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The paging problem is that of deciding which pages to keep in a memory of k 
pages in order to minimize the number of page faults. We develop the marking 
algorithm, a randomized on-line algorithm for the paging problem. We prove that 
its expected cost on any sequence of requests is within a factor of 2Hk of optimum. 
(Where Hk is the kth harmonic number, which is roughly In k.) The best such 
factor that can be achieved is Hk. This is in contrast to deterministic algorithms, 
which cannot be guaranteed to be within a factor smaller than k of optimum. An 
alternative to comparing an on-line algorithm with the optimum off-line algorithm 
is the idea of comparing it to several other on-line algorithms. We have obtained 
results along these lines for the paging problem. Given a set of on-line algorithms 
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and a set of appropriate constants, we describe a way of constructing another 
on-line algorithm whose performance is within the appropriate constant factor of 
each algorithm in the set. o 1991 Academic PKSS, IN. 

1. INTRODUCTION 

Consider a memory system with k pages of fast memory (a cache) and 
IZ - k pages of slow memory. A sequence of requests to pages is to be 
satisfied, and in order to satisfy a request to a page that page must be in 
fast memory. If a requested page is not in fast memory a page fault occurs. 
In this case the requested page must be moved into fast memory, and 
(usually) a page must be moved from fast memory to slow memory to make 
room for the requested page. The paging problem is that of deciding which 
page to eject from fast memory. The cost to be minimized is the number of 
page faults. 

A paging algorithm is said to be on-line if its decision of which page to 
eject from fast memory is made without knowledge of future requests. 
Sleator and Tarjan [15] analyzed on-line paging algorithms by comparing 
their performance on any sequence of requests to that of the optimum 
off-line algorithm (that is, one that has knowledge of the entire sequence 
of requests in advance). They showed that two strategies for paging 
(ejecting the least recently used page, or LRU, and first-in-first-out, or 
FIFO) could be worse than the optimum off-line algorithm by a factor of 
k, but not more, and that no on-line algorithm could achieve a factor less 
than k. 

Karlin et al. [93 introduced the term competitive to describe an on-line 
algorithm whose cost is within a constant factor (independent of the 
request sequence) of the optimum off-line algorithm, and they used the 
term strongly competitive to describe an algorithm whose cost is within 
the smallest possible constant factor of optimum. These authors proposed 
another paging strategy, flush-when-full or F?VF, and showed that it is also 
strongly k-competitive. 

Manasse et al. 1101 extended the definition of competitiveness to include 
randomized on-line algorithms (on-line algorithms which are allowed to 
use randomness in deciding what to do). Let A be a randomized on-line 
algorithm, let u be a sequence of requests, and let c(a) be the cost of 
algorithm A on sequence (+ averaged over all the random choices that A 
makes while processing [T. Let C,(a) be the cost of deterministic algo- 
rithm B on sequence (+. Algorithm A is said to be c-competitiae if there is 
a constant a such that for every request sequence (+ and every algorithm 
B: 

C,(a) I c . C,(a) + a. 
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The constant c is known as the competitive factor. This definition has the 
desirable feature of ensuring that A’s average performance on every 
individual sequence is close to that of the optimum off-line algorithm. 

In this paper we consider randomized algorithms for the paging prob- 
lem from the competitive point of view. We describe a randomized 
algorithm, called the marking algorithm, and show that it is 2H,-competi- 
tive. (Here Hk denotes that kth harmonic number: Hk = 1 + 3 + 
; + . . . + l/k. This function is closely approximated by the natural 
logarithms: ln(k + 1) I Hk I In(k) + 1. We also show that no random- 
ized paging algorithm can have a competitive factor less than Hk. 

The marking algorithm is strongly competitive (its competitive factor is 
Hk) if k = n - 1, but it is not strongly competitive if k < n - 1. We 
describe another algorithm, EATR, which is strongly competitive for the 
case k = 2. 

