
Prefix Codes: Equiprobable Words, Unequal Letter
Costs

Mordecai J. Colin * Neal Young t

March 25, 1994

Abstract
We consider the following variant of Huffman coding in which the costs

of the letters, rather than the probabilities of the words, are non-uniform:
Given an alphabet of unequal.length letters, find a minimum-average-length
prefix-free set of n codewords over the alphabet. We show new structural
properties of such codes, leading to an O(n log 2 r) time algorithm for finding
them. This new algorithm is simpler and faster than the previously best
known O(nr min{log n, r}) one due to Perl, Garey, and Even [5].

Keywords: Algorithms, Huffman Codes, Prefix Codes, Trees.

1 Introduction
The well-known Huffman coding problem [2] is the following: given a sequence of
probabilities (Pl, P2, ..-,P,), construct a binary prefix code (wl, w~, ..., wn) minimiz-
ing the expected length ~ i pilength(wi). (A binary prefix code is a set of binary
strings, none of which is a prefix of another.)

A natural generalization of the problem is to allow the codewords to be strings
over an arbitrary alphabet of r > 2 letters. Further, the letters are allowed to have
arbitrary non-negative lengths (cl _< c2 < . . . < cr). The length of a codeword is
then the sum of the lengths of its letters. For instance, the "dots and dashes" of
Morse code are a variable-length alphabet with length corresponding to transmission
time. This generalization of Huffman coding to a variable-length alphabet has been
considered by many authors, including Altenkamp and Melhorn [1], and Karp [3].
Apparently no polynomial-time algorithm for it is known, nor is it known to be
NP-hard.

In this paper we consider the special case of the general problem in which the
codewords are sent with equal probability, i.e., each pi equals 1/n. This is a variant
of Huffman coding in which the lengths of the letters, rather than the codeword
probabilities, are non-uniform. This problem is equivalent to one of finding a tree
of a particular type that has minimal external path length among all trees of that

*Hong Kong UST, Clear Water Bay, Kowloon, Hong Kong. Partially supported by HK RGC
Competitive Research Grant HKUST 181/93E. Emaih golln@cs.ust.hk

iUMIACS, University of Maryland, College Park, MD 20742. Partially supported by NSF
grants CCR-8906949 and CCR-9111348. Emaih young@umiacs.urnd.edu.

Automata, Languages and Programming (ICALP), 605-617 (1994)	doi:10.1007/3-540-58201-0_102

606

type with n leaves. These two equivalent problems were previously considered by
Perl, Garey, and Even [5], who gave an O(rn min{r, logn})-time algorithm. In what
follows we describe a simpler, O(n log 2 r)-time algorithm based on new insights into
the structure of optimal codes.

In section 2 we define shallow trees and their properties and prove that there
is a small set of shallow trees that, among themselves, must contain a tree with
minimal external path length. In Section 3 we use the properties of shallow trees
to develop an algorithm that constructs all of them quickly. The shMlow tree with
minimal cost will be the one that describes an optimal encoding.

a b c d

4

5
b

Figure 1: Two Huffman trees for the 6 symbols a,b,c,d,e,f, which all occur with
probability 1/6. The tree on the left is the optimal tree that uses the alphabet
{0, 1}, length(O) = length(l) = 1 while the tree on the right is for the alphabet
{.,_) with length(.) = 1 and length(_) = 2. The corresponding sets of codewords
a r e

a = 0 0 0 , b=001 , c = 0 1 1 , d = 0 1 1 , e = 1 0 , f = l l

and
a = , b = , c : . . _ , d : . _ , e = _ . , f : _ .

2 Sha l low Trees
Fix an instance of the problem, given by the lengths (el < c2 ~ . . . ~ cr) of the
letters and the number n of (equiprobable and prefix-free) codewords required.

We assume the standard tree representation of prefix codes. The finite words
over the alphabet of r letters correspond to the nodes of the infinite, rooted, ordered
r-a~y tree. If an edge in the tree goes from a node to its ith child, the edge has
length c~ and is labeled with the ith letter in the alphabet. The labels along the
path from the root to a node spell the corresponding word and the length of the
path is the length of this word. A prefix code corresponds to a set of nodes none of
which is a descendant of another.

