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Abstract. Given a weighted, ordered query set Q and a partition of Q
into classes, we study the problem of computing a minimum-cost deci-
sion tree that, given any query q ∈ Q, uses equality tests and less-than
comparisons to determine the class to which q belongs. Such a tree can
be much smaller than a lookup table, and much faster and smaller than
a conventional search tree. We give the first polynomial-time algorithm
for the problem. The algorithm extends naturally to the setting where
each query has multiple allowed classes.

1 Introduction

Given a weighted, ordered query set Q partitioned into classes, we study the
problem of computing a minimum-cost decision tree that uses equality tests (e.g.,
“q = 4?”) and less-than tests (e.g., “q < 7?”) to quickly determine the class of
any given query q ∈ Q. (Here the cost of a tree is the weighted sum of the depths
of all queries, where the depth of a given query q ∈ Q is the number of tests
the tree makes when given query q.) We call such a tree a two-way-comparison
decision tree (2wcdt). See Fig. 1.

A main use case for 2wcdts is when the number of classes is small relative
to the number of queries. In this case a 2wcdt can be significantly smaller than
a lookup table, and, likewise, faster and smaller than a conventional search tree,
because a search tree has to identify a given query q (or the inter-key interval
that q lies in) whereas a decision tree only has to identify q’s class. Because
they can be faster and more compact, 2wcdts are used in applications such as
dispatch trees, which allow compilers and interpreters to quickly resolve method
implementations for objects declared with type inheritance [2,3]. (Each type is
assigned a numeric ID via a depth-first search of the inheritance digraph. For
each method, a 2wcdt maps each ID to the appropriate method resolution.)

Chambers and Chen give a heuristic to construct low-cost 2wcdts, but leave
open whether minimum-cost 2wcdts can be found in polynomial time [2,3]. We
give the first polynomial-time algorithm to find minimum-cost 2wcdts. The algo-
rithm runs in time O(n4), where n = |Q| is the number of distinct query values,
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Fig. 1. An optimal two-way-comparison decision tree (2wcdt) for the problem instance
shown on the right. The instance (but not the tree) is from [2,3, Figure 6]. Each leaf
(rectangle) is labeled with the queries that reach it, and below that with the class for the
leaf. The table gives the class and weight of each query q ∈ Q = [50] = {1, 2, . . . , 50}.
The tree has cost 2055, about 11% cheaper than the tree from [2,3], of cost 2305.

matching the best time bound known for a special type of 2wcdts called two-
way-comparison search trees ( 2wcsts), discussed below. The algorithm extends
naturally to the setting where each query can belong to multiple classes, any one
of which is acceptable as an answer for the query. The extended algorithm runs
in time O(n3m), where m is the sum of the sizes of the classes.

Related Work. Various types of decision trees are ubiquitous in the areas of
artificial intelligence, machine learning, and data mining, where they are used
for data classification, clustering, and regression.

We study decision trees for one-dimensional data sets. Most work on such
trees has focussed on search trees, that is, decision trees that must explicitly
identify the query or the inter-key interval it lies in (essentially, each class is a
singleton). Here is a brief summary of relevant work on such trees. One of our
main contributions is to increase the understanding of trees based on two-way
comparisons. These are not yet fully understood.

The tractability of finding a minimum-cost search tree depends heavily on
the kind of tests that the tree can use. For some kinds of tests, the problem
is NP-complete [13]. Early works considered trees in which each test compared
the given query value q to some particular comparison key k, with three possible
outcomes: the query value q is less than, equal to, or greater than k [7, §14.5], [15,
§6.2.2] (See Fig. 2(a)). We call such trees three-way-comparison search trees, or
3wcsts for short. In a 3wcst, the query values that reach any given node form
an interval. This leads to a natural O(n3)-time dynamic-programming algorithm
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Fig. 2. Tree (a) is a three-way-comparison search tree (3wcst). Tree (b) is a two-
way-comparison search tree (2wcst) for the same instance. The query (or interval of
queries) reaching each (rectangular) leaf is within the leaf. The weight of the query (or
interval) is below the leaf.

with O(n2) subproblems for finding minimum-cost 3wcsts [9]. Knuth reduced
the time to O(n2) [14].