Borodin, Linial, and Saks [3] gave the first specific problem in which the 
competitive factor is reduced if the on-line algorithm is allowed to use 
randomness. The problem they analyzed is the uniform task system. They 
presented a randomized algorithm for uniform task systems whose com- 
petitive factor is 2H,, where n is the number of states in the task system, 
and proved that for this problem the competitive factor of any randomized 
algorithm is at least H,. The marking algorithm is an adaptation of the 
randomized algorithm of Borodin et al. It was discovered by three groups 
working independently. These three groups collaborated in the writing of 
this paper. 

The standard definition of competitiveness requires that the on-line 
algorithm be within a constant factor of any other algorithm, even an 
off-line one. In the case of deterministic paging algorithms this constraint 
is so severe that the best possible constant required is rather large. An 
alternative approach is to require that the on-line algorithm be efficient 
compared to several other on-line algorithms simultaneously. Given deter- 
ministic on-line algorithms for the paging problem B(l), B(2), . . . , B(m), 
and constants c(l), c(2), . . . , c(m), we show how to construct a new on-line 
algorithm whose performance is within a factor of c(i) of B(i) for all 
1 < i < m, under the condition that l/c(l) + * * * + l/c(m) I 1. For ex- 
ample, we can construct an algorithm whose performance is within a 
factor of two of the performance of both the LRU algorithm and the 
FIFO algorithm. We also show how this construction can be applied to 
randomized algorithms. 

This paper is organized as follows. Section 2 defines server problems (a 
generalized form of the paging problem) and introduces the terminology 
we shall use for the paging problem. Section 3 discusses the marking 
algorithm, Section 4 describes algorithm EATR, Section 5 proves the Hk 
lower bound on the competitive factor, and Section 6 contains our results 
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about combining algorithms. Recent extensions to this work are described 
in Section 7, along with several open problems. 

2. SERVER PROBLEMS 

To put our work on paging in context it is useful to point out the 
connection between the paging problem and the k-server problem. Let G 
be an n-vertex graph with positive edge lengths obeying the triangle 
inequality, and let k mobile servers occupy vertices of G. Given a 
sequence of requests, each of which specifies a vertex that requires service, 
the k-server problem is to decide how to move the servers in response to 
each request. If a requested vertex is unoccupied, then some server must 
be moved there. The requests must be satisfied in the order of their 
occurrence in the request sequence. The cost of handling a sequence of 
requests is equal to the total distance moved by the servers. 

Server problems were introduced by Manasse, McGeoch, and Sleator 
[lo, 111. They showed that no deterministic algorithm for the k-server 
problem can be better than k-competitive, they gave k-competitive algo- 
rithms for the case when k = 2 and k = II - 1, and they conjectured that 
there exists a k-competitive k-server algorithm for any graph. This conjec- 
ture holds when the graph is uniform [15], a weighted cache system (where 
the cost of moving to a vertex from anywhere is the same> [4], a line [4], or 
a tree [5]. Fiat et al. [7] showed that there is an algorithm for the k-server 
problem with a competitive factor that depends only on k. There has also 
been work on memoryless randomized algorithms for server problems 
[l, 6, 141. These algorithms keep no information between requests except 
the server locations. The randomized algorithm of Coppersmith et al. [6] is 
k-competitive for a large class of graphs. 

In the uniform k-server problem the cost of moving a server from any 
vertex to any other is one. The paging problem is isomorphic to the 
uniform k-server problem. The correspondence between the two problems 
is as follows: the pages of address space correspond to the n vertices of 
the graph, and the pages in fast memory correspond to those vertices 
occupied by servers. In the remainder of this paper we shall use the 
terminology of the uniform k-server problem. 