In the remainder of the text, the term "tree" refers to any subtree T containing
the root. In any such tree, n of the leaves will be identified as ~erminals; their

607

corresponding words form a prefix code. The term "node" refers to any node of the
infinite tree, while the term "non-terminal" refers to any node in the subtree T that
is not a terminal. The notation childi(u) denotes the ith child of node u.

The cost c(T) of such a tree is the sum of the depths of the terminals. This
is also called the e~lernal weighted path length of the tree. The goal is to find an
optimal (minimum-cost) tree. A proper tree is a tree in which every non-terminal
has degree at least two. It is easy to see that some optimal tree is proper so we may
restrict ourselves to finding an optimal proper tree.

Our basic tool for understanding the structure of optimal trees is a standard
swapping argument. For example, in any proper optimal tree, no non-terminal is
deeper than any terminal. Otherwise, the terminal and the subtree rooted at the
non-terminal could be swapped, decreasing the average depth of the terminals.

Intuitively, this suggests that the optimal, proper trees have the following form
for some m. The non-terminals are some ra shallowest (Le,, least-depth) nodes of
the infinite tree, while the terminals are some n shallowest children of these nodes
in the infinite tree. (In general, when we refer to the children of a set of nodes we
exclude the nodes in the set itself.) Note that the "m shallowest" nodes are not
necessarily unique. Our algorithm constructs a sequence of such trees, one for each
possible number of non-terminals, and returns the best one. Note too that, in the
definition of a shallow tree, a node may be non-terminal hut still have no children.
It is for this reason that we talk of terminal and non-terminal nodes in place of the
more common internal nodes and leaves.

Formally, a tree T is shallow provided that (i) for any non-terminal u of T and
any node w that is not a non-terminal of T, depth(u) _< depth(w) and (ii) for any
terminal u of T and any node w of the infinite tree that is not in T but is a child
of a non-terminal of T, depth(u) < depth(w).

Shallow trees have the nice property that they are optimal among all trees that
share the same number of non-terminals.

L e m m a 1 Any shallow tree T satisfies c(T) < c(T') for every proper tree T' with
the same number of non-terminals.

P r o o f . Fix a shallow tree T. If there are no proper trees T I with the same number
of non-terminals, the lemma is trivially true. Otherwise, among such trees, consider
those that minimize c(T~). Among these let T* be one that maximizes the number
of shared non-terminals with T (where T* and T are considered as finite subsets of
the infinite tree).

Suppose for contradiction that the set of non-terminals of T differs from that of
T*. Among all non-terminals of T that are not non-terminMs of T* let u be one
whose parent is a non-terminal of T*. Let w be any non-terminal of T ~ that is not
a non-terminal of T. Since T is shallow, depth(u) < depth(w).

In T*, node u, if present, is a terminal. Node w, on the other hand, has at least
two terminal descendants, because T* is proper. In T*, consider swapping u and
w's subtrees. (More specifically, make u a non-terminal. If u was a terminal in T*,
make w a terminal, otherwise delete w. For each previous descendant z of w, delete
z and add the corresponding descendant y of u (as a terminal if z was a terminal).)
The swap doesn't increase c(T*) yet increases the number of non-terminals shared
with T. By the choice of T*, this is a contradiction.

608

Thus, T and T* have the same set of non-terminals. Since T is shallow, clearly
c(T) < c(T*). []

As an aside, a similar argument proves something like the converse: if a proper
tree is optimal among all trees with the same number of non-terminals, then it is
shallow.

