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Abstract  
We consider the following variant of Huffman coding in which the costs 

of the letters, rather than the probabilities of the words, are non-uniform: 
Given an alphabet of unequal.length letters, find a minimum-average-length 
prefix-free set of n codewords over the alphabet. We show new structural 
properties of such codes, leading to an O(n log 2 r) time algorithm for finding 
them. This new algorithm is simpler and faster than the previously best 
known O(nr min{log n, r}) one due to Perl, Garey, and Even [5]. 

Keywords: Algorithms, Huffman Codes, Prefix Codes, Trees. 

1 Introduction 
The well-known Huffman coding problem [2] is the following: given a sequence of 
probabilities (Pl, P2, ..-,P,), construct a binary prefix code (wl, w~, ..., wn) minimiz- 
ing the expected length ~ i  pilength(wi). (A binary prefix code is a set of binary 
strings, none of which is a prefix of another.) 

A natural generalization of the problem is to allow the codewords to be strings 
over an arbitrary alphabet of r > 2 letters. Further, the letters are allowed to have 
arbitrary non-negative lengths (cl _< c2 < . . .  < cr). The length of a codeword is 
then the sum of the lengths of its letters. For instance, the "dots and dashes" of 
Morse code are a variable-length alphabet with length corresponding to transmission 
time. This generalization of Huffman coding to a variable-length alphabet has been 
considered by many authors, including Altenkamp and Melhorn [1], and Karp [3]. 
Apparently no polynomial-time algorithm for it is known, nor is it known to be 
NP-hard. 

In this paper we consider the special case of the general problem in which the 
codewords are sent with equal probability, i.e., each pi equals 1/n. This is a variant 
of Huffman coding in which the lengths of the letters, rather than the codeword 
probabilities, are non-uniform. This problem is equivalent to one of finding a tree 
of a particular type that has minimal external path length among all trees of that  

*Hong Kong UST, Clear Water Bay, Kowloon, Hong Kong. Partially supported by HK RGC 
Competitive Research Grant HKUST 181/93E. Emaih golln@cs.ust.hk 

iUMIACS, University of Maryland, College Park, MD 20742. Partially supported by NSF 
grants CCR-8906949 and CCR-9111348. Emaih young@umiacs.urnd.edu. 

Automata, Languages and Programming (ICALP), 605-617 (1994)	doi:10.1007/3-540-58201-0_102



606 

type with n leaves. These two equivalent problems were previously considered by 
Perl, Garey, and Even [5], who gave an O(rn min{r, logn})-time algorithm. In what 
follows we describe a simpler, O(n log 2 r)-time algorithm based on new insights into 
the structure of optimal codes. 

In section 2 we define shallow trees and their properties and prove that there 
is a small set of shallow trees that, among themselves, must contain a tree with 
minimal external path length. In Section 3 we use the properties of shallow trees 
to develop an algorithm that constructs all of them quickly. The shMlow tree with 
minimal cost will be the one that describes an optimal encoding. 

a b c d 

4 

5 
b 

Figure 1: Two Huffman trees for the 6 symbols a,b,c,d,e,f, which all occur with 
probability 1/6. The tree on the left is the optimal tree that uses the alphabet 
{0, 1}, length(O) = length(l) = 1 while the tree on the right is for the alphabet 
{.,_) with length(.) = 1 and length(_) = 2. The corresponding sets of codewords 
a r e  

a = 0 0 0 ,  b=001 ,  c = 0 1 1 ,  d = 0 1 1 ,  e = 1 0 ,  f = l l  

and 
a =  .... , b =  .... , c : . . _ ,  d : . _ ,  e = _ . ,  f : _ .  

2 Sha l low Trees  
Fix an instance of the problem, given by the lengths (el < c2 ~ . . .  ~ cr) of the 
letters and the number n of (equiprobable and prefix-free) codewords required. 