3. THE MARKING ALGORITHM 

The marking algorithm is a randomized algorithm for the uniform 
k-server problem on a graph with IZ vertices. The algorithm works as 
follows: The servers are initially on vertices 1,2,3,. . . , k. The algorithm 
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maintains a set of marked vertices. Initially the marked vertices are 
exactly those that are covered by servers. After each request, the marks 
are updated, then a server is moved if necessary, as follows: 

Marking. Each time a vertex is requested, that vertex is marked. The 
moment k + 1 vertices are marked, all the marks except the one on the 
most recently requested vertex are erased. 

Serving. If the requested vertex is already covered by a server, then 
no servers move. If the requested vertex is not covered, then a server is 
chosen uniformly at random from among the unmarked vertices, and this 
server is moved to cover the requested vertex. 

This algorithm can be interpreted as a randomized form of LRU as 
follows. Rather than maintaining one queue of servers, the algorithm 
maintains two of them. When a server is needed it is taken from the front 
of one of the queues and placed at the end of the other. When the queue 
from which servers are taken is empty it is replaced by the other queue, 
but not before the order of the elements in the queue is shuffled by a 
random permutation. 

THEOREM 1. The marking algorithm is a 2H,-competitive algorithm for 
the uniform k-server problem on n vertices. 

Proof Let u = a(l), a(2), . . , be a sequence of requests. The marking 
algorithm (denoted M) implicitly divides u (excluding some requests at 
the beginning) into phases. The first phase begins with u(i), where i is the 
smallest integer such that u(i) @ (1,2,. . . , k). In general the phase start- 
ing with a(i) ends with u(j), where j is the smallest integer such that the 
set (u(i), di + 11,. . . , u(j + 1)) is of cardinality k + 1. 

At the start of every phase, the marked vertices are precisely the ones 
occupied by M’s servers. The first request of every phase is to an 
unmarked vertex. A vertex is called clean if it was not requested in the 
previous phase and has not yet been requested in this phase. A vertex is 
called stale if it was requested in the previous phase but has not yet been 
requested in this phase. 

Our proof is organized as follows. We let an adversary choose any 
algorithm A. We then evaluate the cost incurred by A during a phase, 
evaluate the cost incurred by M during the same phase, and compare 
these two quantities. These costs depend on 1, the number of requests to 
clean vertices during the phase. 

Without loss of generality, we shall assume that the algorithm A chosen 
by the adversary is lazy. A lazy algorithm is one which does not move any 
server in response to a request to a covered vertex and moves exactly one 
server in response to a request to an uncovered vertex. Manasse et al. 
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[lo, 111 showed that for any given algorithm, there is always a lazy one that 
incurs no more cost. Thus our assumption does not limit the generality of 
our result. 

We shall first argue that the amortized cost incurred by A over the 
phase is at least l/2. Let d be the number of A’s servers that do not 
coincide with any of M’s servers at the beginning of the phase. Let d’ be 
this quantity at the end of the phase. Let C, be the cost incurred by A in 
the phase. We claim C, 2 1 - d, because among the 1 requests to clean 
vertices at most d of these will be for vertices that A already covers. 

A second bound on C, is obtained by considering S, the set of marked 
vertices at the end of the phase. The vertices of S are those that are 
covered by M at the end of the phase, so at the end of the phase d 
servers of A are not in S. During this phase exactly the vertices of S were 
requested, so since A is lazy, we know that at least d’ of A’s servers were 
outside of S during the entire phase. The remaining k - d’ servers had to 
cover requests at each of the k vertices of S, implying that A’s cost is at 
least d’. This is, C, 2 d’. 

Combining the inequalities from the preceding paragraphs we obtain 

CA r max(I - d, d’) 2 i(l - d + d’). 

When this is summed over all phases, the d and d’ terms telescope, so we 
can assume for the purposes of this analysis that the cost of a phase is just 
l/2. 

We shall now bound the expected cost incurred by M during the phase. 
There are I requests to clean vertices and each of these costs one. There 
are k - I requests to stale vertices; the expected cost of each of these 
requests is just the probability that there is no server there. This probabil- 
ity varies as a function of the current number of stale vertices, S, and the 
number of clean vertices requested in the phase so far, c. The expected 
cost of the request is c/s because there are c unserved vertices dis- 
tributed uniformly among s stale vertices. 