Lemma 1 implies that it suffices to consider shallow, proper trees:
L e m m a 2 Leg mmin= [(n - 1)/(r - 1)]. Let (Tm.,. ,Tr,. , .+l, T,n.,.§ ...) be any
sequence of shallow frees such ~hat for each m, Tm has m non.terminals. Then one
of lhe Tm is proper and opZirnal.
Proof . Let rn be the minimum number of non-terminals of any optimal tree. Since
the optimal tree has degree bounded by r, m _> retain. By Lemma 1, Tm is optimal.
Further, Tm must be proper; otherwise, it would be easy to construct an optimal
tree with fewer non-terminals. []

It is this h m m a which is at the core of our algorithm for finding an optimal tree;
the algorithm generates such a sequence of shallow trees and returns the one which
has minimal cost. The lemma guarantees that this tree will be optimal. The rest
of the paper is devoted to examining the properties of shallow trees which enable
the identification of a minimal cost shallow tree in O(n log 2 r) time.

Depth 1

2

4

5

6 9 13

' i AIA A!. A Ai,,,
9 I 37 38

lO

11

12

Figure 2: The top of a labelled infinite tree with r = 31 c 1 = 2, c~ - 2 T and c~ = 5.

609

2 . 1 D e f i n i n g t h e T r e e s

To determine a unique sequence of trees, order the nodes of the infinite tree as
1,2, 3 , . . . , in order of increasing depth. Break ties arbitrarily, except that if two
nodes u and w are of equal depth and both are ith children for some i, then u < w
iff parent(u) < parent(w). For the sake of notation, identify each node with its rank
in this ordering, so that 1 is the root, 2 is a minimum-depth child of the root, etc.
Figure 2 illustrates the top section of such a labelling for r = 3, cl = 2, c2 = 2, and
cs = 5. These values of r and cj will be the ones we assume in all later examples as
well.

For each m ~ retain, let Tm denote the "shallowest" tree with m non, terminals
with respect to the ordering of the nodes. That is, the non-terminal nodes of Tra are
the nodes {1, ..., m}; the terminals are the minimum n nodes among the children of
{1, ..., m} in the infinite tree. Since the ordering of the nodes respects depth, each
Tra is shallow. Figure 3 presents 7"5, Te, Tr, and Ts for n = 10 using the labelling
of Figure 2.

By Lemma 2, to find an optimal tree it suffices to consider the set of trees
{Tin : Tra is proper}.

2 . 2 R e l a t i o n o f S u c c e s s i v e T r e e s

Next we turn our attention to the relation of Tm+l to Tin.

L e m m a 3 For m > retain, the new non-terminal (node m + 1) in Tm+l is the
minimum terminal of T,n.

P r o o f . The parent o f m + l is in {1, ..., m}, so m + l is one of the children o f{ l , ..., m}
in the infinite tree. Among these children, m + 1 is necessarily the minimum. The
result follows from the definition of T,~. []

L e m m a 4 For m > retain, provided the new non-terminal (node m + 1) has degree
at least one in T,n+l, each terminal of Tm+l is either a child of m + 1 or a terminal
of Tm.

P r o o f . Let node m + 1 have degree d in Tm+l. Let the set of children of nodes
{1, . . . ,m} in the infinite tree be C. The terminals of tree Tm+l consist of the
minimum d children of node m + 1 together with the minimuha n - d nodes in
C - {m + 1}. These n - d nodes, together with node m + 1 (the minimum node in
C), are the the n - d + 1 minimum nodes in C. If d > 1, then by the definition of
Tin, each such node is a terminal in Tin. []

The main significance of Lemmas 3 and 4 is that they will allow an efficient
construction of T,n+I. Moreover, they also imply that if Tm is not proper, neither
is any subsequent tree.

I

2

J

$

6 9

7

9

610

T5

1o
i 1 2 3

u[il 3 3 1
w[,'] 5 5 4

J

J 2

J

4

$

6 9

7

i 1
u[i] 4
w[i] 6

2 3
3 1
6 3

Te

v ~

J

J2 L : 6

$

6 9

i [1 2 3
u[,] I 4 4 1
w[,] 7 7 2

2

J

$

6 9

7

i 1 2 3
u[i] 4 4 2
w[,l 8 7 2

Figure 3: The trees Ts, T6, TT, and Ts for r = 3, cl = 2, e2 = 2, and c3 = 5. The
node numbering is that of the previous figure, calculating the external path lengths
we find that c (T s) = 60, e(Te) - 59, e(TT) = 60, and e(Ts) = 62.