We assume the standard tree representation of prefix codes. The finite words 
over the alphabet of r letters correspond to the nodes of the infinite, rooted, ordered 
r-a~y tree. If an edge in the tree goes from a node to its ith child, the edge has 
length c~ and is labeled with the ith letter in the alphabet. The labels along the 
path from the root to a node spell the corresponding word and the length of the 
path is the length of this word. A prefix code corresponds to a set of nodes none of 
which is a descendant of another. 

In the remainder of the text, the term "tree" refers to any subtree T containing 
the root. In any such tree, n of the leaves will be identified as ~erminals; their 
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corresponding words form a prefix code. The term "node" refers to any node of the 
infinite tree, while the term "non-terminal" refers to any node in the subtree T that  
is not  a terminal. The notation childi(u) denotes the ith child of node u. 

The cost c(T) of such a tree is the sum of the depths of the terminals. This 
is also called the e~lernal weighted path length of the tree. The goal is to find an 
optimal (minimum-cost) tree. A proper tree is a tree in which every non-terminal 
has degree at least two. It is easy to see that  some optimal tree is proper so we may 
restrict ourselves to finding an optimal proper tree. 

Our basic tool for understanding the structure of optimal trees is a standard 
swapping argument. For example, in any proper optimal tree, no non-terminal is 
deeper than any terminal. Otherwise, the terminal and the subtree rooted at the 
non-terminal could be swapped, decreasing the average depth of the terminals. 

Intuitively, this suggests that  the optimal, proper trees have the following form 
for some m. The non-terminals are some ra shallowest (Le,, least-depth) nodes of 
the infinite tree, while the terminals are some n shallowest children of these nodes 
in the infinite tree. (In general, when we refer to the children of a set of nodes we 
exclude the nodes in the set itself.) Note that  the "m shallowest" nodes are not 
necessarily unique. Our algorithm constructs a sequence of such trees, one for each 
possible number of non-terminals, and returns the best one. Note too that,  in the 
definition of a shallow tree, a node may be non-terminal hut still have no children. 
It is for this reason that  we talk of terminal and non-terminal nodes in place of the 
more common internal nodes and leaves. 

Formally, a tree T is shallow provided that (i) for any non-terminal u of T and 
any node w that  is not a non-terminal of T, depth(u) _< depth(w) and (ii) for any 
terminal u of T and any node w of the infinite tree that is not in T but is a child 
of a non-terminal of T, depth(u) < depth(w). 

Shallow trees have the nice property that they are optimal among all trees that  
share the same number of non-terminals. 

L e m m a  1 Any shallow tree T satisfies c(T) < c(T') for every proper tree T' with 
the same number of non-terminals. 

P r o o f .  Fix a shallow tree T. If there are no proper trees T I with the same number 
of non-terminals, the lemma is trivially true. Otherwise, among such trees, consider 
those that  minimize c(T~). Among these let T* be one that maximizes the number 
of shared non-terminals with T (where T* and T are considered as finite subsets of 
the infinite tree). 

Suppose for contradiction that  the set of non-terminals of T differs from that  of 
T*. Among all non-terminals of T that are not non-terminMs of T* let u be one 
whose parent is a non-terminal of T*. Let w be any non-terminal of T ~ that  is not 
a non-terminal of T. Since T is shallow, depth(u) < depth(w). 

In T*, node u, if present, is a terminal. Node w, on the other hand, has at least 
two terminal descendants, because T* is proper. In T*, consider swapping u and 
w's subtrees. (More specifically, make u a non-terminal. If u was a terminal in T*, 
make w a terminal, otherwise delete w. For each previous descendant z of w, delete 
z and add the corresponding descendant y of u (as a terminal if z was a terminal).) 
The swap doesn't increase c(T*) yet increases the number of non-terminals shared 
with T. By the choice of T*, this is a contradiction. 
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Thus, T and T* have the same set of non-terminals. Since T is shallow, clearly 
c(T) < c(T*). [] 

As an aside, a similar argument proves something like the converse: if a proper 
tree is optimal among all trees with the same number of non-terminals, then it is 
shallow. 