During the phase, the sequence will make I requests to clean vertices 
and k - 1 requests to stale vertices. The sequence with the highest 
expected cost for M is the one which first requests all the clean vertices 
(increasing c), before requesting any stale vertices. The expected cost of 
the requests to stale vertices is thus bounded by 

1 1 1 1 

z+- k-l+k-2 
- -** Jr- = 1(H, -I&). 

1+1 
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The total expected cost to M for the phase is therefore at most 

I( Hk - H, f 1) I lH,. 

Since the cost incurred by A during the phase is (amortized) l/2, this 
proves that the marking algorithm is 2H,-competitive. 0 

In the special case of n - 1 servers, we can obtain a tighter bound. 

THEOREM 2. The marking algorithm is a H,,-,-competitive algorithm for 
the uniform (n - O-server problem on n vertices. 

Proof. The above proof can be modified slightly to give this theorem. 
In the (n - O-server problem, every phase has 1 = 1. In this case we can 
show that the amortized cost of A is at least 1 per phase. 

As above, let d be the number of A’s servers that do not coincide with 
any of M’s servers at the beginning of the phase and d’ be this quantity at 
the end of the phase. The first request of the phase is to a clean vertex, 
and its cost to A is at least 1 - d. Among the n - 2 other vertices 
requested in this phase, at least d’ cause A to incur a cost of one. Thus 
the cost to A is at least 1 - d + d’. This shows that the amortized cost to 
A of a phase is at least 1. Combining this with the preceding analysis of M 
finishes the proof. 0 

Why is it that if 1 = 1 we can show that the cost to A is at least 
1 - d + d’, but when 1 > 1 we can only show that the cost is at least 
(1 -d +d’)/2? Th e d t is inction is due to a difference in the structure of 
the requests in a phase. The tighter bound actually holds whenever the 
phase has the following structure: after the last request to a clean vertex, 
all of the other k - 1 vertices used during the phase are requested. In this 
case A incurs a cost of 1 - d for the clean vertices, then an additional cost 
of d’ for the subsequent requests to the other k - 1 vertices. This pattern 
holds for the case 1 = 1. 

The marking algorithm is not in general H,-competitive for the uniform 
k-server problem. This is even true in the case k = 2, n = 4. Suppose that 
the servers of M are initially on vertices 1 and 2, and the servers of the 
adversary A are on vertices 1 and 3. The first phase will consist of requests 
to vertices 3 and 4. The marking algorithm will incur a cost of 2 for these 
requests, and end with servers on vertices 3 and 4. To handle this phase, 
algorithm A will use its server on vertex 3 to cover the request on vertex 4, 
incurring a cost of 1. At the end of the phase the servers of A and M will 
again coincide on exactly one vertex, and the process can be repeated. The 
competitive factor for this application of M is 2, which exceeds Hz. 
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4. ALGORITHM EATR 

Algorithm EATR is a randomized algorithm for the uniform 2-server 
problem. (The name stands for “end after twice requested,” a rough 
description of how the algorithm defines the end of a phase.) 

The servers are initially located on vertices 1 and 2. The algorithm 
partitions the sequence of requests into phases in a way that is different 
from that used by the marking algorithm. The first phase starts at the first 
request that is to neither 1 nor 2. A vertex is called clean if it was not 
occupied by a server at the end of the previous phase and has not been 
requested during this phase. A vertex is called stale if it is not clean and is 
not the most recently requested vertex. The algorithm maintains one 
server on the most recently requested vertex, and the other uniformly at 
random among the set of stale vertices. When a stale vertex is requested 
the servers are placed on the two most recently requested vertices. The 
next phase begins after this, on a request for a vertex that is not covered 
by a server. 

THEOREM 3. Algorithm EATR is a 3/2-competitive algorithm for the 
uniform 2-server problem. 

