m; UPDATE-QS(T,j);
C - C Dim] + Ej=I (Dim] + cj);

--Create Tmmin
m ?7min; / T- (r 1)(mmin 1);
Let childi(u[i]) be the minimum terminal in low-queue.
Dim] +-- D[u[i]] + ci; u[i] +-- u[i] + 1; UPDATE-QS(T, i)
FORj=lto A DO

w[j] +-- m; UPDATE-QS(T, j);
C C Dim] + (Dim] + cj);
mDeg A;
LEVEL(T);

FIG. 7. Operation CREATE-Tnmi

The tree T1 is easy to construct. It is the tree with 1 root and r children. In-
ductively construct the tree T, from the tree T,-I, rn < mmin, aS follows: find the
minimum terminal in Tn by taking the minimum terminal out of low-queue. Label
this node rn, make it a nonterminal, and add all of its children to T, as terminals.
The details are shown in Figure 7.

Finally, construct T?Ttmin from Tmmin__ by making the lowest terminal of T,min_l
into node mmin. Add the n- (r- 1)(mmin 1) minimum children of node mmin aS

terminals, bringing the total number of terminals in the current tree to n. Level the
resulting tree.

Since only O(n/r) trees are constructed while computing Tmin and each tree

1292 MORDECAI J. GOLIN AND NEAL YOUNG

can be constructed from the previous tree in O(r log r) time, the time required to
compute T?Ttrni is O(n log r). (If desired, the time for each tree Tm with rn < mmin can
be reduced to O(log r) because maximum terminals are not replaced in constructing
such a tree.)

Construction of the remaining trees. The algorithm constructs the sequence of
trees

(TTl’min,Tmin+[,T%min+2,’’’, T’tmax
as described previously. Tree T, is found by SPROUTing and then LEVELing its
predecessor Tin-1. The cost is O(dm log r) time, where dm is the number of children
of the new nonterminM rn in T,. By Lemma 3.4, this part of the algorithm runs in
0 ((Era din) log r) O(n log2 r) time.

Acknowledgments. The authors would like to thank Dr. Jacob Ecco for intro-
ducing us to the Morse code puzzle, which sparked this investigation. They would also
like to thank Siu Ngan Choi and Rudolf Fleischer (who made Observation 3.6the
unimodality of the tree costs) for their careful reading of an earlier manuscript and
subsequent comments.

REFERENCES

[1] D. ALTENKAMP AND K. MELHORN, Codes: Unequal probabilies, unequal letter costs, J. Assoc.
Comput. Mach., 27 (1980), pp. 412-427.

[2] N. COT, Complexity of the variable-length encoding problem, in Proc. 6th Southeast Conference
on Combinatorics, Graph Theory, and Computing, Congressus Numerantium XIV, Utilitas
Mathematic Publishing, Winnepeg, MB, Canada, 1975, pp. 211-244.

[3] D. A. HUFFMAN, A method for the construction of minimum redundancy codes, Proc. IRE, 40
(1952), pp. 1098-1101.

[4] S. KAPOOR AND E. M. REINGOLD, Optimum lopsided binary trees, J. Assoc. Comput. Mach., 36
(1989), pp. 573-590.

[5] R. KARP, Minimum-redundancy coding for the discrete noiseless channel, IRE Trans. Inform.
Theory, IT-7 (1961), pp. 27-39.

[6] D. E. KNUTH, The Art of Computer Programming, Volume III: Sorting and Searching, Addison-
Wesley, Reading, MA, 1973.

[7] Y. PEPL, M. R. GAREY, AND S. EVEN, Efficient generation of optimal prefix code: Equiprobable
words using unequal cost letters, J. Assoc. Comput. Mach., 22 (1975), pp. 202-214.

[8] B. VAtN, Optimal variable length codes (arbitrary symbol cost and equal code word probability),
Inform. Control, 19 (1971), pp. 289-301.