Lemma 1 implies that it suffices to consider shallow, proper trees: 
L e m m a  2 Leg mmin= [(n - 1)/(r  - 1)]. Let (Tm.,. ,Tr,. , .+l, T,n.,.§ ...) be any 
sequence of shallow frees such ~hat for each m, Tm has m non.terminals. Then one 
of lhe Tm is proper and opZirnal. 
Proof .  Let rn be the minimum number of non-terminals of any optimal tree. Since 
the optimal tree has degree bounded by r, m _> retain. By Lemma 1, Tm is optimal. 
Further, Tm must be proper; otherwise, it would be easy to construct an optimal 
tree with fewer non-terminals. [ ]  

It is this h m m a  which is at the core of our algorithm for finding an optimal tree; 
the algorithm generates such a sequence of shallow trees and returns the one which 
has minimal cost. The lemma guarantees that this tree will be optimal. The rest 
of the paper is devoted to examining the properties of shallow trees which enable 
the identification of a minimal cost shallow tree in O(n log 2 r) time. 

Depth 1 
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Figure 2: The top of a labelled infinite tree with r = 31 c 1 = 2, c~ - 2 T and c~ = 5. 
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2 . 1  D e f i n i n g  t h e  T r e e s  

To determine a unique sequence of trees, order the nodes of the infinite tree as 
1,2, 3 , . . . ,  in order of increasing depth. Break ties arbitrarily, except that  if two 
nodes u and w are of equal depth and both are ith children for some i, then u < w 
iff parent(u) < parent(w). For the sake of notation, identify each node with its rank 
in this ordering, so that  1 is the root, 2 is a minimum-depth child of the root, etc. 
Figure 2 illustrates the top section of such a labelling for r = 3, cl = 2, c2 = 2, and 
cs = 5. These values of r and cj will be the ones we assume in all later examples as 
well. 

For each m ~ retain, let Tm denote the "shallowest" tree with m non, terminals 
with respect to the ordering of the nodes. That  is, the non-terminal nodes of Tra are 
the nodes {1, ..., m}; the terminals are the minimum n nodes among the children of 
{1, ..., m} in the infinite tree. Since the ordering of the nodes respects depth, each 
Tra is shallow. Figure 3 presents 7"5, Te, Tr, and Ts for n = 10 using the labelling 
of Figure 2. 

By Lemma 2, to find an optimal tree it suffices to consider the set of trees 
{Tin : Tra is proper}. 

2 . 2  R e l a t i o n  o f  S u c c e s s i v e  T r e e s  

Next we turn our attention to the relation of Tm+l to Tin. 

L e m m a  3 For m > retain, the new non-terminal (node m + 1) in Tm+l is the 
minimum terminal of T,n. 

P r o o f .  The parent o f m + l  is in {1, ..., m}, so m + l  is one of the children o f{ l ,  ..., m} 
in the infinite tree. Among these children, m + 1 is necessarily the minimum. The 
result follows from the definition of T,~. [ ]  

L e m m a  4 For m > retain, provided the new non-terminal (node m + 1) has degree 
at least one in T,n+l, each terminal of Tm+l is either a child of m +  1 or a terminal 
of Tm. 

P r o o f .  Let node m + 1 have degree d in Tm+l. Let the set of children of nodes 
{1, . . . ,m} in the infinite tree be C. The terminals of tree Tm+l consist of the 
minimum d children of node m + 1 together with the minimuha n - d nodes in 
C - {m + 1}. These n - d nodes, together with node m + 1 (the minimum node in 
C), are the the n - d + 1 minimum nodes in C. If d > 1, then by the definition of 
Tin, each such node is a terminal in Tin. [ ]  

The main significance of Lemmas 3 and 4 is that they will allow an efficient 
construction of T,n+I. Moreover, they also imply that if Tm is not proper, neither 
is any subsequent tree. 
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Figure 3: The  trees Ts, T6, TT, and Ts for r = 3, cl = 2, e2 = 2, and c3 = 5. The 
node  numbering is that  of  the previous figure, calculating the external path lengths 
we find that  c ( T s )  = 60, e(Te)  - 59, e(TT) = 60, and e(Ts) = 62. 