In practice each three-way comparison is often implemented by doing a less-
than test followed by an equality test. Knuth [15, §6.2.2, Example 33] proposed
exploring binary search trees that use these two tests directly in any combination.
Such trees are called two-way-comparison search trees ( 2wcsts) [1]. For the so-
called successful-queries variant (defined later, after Theorem 2), assuming that
the query weights are normalized to sum to 1, there is always a 2wcst whose
cost exceeds the entropy of the weight distribution by at most 1 [8]. The entropy
is a lower bound on the cost of any binary search tree that uses Boolean tests of
any kind. This suggests that restricting to less-than and equality tests need not
be too costly [8].

Stand-alone equality tests introduce a technical obstacle not encountered
with 3wcsts. Namely, while (analogously to 3wcsts) each node of a 2wcst is
naturally associated with an interval of queries, not all queries from this inter-
val necessarily reach the node. For this reason the dynamic-programming app-
roach for 3wcsts does not extend easily to 2wcsts. This led early works to
focus on restricted classes of 2wcsts, namely median split trees [17] and binary
split trees [10,12,16]. These, by definition, constrain the use of equality tests
so as to altogether sidestep the aforementioned technical obstacle. General-
ized binary split trees are less restrictive, but the only algorithm proposed to
find them [11] is incorrect [5]. Similarly, the first algorithms proposed to find
minimum-cost 2wcsts (without restrictions) were given without proofs of cor-
rectness [18,19], and the recurrence relations underlying some of those proposed
algorithms turned out to be demonstrably wrong [5].

In 1994, Spuler made a conjecture that leads to a natural dynamic program
for 2wcsts. Namely, that every instance admits a minimum-cost 2wcst with the
heaviest-first property: that is, at any equality-test node 〈 = h〉, the compari-
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Fig. 3. Three trees for the 2wcdt instance shown in (d). The set of queries reaching
each (rectangular) leaf is shown within the leaf (to save space, there ιi denotes the inter-
key open interval with right boundary i, e.g. ι1 = (−∞, 1), ι2 = (1, 2)). The associated
weights are below the leaf. The optimal tree (a) has cost 36 and is not heaviest-first.
Each heaviest-first tree (e.g. (b) of cost 37 or (c) of cost 39) is not optimal. These
properties also hold if each weight is perturbed to make the weights distinct.

son key h is heaviest among keys reaching the node [19]. In a breakthrough in
2002, Anderson et al. proved the conjecture for the aforementioned successful-
queries variant, leading to an O(n4)-time dynamic-programming algorithm to
find minimum-cost 2wcsts for that variant [1]. In 2021, Chrobak et al. simpli-
fied their result (in particular, the handling of keys of equal weights, as discussed
later) obtaining an O(n4)-time algorithm for finding minimum-cost 2wcsts [4].

Our Contributions. Unfortunately these 2wcst algorithms don’t extend easily to
2wcdts. The main obstacle is that for some instances (e.g. in Fig. 3) no minimum-
cost 2wcdt has the crucial heaviest-first property. To overcome this obstacle
we introduce a splitting operation (Definition 7), a correctness-preserving local
rearrangement of the tree that can be viewed as an extension of the well-studied
rotation operation to a more general class of trees, specifically, to trees whose
allowed tests induce a laminar set family (Property 1).

We use splitting to identify an appropriate relaxation of the heaviest-first
property that we call being admissible (Definition 4). Most of the paper is
devoted to proving the following theorem:

Theorem 1. If the instance is feasible, then some optimal tree is admissible.

Section 3 gives the proof. Along the way it establishes new structural prop-
erties of optimal 2wcsts and 2wcdts. Section 4 shows how Theorem 1 leads to
a suitable dynamic program and our main result:

Theorem 2. There is an O(n3m)-time algorithm for finding a min-cost 2wcdt.