L e m m a 5 One of the trees (Tmmi., Tm=io+l, -.., Tin=..) is optimal and proper, where
mmax - min{m : T,~+I is improper} - 1.
P r o o f . By lemma 4, if Tm is improper, then so is Tm+l - - either node m + 1 has
degree zero in Tm+l or the non-terminal in Tm that had degree less than two also
has degree less than two in Tm+l. Hence, for m >_ mmax, tree Tm is improper.
Thus lemma 2 implies that one of the trees (Tmm~,,T,~=~.+l, ...,T,~m,.) is proper
and optimal. []

r l o - l l For n = 10, mmin "- /-5=i'/ - 5 and referring back to Figure 3 shows that Ts
is improper. The lemma then implies that one of Ts, T6, or T7 must have minimal
external path length. Straight calculation shows that T6 with e(T6) = 59 is the
optimal one.

l

$

$

$

L 9

7

8

611

J

$

$

L

7

SPROUT(Ts)

T6 = LEVEL(SPROUT(Ts~
J

J

J

If

L 9J JOI I I J 12[\ 13] I~I

A 7

Figure 4: SPROUTing and LEVELing T5 yields Ts.

As an aside, note that a proper tree can have at most n - 1 non-terminals
corresponding to every non-terminal having exactly two children. This implies that
mmax _< n - 1, a fact which will later be needed in the proof of Lemma 9.

3 C o m p u t i n g the Trees
Two basic operations are used to compute the trees.

To SPROUT a tree is to make its minimum terminal a non-terminal and add the
minimum child of this non-terminal as a terminal.

To LEVEL a tree is to add c children of the maximum non-terminal to the tree as
terminals and to remove the c largest terminals in the tree. The c children are
the minimum c children not yet in the tree, where c is maximum such that all
children added are less than all terminals deleted.

The algorithm computes the initial tree TTn=I. then repeatedly SPROUTS and LEVELs
to obtain successive trees until the tree so obtained is not proper. Lemmas 3 and
4 imply that, as long as node m + 1 has degree at least one in T,n+l (it will if
Tm+l is proper), SPROUTing and LEVELing Trn yields Trn+l. Figure 4 illustrates
this operation.

612

Observa t ion 6 Let m - - mmax. If node m + 1 has degree one in Tra+l then
SPROUTing and LEvELing Tm yields tree Tm+l. If node rn + 1 has degree zero
in Tra+a, then the maximum terminal in Tm is less than the minimum child of
node rn + 1 and SPROUTing and LEVELing Trn yields a tree in which non-terminal
rn + 1 has degree one. Hence, the algorithm always correctly identifies Tram. and
terminates correctly, having cosidered all relevant trees.

To SPROUT requires identification and conversion of the minimum terminal of
the current tree, whereas to LEVEL requires identification and replacement of (no
more than r) maximum terminals by children of the new non-terminal. One could
identify the maximum and minimum terminals in O(log n) time by storing all ter-
minals in two standard priority queues (one to detect the minimum, the other to
detect the maximum). At most r terminals are replaced in computing each tree
and because mrnax < n- 1, only O(n) trees are computed. This approach yields an
O(rn log n)-time algorithm.

By a more careful use of the structure of the trees, we improve upon this analysis
in two ways. First, we give an amortized analysis showing that in total, only
O(nlogr), rather than O(rn), terminals are replaced. Second, we show how to
reduce the number of non-terminals in each priority queue to at most r. This yields
an O(n log 2 r)-time algorithm.

Both reductions will be seen to follow from the observation that T,, must have
the following simple structure.

L e m m a 7 In any Tra, ifu and w are non-terminals with u < w, and the ith child of
w is in the tree, then so is the ith child ofu. If the ith child ofw is a non-terminal,
then so is the ith child of u.