L e m m a  5 One of the trees (Tmmi., Tm=io+l, -.., Tin=..) is optimal and proper, where 
mmax - min{m : T,~+I is improper} - 1. 
P r o o f .  By lemma 4, if Tm is improper, then so is Tm+l - -  either node m + 1 has 
degree zero in Tm+l or the non-terminal in Tm that  had degree less than two also 
has degree less than two in Tm+l. Hence, for m >_ mmax, tree Tm is improper. 
Thus lemma 2 implies that  one of the trees (Tmm~,,T,~=~.+l, ...,T,~m,.) is proper 
and optimal. [ ]  

r l o - l l  For n = 10, mmin "- /-5=i'/ - 5 and referring back to Figure 3 shows that  Ts 
is improper. The lemma then implies that one of Ts, T6, or T7 must have minimal 
external path length. Straight calculation shows that T6 with e(T6) = 59 is the 
optimal one. 
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Figure 4: SPROUTing and LEVELing T5 yields Ts. 

As an aside, note that a proper tree can have at most n - 1 non-terminals 
corresponding to every non-terminal having exactly two children. This implies that 
mmax _< n - 1, a fact which will later be needed in the proof of Lemma 9. 

3 C o m p u t i n g  the  Trees 
Two basic operations are used to compute the trees. 

To SPROUT a tree is to make its minimum terminal a non-terminal and add the 
minimum child of this non-terminal as a terminal. 

To LEVEL a tree is to add c children of the maximum non-terminal to the tree as 
terminals and to remove the c largest terminals in the tree. The c children are 
the minimum c children not yet in the tree, where c is maximum such that all 
children added are less than all terminals deleted. 

The algorithm computes the initial tree TTn=I. then repeatedly SPROUTS and LEVELs 
to obtain successive trees until the tree so obtained is not proper. Lemmas 3 and 
4 imply that, as long as node m + 1 has degree at least one in T,n+l (it will if 
Tm+l is proper), SPROUTing and LEVELing Trn yields Trn+l. Figure 4 illustrates 
this operation. 
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Observa t ion  6 Let m - -  mmax. If node m + 1 has degree one in Tra+l then 
SPROUTing and LEvELing Tm yields tree Tm+l. If node rn + 1 has degree zero 
in Tra+a, then the maximum terminal in Tm is less than the minimum child of 
node rn + 1 and SPROUTing and LEVELing Trn yields a tree in which non-terminal 
rn + 1 has degree one. Hence, the algorithm always correctly identifies Tram. and 
terminates correctly, having cosidered all relevant trees. 

To SPROUT requires identification and conversion of the minimum terminal of 
the current tree, whereas to LEVEL requires identification and replacement of (no 
more than r) maximum terminals by children of the new non-terminal. One could 
identify the maximum and minimum terminals in O(log n) time by storing all ter- 
minals in two standard priority queues (one to detect the minimum, the other to 
detect the maximum). At most r terminals are replaced in computing each tree 
and because mrnax < n- 1, only O(n) trees are computed. This approach yields an 
O(rn log n)-time algorithm. 

By a more careful use of the structure of the trees, we improve upon this analysis 
in two ways. First, we give an amortized analysis showing that in total, only 
O(nlogr), rather than O(rn), terminals are replaced. Second, we show how to 
reduce the number of non-terminals in each priority queue to at most r. This yields 
an O(n log 2 r)-time algorithm. 

Both reductions will be seen to follow from the observation that T,, must have 
the following simple structure. 

L e m m a  7 In any Tra, ifu and w are non-terminals with u < w, and the ith child of 
w is in the tree, then so is the ith child ofu. If the ith child ofw is a non-terminal, 
then so is the ith child of u. 