Proof: Let 1 be the number of clean vertices requested during a phase. 
Before the request to the stale vertex that terminates the phase, the 
number of stale vertices is I + 1, and there is a server on each of these 
with probability l/(1 + 1). The expected cost of a phase to EATR is then 

1 
l+- 

I+ 1’ 

The phases as defined by EATR have the special structure described in 
the paragraph after the proof of Theorem 2. Thus the amortized cost 
incurred by any algorithm for a phase is at least 1. The competitive factor 
is therefore at most 

l+l/(l+l) =1+ 1 3 

1 (1+1)%. 

5. A LOWER BOUND 

Cl 

THEOREM 4. There is no c-competitive randomized algorithm for the 
uniform (n - l)-server problem on n vertices with c < H,, _ 1. 
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Proof 1 Let A be a randomized on-line algorithm for solving the 
problem. We use the technique of constructing a nemesis sequence for 
algorithm A. Since A is randomized, the adversary constructing the 
sequence is not allowed to see where the servers are. The adversary is, 
however, able to maintain a vector p = (pl, p2,. . . , p,) of probabilities, 
where pi is the probability that vertex i is not covered by a server. (The 
adversary can do this by simulating A on all possible outcomes of its 
random choices and condensing the information about where the servers 
are in each of these simulations into the vector of probabilities.) Note that 
zipi = 1. 

If the nemesis sequence requests a vertex i, then the expected cost 
incurred by A is pi. As a result of responding to the request, pi changes to 
1, and some other elements of the probability vector may decrease. (Even 
if we allow A to change the vector arbitrarily and ignore the cost it incurs 
in doing so, the lower bound still holds.) 

The adversary will maintain a set of marked vertices for the sequence it 
has generated so far in just the way that the marking algorithm would. 
Furthermore, we can also define phases in the nemesis sequence just as 
we did for an arbitrary sequence processed by the marking algorithm. As 
usual, at the start of each phase IZ - 1 vertices are marked. After the first 
request of the phase, one vertex is marked. 

Armed with these tools (the marking and the probability vector), the 
adversary can generate a sequence such that the expected cost of each 
phase to A is H,,-l, and the cost to the optimum off-line algorithm is 1. 
This will prove the theorem. 

Consider a situation in which the number of unmarked vertices is U. 
The goal of the adversary is to generate some requests that cause A to 
incur an expected cost of at least l/u and decrease the number of 
unmarked vertices to u - 1 (except if u = 1, in which case the number of 
unmarked vertices changes to IZ - 1). Since u takes on every integer value 
between 1 and n - 1 the total expected cost incurred by A is at least 
H,,- 1. This subsequence of requests will be called a subphase. Constructing 
a subphase will show how to generate the desired nemesis sequence and 
complete the proof of the theorem. 

A subphase consists of zero or more requests to marked vertices, 
followed by a request to an unmarked vertex. Let S be the set of marked 
vertices, and let P = LiEspi. Let u be it - ISI, the number of unmarked 
vertices. If P = 0 then there must be an unmarked vertex i with pi 2 l/u. 
In this case the subphase consists of a single request to i. The expected 
cost of this request is at least l/u. 

‘Raghavan [13, pp. 118-1191 presents a different proof of this theorem based on a 
generalization of the minimax principle due to Andy Yao 1161. 
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If P > 0, then there must be i E S such that pi > 0. Let E = pi, and let 
the first request of the subphase be i. Next, a set of requests are generated 
by the following loop (P denotes the current total probability of the 
marked vertices): 

While P > E and while the total expected cost of all the 
requests in this subphase so far does not exceed l/u, request 
vertex i E S, where pi = maxi ,s(pj). 