Remarks. The presentation above glosses over a secondary technical obstacle
for 2wcsts. For 2wcst instances with distinct query weights, the heaviest-first
property uniquely determines the key of each equality test, so that the sub-
set of queries that reach any given node in a 2wcst with the heaviest-first
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property must be one of O(n4) predetermined subsets. This leads to a natural
dynamic program with O(n4) subproblems (See Sect. 3). But this does not hold
for instances with non-distinct weights. This obstacle turns out to be more chal-
lenging than one might expect. Indeed, there are instances for which, for each of
the 2n subsets S of Q, there is a minimum-cost 2wcst, having the heaviest-first
property, with a node u such that the set of queries reaching u is S. It appears
that one cannot just break ties arbitrarily: it can be that, for two maximum-
weight keys h and h′ reaching a given node u, there is an optimal subtree in
which u does an equality-test to h, but none in which u does an equality-test
to h′ [4, Figure 3]. Similar issues arise in finding optimal binary split trees—
these can be found in time O(n4) if the instance has distinct weights, while for
arbitrary instances the best bound known is O(n5) [10].

Nonetheless, using a perturbation argument Chrobak et al. show that an
arbitrary 2wcst instance can indeed be handled as if it is a distinct-weights
instance just by breaking ties among equal weights in an appropriate way [4].
We use the same approach here for 2wcdts.

Most search-tree problems come in two flavors: the successful-queries variant
and the standard variant. In the former, the input is an ordered setK of weighted
keys, each comparison must compare the given query value to a particular key in
K, and each query must be a value in K. In the latter, the input is augmented
with a weight for each open interval between successive keys. Queries (called
unsuccessful queries) to values in these intervals are also allowed, and must be
answered by returning the interval in which the query falls. Our formal definition
of 2wcdts generalizes both variants.

2 Definitions and Technical Overview

For the remainder of the paper, fix a 2wcdt instance (Q,w, C,K), where Q is a
totally ordered finite set of queries, each with a weight w(q) ≥ 0, the set C ⊆ 2Q
is a collection of classes of queries (where each class has a unique identifier),
and K ⊆ Q is the set of keys. Let n = |Q| and m =

∑
c∈C |c|. The problem is to

compute a minimum-cost two-way-comparison decision tree (2wcdt, as defined
below) for the instance.

To streamline presentation, throughout the paper we restrict attention to the
model of decision trees that allows only less-than and equality tests. Our results
extend naturally to decision trees that also use other inequality comparisons
between queries and keys. See the end of Sect. 4 for details.

Definition 1 (2wcdt). A two-way-comparison decision tree (2wcdt) is a rooted
binary tree T where each non-leaf node is a test of the form 〈 < k〉 for some
k ∈ K\{minQ}, or of the form 〈 = k〉 for some k ∈ K, and the two children
of the node are labeled with the two possible test outcomes (“yes” or “no”). Each
leaf node is labeled with the identifier of one class in C. This class must contain
every query q ∈ Q whose search (as defined next) ends at the leaf.

For each q ∈ Q, the search for q in T starts at the root, then recursively
searches for q in the root’s yes-subtree if q satisfies the root’s test, and otherwise
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in the no-subtree. The search stops at a leaf, called the leaf for q. The path from
the root to this leaf is called q’s search path. We say that q reaches each node on
this path, and q’s depth in T is defined as the length of this path (equivalently,
the number of comparisons when searching for q). The cost of T is the weighted
sum of the depths of all queries in Q.

A tree T is called irreducible if, for each node u in T , (i) at least one query
in Q reaches u, and (ii) if some class c ∈ C contains all the queries that reach
u, then u is a leaf.

For any !, r ∈ Q, let [!, r]
Q
and [!, r]

K
denote the query interval {q ∈ Q : ! ≤

q ≤ r} and key interval {k ∈ K : ! ≤ k ≤ r} = K ∩ [!, r]
Q
.

Allowing K and Q to be specified as we do captures both the successful-
queries and standard variants. The successful-queries variant corresponds to the
case when K = Q. The standard variant is modeled by having one non-key query
between every pair of consecutive keys, and before the minimum key and after
the maximum key (so |Q\K| = |K|+1). Each such non-key query represents an
interval between keys.

For ease of exposition, assume without loss of generality that each query
belongs to some class, so m ≥ |Q| and the input size is Θ(n + m) = Θ(m).
Note that the instance is not necessarily feasible, that is, it might not have a
decision tree. (To be feasible, in addition to each query belonging to some class,
each query interval that contains no keys must be contained in some class.) If
the instance is feasible, some optimal tree is irreducible, so we generally restrict
attention to irreducible trees. As we shall see, in an irreducible tree any given
test is used in at most one node.