Proof. Straightforward from the definition of Tm and the condition on breaking 
ties in ordering the nodes. [] 

Corol lary  8 Node m has minimal degree among all non-terminals in Tin. 

3.1 Only O(n log r) Replacements Total 
The number of terminals replaced while obtaining Tm from Tm-a is at most the 
degree of non-terminal rn in Tin. Although this degree might be r for many m, the 
sum of these degrees is O(n log r): 

L e m m a  9 Let dm be ~he degree of non-terminal rn in tree Tin. Then ~ m  dra is 
O(n log r). 

Proof. By Lemma 7, within Tin, node m is the lowest-degree non-terminal. The 
sum of the m non-terminals' degrees is (re+n-I), Thus, dra is at most the average 
(m + n - 1)/m = 1 + (n - 1)(1/m). 

m~al T/'~ i zk6x  

dm <_ (mm~x-mm|n+l)+(n-1) E 1/m'- O(mm~x-mmin+nlog(mm,x/rnmin)). 
m~mmi*m m:rnmim 

n--I The result follows from mml n - "  [e--=]'] and mm~x _< n - I. [] 



613 

3 .2  L i m i t i n g  t h e  R e l e v a n t  T e r m i n a l s  

To reduce the number of terminals that must be considered in finding the minimum 
and maximum terminals, consider, for each i, the terminals which are ith children. 

L e m m a  10 In any Tin, for any i, the set of non-terminals whose ith children are 
terminals is of the form (ui, u i+l ,  ..., wi} for some ui and wi. The minimum among 
terminals that are ith children is childi(ui) (the ith child of ui). The mazimum 
among these terminals is childi(wl). 

Proof .  A straightforward consequence of Lemma 7. []  
Figure 3 presents ui and wi for the trees Ts, Ts, 2"7, and Ts when n = 10. 
This lemma implies that the minimum terminal in Tm is the minimum among 

{childi(u~), i = 1, . . . ,  r}. The minimum terminal in T can be found by storing only 
these r particular children in a priority queue in place of storing all n terminals in 
a priority queue. This reduces the cost of finding the minimum from O(log n) to 
O(log r). Similarly the maximum terminal can be found in O(log r) time by storing 
{childi(wi), i = 1, . . . ,  r}, in a priority queue. 

3 . 3  T h e  A l g o r i t h m  in  D e t a i l  

The full algorithm has two distinct steps. The first constructs the base tree Tin.i.. 
The second starts with T,n,,ln and, by SPROUTing and LEVELing, iteratively con- 
structs the sequence of shallow trees 

(T,~m,n,Tm,~i.+x,Tmm,.+:~, ..., Tm~u) 
and returns one which has smallest external path length. Tm~,, is the last proper 
tree in the sequence. Lemma 5 guarantees that this sequence contains an optimal 
tree so the tree that the algorithm returns is an optimal tree. We now describe how 
to implement the first part of the algorithm in O(nlog r) time and the second in 

2 2 O(n log r) time; the full algorithm will therefore run in O(n log r) time. 
The skeleton of the final algorithm is shown in Figure 5. Procedure CREATE-Tm~. 

creates tree T,~m~ ., the variable C contains the external path length of current tree 
Trn and mDeg  contains the degree of node m in tree Tin. As presented, the algo- 
rithm computes only the cost of an optimal tree. It is easily modified to compute 
the actual tree. Note that to check that the current tree Tm is proper, by Observa- 
tion 6 and Corollary 8, it suffices to check that non-terminal m has degree at least 
two. 