Each iteration of this loop adds at least E/ IS1 > 0 to the total expected 
cost of this subphase. Thus the loop must terminate. If the total expected 
cost ends up exceeding l/u, then an arbitrary request is made to an 
unmarked vertex, and the subphase is over. If the loop terminates with 
P I E, then a request is generated to the unmarked vertex j with the 
highest probability value. Note that pj r (1 - P)/u. The following in- 
equalities finish the proof: 

expected cost of the subphase 

1-P l--E 1 
2&+pj2&+ ->&+->- 0 

u u -u- 

If there are k servers, with 1 I k I n - 1, then the adversary can 
ignore all but k + 1 vertices of the graph and force the on-line algorithm 
to incur a cost at least Hk times optimum. Thus we have: 

COROLLARY 5. There is no c-competitive randomized algorithm for the 
uniform k-server problem on a graph of n vertices with c < Hk, where 
l<k<n-1. 

6. ALGORITHMS THAT ARE COMPETITIVE AGAINST 
SEVERAL OTHERS 

In many applications of the k-server model, the following situation 
arises: one is given several on-line algorithms with desirable characteristics 
and would like to construct a single on-line algorithm that has the 
advantages of all the given ones. For example, in the case of the paging 
problem (the uniform-cost k-server problem), the least-recently-used page 
replacement algorithm (LRU) is believed to work well in practice, but, in 
the worst case, it can be k times as costly as the optimal off-line algorithm. 
On the other hand, we have exhibited a randomized on-line algorithm that 
is 2H,-competitive, and thus it has theoretical advantages over LRU. Can 
we construct an on-line algorithm that combines the advantages of these 
two algorithms? We shall see that the answer is “Yes.” 
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We adopt the viewpoint that each on-line algorithm is tailored for a 
particular choice of k, the number of servers, and n, the number of 
vertices that may request service. We may assume without loss of general- 
ity that the n vertices are named by the integers 1,2,. . . , PZ. The ordered 
pair (k, n) is called the type of the algorithm. Thus, in a request sequence 
presented to an algorithm of type (k, n>, each request is an integer 
between 1 and n. According to this viewpoint a general strategy (such as 
LRU, FIFO, or the marking algorithm) determines infinitely many individ- 
ual algorithms, corresponding to all the possible choices of k and n. 

Let A and B be deterministic on-line algorithms of the same type. Let 
c be a positive constant. Then A is said to be c-competitiue against B if 
there exists a constant a such that on every sequence u of requests, 

C,(u) I c - C,(u) + a. 

Let c* = (c(l), c(2), . . .) c(m)) be a sequence of positive real numbers. 
Then c* is said to be realizable if, for every type (k, n>, and for every 
sequence B(l), B(2), . . . , B(m) of deterministic on-line algorithms of type 
(k, n), there exists a deterministic on-line algorithm A of type (k, n) such 
that, for i = 1,2,. . . , m, A is c(i)-competitive against B(i). 

THEOREM 6. The sequence c* is realizable if and only if 

Proof. (Sufficiency) We show that, if (1) holds, then c* is realizable. 
Let deterministic on-line algorithms B(l), B(2), . . . , B(m) of type (k, n) be 
given. We shall construct a deterministic on-line algorithm A of type 
(k, n) such that, for all positive integers r, all request sequences u, and all 
i between 1 and m, B(i) incurs a cost greater than or equal to lr/c(i)J by 
the time A incurs cost r. This will prove the sufficiency of (1). 

Algorithm A will be a lazy algorithm; i.e., it will move a server only 
when a vertex is requested that is currently not covered by a server. Let u 
be a fixed request sequence. 3’he time interval (t,, t,> is called a v-interval 
for A if, when processing u, A moves a server to vertex u at time t,, 
leaves the server on vertex u until time t,, and then moves that server at 
time t,. Algorithm A is said to punish algorithm B at time t, if, for some 
u and t,, (tI, tJ is a v-interval for A, and, for some <t;, t;> such that 
t; I t, < t; I t,, (t;, t;) is a v-interval for B. Clearly, C,(u) is at least as 
great as the number of time steps at which A punishes B. Thus, it suffices 
to show that A can punish each B(i) at least lC,(u>/c(i)J times. 