Proof. Straightforward from the definition of Tm and the condition on breaking
ties in ordering the nodes. []

Corol lary 8 Node m has minimal degree among all non-terminals in Tin.

3.1 Only O(n log r) Replacements Total
The number of terminals replaced while obtaining Tm from Tm-a is at most the
degree of non-terminal rn in Tin. Although this degree might be r for many m, the
sum of these degrees is O(n log r):

L e m m a 9 Let dm be ~he degree of non-terminal rn in tree Tin. Then ~ m dra is
O(n log r).

Proof. By Lemma 7, within Tin, node m is the lowest-degree non-terminal. The
sum of the m non-terminals' degrees is (re+n-I), Thus, dra is at most the average
(m + n - 1)/m = 1 + (n - 1)(1/m).

m~al T/'~ i zk6x

dm <_ (mm~x-mm|n+l)+(n-1) E 1/m'- O(mm~x-mmin+nlog(mm,x/rnmin)).
m~mmi*m m:rnmim

n--I The result follows from mml n - " [e--=]'] and mm~x _< n - I. []

613

3 .2 L i m i t i n g t h e R e l e v a n t T e r m i n a l s

To reduce the number of terminals that must be considered in finding the minimum
and maximum terminals, consider, for each i, the terminals which are ith children.

L e m m a 10 In any Tin, for any i, the set of non-terminals whose ith children are
terminals is of the form (ui, u i+l , ..., wi} for some ui and wi. The minimum among
terminals that are ith children is childi(ui) (the ith child of ui). The mazimum
among these terminals is childi(wl).

Proof . A straightforward consequence of Lemma 7. []
Figure 3 presents ui and wi for the trees Ts, Ts, 2"7, and Ts when n = 10.
This lemma implies that the minimum terminal in Tm is the minimum among

{childi(u~), i = 1, . . . , r}. The minimum terminal in T can be found by storing only
these r particular children in a priority queue in place of storing all n terminals in
a priority queue. This reduces the cost of finding the minimum from O(log n) to
O(log r). Similarly the maximum terminal can be found in O(log r) time by storing
{childi(wi), i = 1, . . . , r}, in a priority queue.

3 . 3 T h e A l g o r i t h m in D e t a i l

The full algorithm has two distinct steps. The first constructs the base tree Tin.i..
The second starts with T,n,,ln and, by SPROUTing and LEVELing, iteratively con-
structs the sequence of shallow trees

(T,~m,n,Tm,~i.+x,Tmm,.+:~, ..., Tm~u)
and returns one which has smallest external path length. Tm~,, is the last proper
tree in the sequence. Lemma 5 guarantees that this sequence contains an optimal
tree so the tree that the algorithm returns is an optimal tree. We now describe how
to implement the first part of the algorithm in O(nlog r) time and the second in

2 2 O(n log r) time; the full algorithm will therefore run in O(n log r) time.
The skeleton of the final algorithm is shown in Figure 5. Procedure CREATE-Tm~.

creates tree T,~m~ ., the variable C contains the external path length of current tree
Trn and mDeg contains the degree of node m in tree Tin. As presented, the algo-
rithm computes only the cost of an optimal tree. It is easily modified to compute
the actual tree. Note that to check that the current tree Tm is proper, by Observa-
tion 6 and Corollary 8, it suffices to check that non-terminal m has degree at least
two.

COMPUTE -- TREES((Cl, C2, ..., Cr), n)
1 CREATE-TIn mira ;
2 WHILE (mDeg ~ 2) DO

--Compute Tm+1 from Tm --
SPROUT(T)
LEVEL(T)
Cmin *-- rain{C, Cmin}

RETURN Cmin

Figure 5: Algorithm to Find An Optimal Variable-Length Prefix Code

3
4
5
6

614

Recall that the nodes of the infinite tree are labelled in order of increasing depth
with ties broken arbitrarily except for the requirement that if u and v are both of
equal depth and both are ith children of their respective parents, then u < v iff
parent(u) < parent(v). Depending upon e l , c2 , . . . , c r , there may be many such
labellings. The algorithm to be presented breaks ties using the specific rule that if
u and v have the same depth, u = childi(u'), v = child~ (v'), and u' < v' then u < v.
If u' = v' then u < v iff i < j (this can only occur if cl = c~). Figure 2 illustrates
this labelling for r = 3, Cl = 2, c2 = 2, and ca = 5. Fixing the labelling also fixes
the shallow trees. Figure 3 illustrates the shallow trees with 10 non-terminals for
these r and c values.