COMPUTE -- TREES((Cl, C2, ..., Cr), n) 
1 CREATE-TIn mira ; 
2 WHILE (mDeg ~ 2) DO 

--Compute Tm+1 from Tm -- 
SPROUT(T) 
LEVEL(T) 
Cmin *-- rain{C, Cmin} 

RETURN Cmin 

Figure 5: Algorithm to Find An Optimal Variable-Length Prefix Code 

3 
4 
5 
6 
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Recall that  the nodes of the infinite tree are labelled in order of increasing depth 
with ties broken arbitrarily except for the requirement that if u and v are both of 
equal depth and both are ith children of their respective parents, then u < v iff 
parent(u) < parent(v). Depending upon e l , c2 , . . . , c r ,  there may be many such 
labellings. The algorithm to be presented breaks ties using the specific rule that  if 
u and v have the same depth, u = childi(u'), v = child~ (v'), and u' < v' then u < v. 
If u' = v' then u < v iff i < j (this can only occur if cl = c~). Figure 2 illustrates 
this labelling for r = 3, Cl = 2, c2 = 2, and ca = 5. Fixing the labelling also fixes 
the shallow trees. Figure 3 illustrates the shallow trees with 10 non-terminals for 
these r and c values. 

A tree T,n can be fully represented by the following data structures: 

N The number of terminals. 

m - -  The number of non-terminals. Also the rank of the maximum non-terminal. 

C The sum of the depths of the terminals. 

m D e g  The degree of non-terminal m. 

D [u] The depth of each non-terminal u. 

u[/] - -  The rank of the minimum non-terminal (if any) whose ith child is a terminal 
( l< i<r ) .  

w[i] The rank of the maximum non-terminal (if any) whose ith child is a terminal 
(1 < i < r). 

l ow-queue  A priority queue for finding the minimum terminal. 
Contains {childi(u[z]) : appropriate i}. 

h i g h - q u e u e  - -  A priority queue for finding the maximum terminal. 
Contains {childi(w[/]) : appropriate i}. 

For an example refer back to figure 3. Tree T6 has 

N = 10, C = 59, m D e g  = 2, 

0[1] = 0, D[2] = 2, 0[3] = 3, 0[4] = 4, 0[5] = 4, 0[6] = 4, 

u[1]  - 4 ,  u[2]  - 3 ,  u[3]  - 1, w [ 1 ]  - 6 ,  w [ 2 ]  - 6,  w[3 ]  - 3 

low-queue = {child1 (4), child2(3), childs(1)}, 

high-queue = {child1 (6), child,(6), childs(3)}. 

Generally, the algorithm knows the ranks of the non-terminals in the current 
tree, but not the terminals. The relevant terminals are referenced via their parents, 
generally one of the non-terminals m,  u[z], or w[2]. The order of any two terminals, 
childi(u) and childj(w), is determined by considering their respective depths D[u] + 
ci and D[w] + cj. If one terminal has lesser depth, that  terminal has the smaller 
label. Otherwise, ties are broken in the manner described at the beginning of this 
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subsection. If u < w then child,(u) < childj(w). Otherwise u = w and childi(u) < 
childj (w) for i < j. This is how the r terminals are ordered within each of the priority 
queues. Inserting and deleting an item from each of these queues can be done in 
O(log r) time. Since the minimum terminal in low-queue is the minimum terminal 
in T~ this gives a method of finding the minimum terminal in T~ in O(log r) time. 
Similarly, using high-queue permits finding the largest terminal in T,~ in O(log r) 
time. 

The reason for using this indirect method of comparing terminals in place of 
explicitly calculating and comparing the terminals' labels is that the terminals might 
have rank higher than O(n log 2 r). Explicitly calculating the labels could therefore 
cost more than all the rest of the algorithm, effectively destroying the O(n log s r) 
running time of the algorithm. 

In the definitions of the priority queues, "appropriate" values of i are those for 
which some non-terminal has an ith child in the current tree. Note that Lemmas 
4 and 7 imply that if, for some i and T,,, no non-terminal has an ith child in 
Tin, then no non-terminal has an ith child in Tm+l. Subsequently, ith children of 
non-terminals will always be "inappropriate" and need not be considered. 