696 FIAT ET AL. 

We shall show that, at each step at which A incurs a unit of cost, A has 
complete freedom to decide which algorithm B(i) to punish. Let S(A, t) 
be the set of vertices that A covers by servers just before request a(t) 
arrives and suppose that a(t) E S(A, t), so that A must incur a unit of 
cost in order to process a(t). Let S@(i), t + 1) be the set of vertices that 
B(i) covers by servers just after processing a(t). Since the sets S(A, t) and 
S@(i), t + 1) each have cardinality k, and since S@(i), t + 1) contains 
a(t) but S(A, t) does not, there must be some vertex u that lies in S(A, t) 
but does not lie in S@(i), t + 1). Then A can punish B(i) at step t by 
moving a server from vertex u to vertex a(t). 

Let PUN(i, s, a) denote the number of times A punishes B(i) while 
processing the first s requests in u, and let CA(s, a) denote the cost that 
A incurs during the processing of the first s elements of u. Suppose that 
A must move a server in order to process c+(t). Then it chooses the server 
to move in such a way as to punish that algorithm B(i) for which 
c(iXPUN(i, t - 1, a) + 1) is least. It is easily verified that, provided 
Cl/c(i) I 1, the following holds for all positive integers r and all i: B(i) 
gets punished at least [r/c(i)1 times by the time A incurs a cost of r. This 
completes the proof of the sufficiency of (1). 

(Necessity) Let m be a positive integer. Let c* = (c(l), c(2), . . . , c(m)) 
be such that El/c(i) > 1. We construct on-line deterministic algorithms 
B(l), B(2), . . . , B(m) of type (2m - 1,2m) such that no on-line determin- 
istic algorithm A can be c(i)-competitive against each B(i). Since 12 = 2m 
and k = 2m - 1, it will be the case that, at any step in the execution of an 
on-line deterministic algorithm, exactly one of the 2m possible vertices 
fails to be covered by a server. For i = 1,2,. . . , m let B(i) be the 
algorithm that keeps all vertices except i and i + m permanently covered 
by servers and that shuttles the remaining server between i and i + m in 
response to requests for those two vertices. No two of these algorithms are 
ever required to move a server at the same time. At any stage in the 
execution of a deterministic on-line algorithm A there will exist some 
vertex that is not covered; this is true because there are 2m vertices and 
only 2m - 1 servers. Thus, given any deterministic on-line algorithm A 
and any positive integer N, it is possible to construct a request sequence 
T(N) of length N that causes A to move a server at every step. Then 
CA(r(N)) = N, and CCBci)(7(N)) I N. If A is to be c(i)-competitive with 
each of the on-line algorithms B(i) then there must exist constants a(i) 
such that, for all i and all N, 

But these inequalities, together with the fact that Cl/c(i) > 1, lead to a 
contradiction for sufficiently large N. q 
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We now extend our definitions to the case of randomized algorithms. 
Let A and B be randomized on-line algorithms of the same type. Let us 
say that algorithm A is c-competitive against algorithm B if there exists a 
constant a such that, for every request sequence (+, 

C(u) I c *G(u) + a. 

Let c* = (c(l), c(2), . . . ) c(m)) be a sequence of positive reals. Then c* is 
said to be r-realizable if for every type (k, n), and for every sequence 
B(l), B(2), . . . , B(m) of randomized on-line algorithms of type (k, n), 
there exists a randomized on-line algorithm A of type (k, n) such that, for 
i= 1,2 , . . . , m, A is &)-competitive against B(i). 