A tree T,n can be fully represented by the following data structures:

N The number of terminals.

m - - The number of non-terminals. Also the rank of the maximum non-terminal.

C The sum of the depths of the terminals.

m D e g The degree of non-terminal m.

D [u] The depth of each non-terminal u.

u[/] - - The rank of the minimum non-terminal (if any) whose ith child is a terminal
(l< i<r) .

w[i] The rank of the maximum non-terminal (if any) whose ith child is a terminal
(1 < i < r).

l ow-queue A priority queue for finding the minimum terminal.
Contains {childi(u[z]) : appropriate i}.

h i g h - q u e u e - - A priority queue for finding the maximum terminal.
Contains {childi(w[/]) : appropriate i}.

For an example refer back to figure 3. Tree T6 has

N = 10, C = 59, m D e g = 2,

0[1] = 0, D[2] = 2, 0[3] = 3, 0[4] = 4, 0[5] = 4, 0[6] = 4,

u[1] - 4 , u[2] - 3 , u[3] - 1, w [1] - 6 , w [2] - 6, w[3] - 3

low-queue = {child1 (4), child2(3), childs(1)},

high-queue = {child1 (6), child,(6), childs(3)}.

Generally, the algorithm knows the ranks of the non-terminals in the current
tree, but not the terminals. The relevant terminals are referenced via their parents,
generally one of the non-terminals m, u[z], or w[2]. The order of any two terminals,
childi(u) and childj(w), is determined by considering their respective depths D[u] +
ci and D[w] + cj. If one terminal has lesser depth, that terminal has the smaller
label. Otherwise, ties are broken in the manner described at the beginning of this

615

subsection. If u < w then child,(u) < childj(w). Otherwise u = w and childi(u) <
childj (w) for i < j. This is how the r terminals are ordered within each of the priority
queues. Inserting and deleting an item from each of these queues can be done in
O(log r) time. Since the minimum terminal in low-queue is the minimum terminal
in T~ this gives a method of finding the minimum terminal in T~ in O(log r) time.
Similarly, using high-queue permits finding the largest terminal in T,~ in O(log r)
time.

The reason for using this indirect method of comparing terminals in place of
explicitly calculating and comparing the terminals' labels is that the terminals might
have rank higher than O(n log 2 r). Explicitly calculating the labels could therefore
cost more than all the rest of the algorithm, effectively destroying the O(n log s r)
running time of the algorithm.

In the definitions of the priority queues, "appropriate" values of i are those for
which some non-terminal has an ith child in the current tree. Note that Lemmas
4 and 7 imply that if, for some i and T,,, no non-terminal has an ith child in
Tin, then no non-terminal has an ith child in Tm+l. Subsequently, ith children of
non-terminals will always be "inappropriate" and need not be considered.

Corresponding to each variable u[i] (resp. w[i]) is a terminal in low-queue
(rasp. high-queue). When such a variable is changed, the priority queues are up-
dated by the following routine:

UPDATE-Qs(T, i)
1 IF (u[i] <w[i]) THEN
2 Update child~(u[i]) in low-queue and childi(w[i]) in high-queue

to maintain the queues' invariants.
3 ELSE Delete both nodes from their respective queues.

Line 2 replaces the old value of childi(u[i]) in low-queue (childi(w[i]) in high-queue
by its new value. Line 3 will only be executed if child;(u[i]) > child~(w[i]) which
will only happen if the tree no longer contains any ith child as a terminal.

The routines SPROUT and LEVEL are shown in Figure 6.