Corresponding to each variable u[i] (resp. w[i]) is a terminal in low-queue 
(rasp. high-queue). When such a variable is changed, the priority queues are up- 
dated by the following routine: 

UPDATE-Qs(T, i) 
1 IF (u[i] <w[i]) THEN 
2 Update child~(u[i]) in low-queue and childi(w[i]) in high-queue 

to maintain the queues' invariants. 
3 ELSE Delete both nodes from their respective queues. 

Line 2 replaces the old value of childi(u[i]) in low-queue (childi(w[i]) in high-queue 
by its new value. Line 3 will only be executed if child;(u[i]) > child~(w[i]) which 
will only happen if the tree no longer contains any ith child as a terminal. 

The routines SPROUT and LEVEL are shown in Figure 6. 
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SPROUT(T) 
--Make ~he minimum terminal a non.terminal 

1 m ~--- m +  I; 
2 Let childi(u[~']) be the minimum terminal in low-queue. 
3 Dim] .--- D[u[i]] + ei; u[i] *- u[,] + 1; UPDATE-Qs(T, i) 
4 C ~ C - Dim]; m D e g  *-- 0; 

--Add smallest child as a terminal 
5 ADD-TERMINAL(T) 

LEVEL(T) 
1 WHILE (mDeg < r and childmDeg+l(m ) is less than 

the max. terminal childi(w[i]) in hlgh-queue) DO 
2 ADD-TERMINAL(T) 

--Delete the maximum termiaal 
3 C ~ C - (D[w[il] + ei) 
4 wtq - - w [ , ] -  1; UPDATE-Qs(T, i) 

ADD-TERMINAL(T) 
1 m D e g  ,,- m D e g  + 1; C ~ C + D[rn] + CmDeg; 
2 w[mDeg] ~ m; UPDATE-Qs(T, mDeg) 

Figure 6: The Operations SPROUT and LEVEL. 

C o n s t r u c t i o n  of  the  Fi rs t  Trees. Tree Tm=l. has a simple structure. Its non- 
terminals are the nodes (1 ,2 , . . . ,  retain). Its terminals are the n shallowest children 
of nodes (1 ,2 , . . . ,  retain). 

To construct T~.i ,  we assume that n > r, otherwise Tm.~. is simply the root 
and its first n children. For 1 _~ m < retain, define T,n to be the tree with non- 
terminals {1, ..., m} and all of the ( r -  1)m + 1 children of {1, ..., m} as terminals. 
The proof of Lemma 3 generalizes easily to these trees; node m + 1 is the minimum 
terminal of T,~. 

The tree T1 is easy to construct. It is the tree with 1 root and r children. 
Inductively construct the tree Tm from the tree Tin-l, ra < mmin - 1 as follows: find 
the minimum terminal in Tm by taking the minimum terminal out of low-queue. 
Label this node m, make it a non-terminal, and add all of its children to Tm as 
terminals. 

Finally, construct T,~=i. from T~=l.-1 by making the lowest terminal of T~=~._I 
into node rnmin. Add the n - (r - 1)(retain - 1) minimum children of node mmin as 
terminals bringing the total number of terminals in the current tree to n. Level the 
resulting tree. 

Since only O(n/r)  trees are constructed while computing Tm~., and each tree 
can be constructed from the previous tree in O(rlogr)  time, the time required 
to compute Tm=~, is O(nlogr).  (If desired, the time for each tree Tm with m < 
ramin can be reduced to O(logr), because maximum terminals are not replaced in 
constructing such a tree.) 
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C o n s t r u c t i o n  of  the  Remain ing  Trees. The algorithm constructs the sequence 
of trees 

(Tmml., Tm~,o+a, Trnf,.+2, ..., T ~ , u  ) 
as described previously. Tree Tm is found by SPROUTing and then LEVELing 
its predecessor Tin-1. The cost is O(dmlogr) time, where dm is the degree of 
the new non-terminal rn in Tin. By Lemma 9 this part of the algorithm runs in 
O ( (~m din) log r) - O(n log s r) time. 
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