THEOREM 7. If c* is realizable then c* is r-realizable. 

proof. Our proof is modeled after the proof of sufficiency in Theorem 
6. In that proof, deterministic on-line algorithms B(l), B(2), . . . , B(m) of 
type (k, n) were given, and the deterministic on-line algorithm A of type 
(k, n) was constructed to be &)-competitive against B(i) for each i. The 
construction had the property that the action of A in response to the tth 
request in an input sequence c~ was completely determined by c* and the 
actions of the algorithms B(i) in response to the first t requests in a. The 
construction ensures that, if c* is realizable, then B(i) incurs cost at least 
[r/c(i)1 by the time A incurs cost r, and hence C&a> 2 LCA(a)/c(i)]. 
Let us call this construction PUNISH. 

We shall extend PUNISH to the randomized case in a straightforward 
manner. A randomized on-line algorithm may be viewed as basing its 
actions on the request sequence (T presented to it and on an infin- 
ite sequence p of independent unbiased random bits. The action of the 
algorithm on u(t), the tth request in (T, will be determined by the first t 
requests in u and by some initial part of the infinite sequence p. Let 
Cs(a, p) be the cost incurred when algorithm B is executed on request 
sequence u using the sequence p of random bits. Then G(u) is the 
expected value of CB(u, p>. 

Let c* be a realizable sequence, and let B(l), B(2), . . . , B(m) be 
randomized on-line algorithms. We shall construct a randomized on-line 
algorithm A of the same type that is &)-competitive against B(i), for 
i= 1,2 , . . . , m. We begin by giving a conceptual view of algorithm A, 
ignoring questions of effectiveness. Algorithm A starts by constructing an 
infinite sequence p of independent, unbiased bits. Then, as successive 
requests in the input sequence u arrive, it calculates the actions of each of 
the B(i) on these requests in u using the sequence of random bits p, and 
determines its own actions by applying PUNISH to c* and the actions of 
B(l), B(2), . . . , B(m) on u with random bits p. This ensured that, for 
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i= 1,2 ,**a, m, cB&, p) 2 lcAb, p)/c(i)l, and, averaging over all - 
choices of the random bits p, CA(v) _< c(i) . c,(a) + a(i). 0 

To do this simulation it is not actually necessary for A to generate an 
infinite sequence p. To process requests 1,2,. . . , t, A needs to generate as 
many random bits as are required by any B(i). Algorithm A must also 
remember that portion of the sequence p that it has given to some B(i), 
but not all of them. Of course, A is also required to simulate the behavior 
of each B(i) on the given input sequence. 

7. EXTENSIONS 

The problem of devising a strongly competitive algorithm for any k and 
n was solved by McGeoch and Sleator [12]. Their partitioning algotithm is 
much more complicated than the marking algorithm, but achieves the 
optimal competitive factor of Hk. 

For deterministic server problems all evidence indicates that the optimal 
competitive factor is k, and is therefore independent of the distances in 
the graph [4, 5, 111. This is not true in the randomized case. Karlin et al. 
[8] have shown that for two servers in a graph that is an isosceles triangle 
the best competitive factor that can be achieved is a constant that 
approaches e/(e - 1) z 1.582 as the length of the similar sides go to 
infinity. This contrasts with the uniform 3-vertex, 2-server problem for 
which the marking algorithm is 1.5-competitive. Analyzing the competi- 
tiveness of other non-uniform problems remains a challenging open prob- 
lem. 

Sleator and Tarjan [15] used a slightly different framework to study 
competitiveness in paging problems. They compared on-line algorithms to 
off-line algorithms with different numbers of servers (amounts of fast 
memory). They showed that LRU running with k servers performs within 
a factor of k/(k - h + 1) of any off-line algorithm with h 5 k servers and 
that this is the minimum competitive factor that can be achieved. Young 
[17] has extended this analysis to randomized algorithms. He has shown 
that the marking algorithm is roughly 2ln(k/(k - h + l))-competitive 
under these circumstances. 

There are many open problems involving the combining of on-line 
algorithms. Most notable of these is to extend the technique of construct- 
ing an algorithm competitive with several others to other problems besides 
the uniform server problem. Candidates include non-uniform server prob- 
lems, maintaining a list [15], and snoopy caching [9]. 
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