616

SPROUT(T)
--Make ~he minimum terminal a non.terminal

1 m ~--- m + I;
2 Let childi(u[~']) be the minimum terminal in low-queue.
3 Dim] .--- D[u[i]] + ei; u[i] *- u[,] + 1; UPDATE-Qs(T, i)
4 C ~ C - Dim]; m D e g *-- 0;

--Add smallest child as a terminal
5 ADD-TERMINAL(T)

LEVEL(T)
1 WHILE (mDeg < r and childmDeg+l(m) is less than

the max. terminal childi(w[i]) in hlgh-queue) DO
2 ADD-TERMINAL(T)

--Delete the maximum termiaal
3 C ~ C - (D[w[il] + ei)
4 wtq - - w [,] - 1; UPDATE-Qs(T, i)

ADD-TERMINAL(T)
1 m D e g ,,- m D e g + 1; C ~ C + D[rn] + CmDeg;
2 w[mDeg] ~ m; UPDATE-Qs(T, mDeg)

Figure 6: The Operations SPROUT and LEVEL.

C o n s t r u c t i o n of the Fi rs t Trees. Tree Tm=l. has a simple structure. Its non-
terminals are the nodes (1 ,2 , . . . , retain). Its terminals are the n shallowest children
of nodes (1 ,2 , . . . , retain).

To construct T~.i , we assume that n > r, otherwise Tm.~. is simply the root
and its first n children. For 1 _~ m < retain, define T,n to be the tree with non-
terminals {1, ..., m} and all of the (r - 1)m + 1 children of {1, ..., m} as terminals.
The proof of Lemma 3 generalizes easily to these trees; node m + 1 is the minimum
terminal of T,~.

The tree T1 is easy to construct. It is the tree with 1 root and r children.
Inductively construct the tree Tm from the tree Tin-l, ra < mmin - 1 as follows: find
the minimum terminal in Tm by taking the minimum terminal out of low-queue.
Label this node m, make it a non-terminal, and add all of its children to Tm as
terminals.

Finally, construct T,~=i. from T~=l.-1 by making the lowest terminal of T~=~._I
into node rnmin. Add the n - (r - 1)(retain - 1) minimum children of node mmin as
terminals bringing the total number of terminals in the current tree to n. Level the
resulting tree.

Since only O(n/r) trees are constructed while computing Tm~., and each tree
can be constructed from the previous tree in O(rlogr) time, the time required
to compute Tm=~, is O(nlogr). (If desired, the time for each tree Tm with m <
ramin can be reduced to O(logr), because maximum terminals are not replaced in
constructing such a tree.)

617

C o n s t r u c t i o n of the Remain ing Trees. The algorithm constructs the sequence
of trees

(Tmml., Tm~,o+a, Trnf,.+2, ..., T ~ , u)
as described previously. Tree Tm is found by SPROUTing and then LEVELing
its predecessor Tin-1. The cost is O(dmlogr) time, where dm is the degree of
the new non-terminal rn in Tin. By Lemma 9 this part of the algorithm runs in
O ((~m din) log r) - O(n log s r) time.

Acknowledgements: The authors would like to thank Dr. Jacob Ecco for introducing
us to the Morse Code puzzle which sparked this investigation.

References
[1] Doris Altenkamp and Kurt Melhorn. Codes: Unequal probabilies, unequal letter costs.

Journal of the Association for Computing Machinery, 27(3):412-427, July 1980.
[2] D. A. Huffman. A method for the construction of minimum redundancy codes. In

Proc. IRE 40, volume 10, pages 1098-1101], September 1952.
[3] Richard Karp. Minimum-redundancy coding for the discrete noiseless channel. IRE

Transactions on In.formation Theory, January 1961.
[4] Donald E. Knuth. The Art o] Computer Programming, Volume III: Sorting and Search-

ing Addison-Wesley, Reading, Mass., 1973.
[5] Y. Perl, M. R. Gaxey, and S. Even. Efficient generation of optimal prefix code:

Equiprobable words using unequal cost letters. Journal o.f the Association.for Com-
puting Machinery, 22(2):202-214, April 1975.