Definition 2 (ordering queries by weight). For any query subset R ⊆ Q
and integer i ≥ 0 define heaviesti(R) to contain the i heaviest queries in R (or all
of R if i ≥ |R|). For q ∈ Q, define heavier(q) to contain the queries (in Q) that
are heavier than q. Define lighter(q) to contain the queries (in Q) that are lighter
than q. Break ties among query weights arbitrarily but consistently throughout.

Formally, we use the following notation to implement the consistent tie-
breaking mentioned above. Fix an ordering of Q by increasing weight, break-
ing ties arbitrarily. For q ∈ Q let w̃(q) denote the rank of q in the sorted
order. Throughout, given distinct queries q and q′, define q to be lighter
than q′ if w̃(q) < w̃(q′) and heavier otherwise (w̃(q) > w̃(q′)). So, for exam-
ple heaviesti(R) contains the last i elements in the ordering of R by increas-
ing w̃(q). The symbol ⊥ represents the undefined quantity argmax ∅. Define
w̃(⊥) = w(⊥) = −∞, heavier(⊥) = Q, and lighter(⊥) = ∅.

Definition 3 (intervals and holes). Given any non-empty query subset R ⊆
Q, call [minR,maxR]

Q
the query interval of R. Define k∗(R) to be the heaviest

key in R, if there is one (that is, k∗(R) = argmax{w̃(k) : k ∈ K ∩ R}). Define
also holes(R) = [minR,maxR]

Q
\R to be the set of holes in R. We say that a

hole h ∈ holes(R) is light if w̃(h) < w̃(k∗(R)), and otherwise heavy.



Classification via Two-Way Comparisons (Extended Abstract) 281

The set of queries reaching a node u in a tree T is called u’s query set,
denoted Qu. The query interval, and light and heavy holes, for u are defined to
be those for u’s query set Qu.

Overview. Note that each hole h ∈ holes(Qu) at a node u in a tree T must result
from a failed equality test 〈 = h〉 at a node v on the path from the root to u in
T . In particular, h ∈ K. Further, if the hole is light, then h is not the heaviest
key reaching v.

The problem has the following optimal substructure property. Any query
subset R ⊆ Q naturally defines the subproblem π(R) induced by restricting the
query set to R (that is, π(R) = (R,w, CR,K) where CR = {c∩R : c ∈ C}). In any
minimum-cost tree T for R, if T is not a leaf, then the yes-subtree and no-subtree
of T must be minimum-cost subtrees for their respective subproblems.

Let cost(R) be the minimum cost of an irreducible tree for π(R). (If R is
empty, then cost(R) = ∞, as no tree for R is irreducible.) Then the following
recurrence holds:

Observation 1 (recurrence relation). Fix any R ⊆ Q. If R = ∅, we have
cost(R) = ∞. Otherwise, if (∃c ∈ C)R ⊆ c (that is, R can be handled by a single
leaf labeled c), then cost(R) = 0. Otherwise, for any test u, let (Ryes

u , Rno
u ) be the

bipartition of R into those queries that satisfy u and those that don’t. Then

cost(R) = w(R) + minu
(
cost(Ryes

u ) + cost(Rno
u )

)
,

where the variable u ranges over the allowed tests (per Definition 1) such that
Ryes

u and Rno
u are non-empty. (If there are no such tests then cost(R) = ∞.)

The goal is to compute cost(Q) using a dynamic program that applies the
recurrence in Observation 1 recursively, memoizing results so that for each dis-
tinct query set R the subproblem for R is solved at most once. (The algorithm
as presented computes only cost(Q). It can be extended in the standard way to
also compute an optimal tree.) The obstacle is that exponentially many distinct
subproblems can arise.

Identity Classification Without Equality Tests. For intuition, consider first the
variant of our problem in which C is the identity classification, that is C =

{
{q} :

q ∈ Q
}
, and only less-than tests 〈 < k〉 are allowed (equality tests are not). In

the absence of equality tests, there are no holes. When applying the recurrence
recursively to cost(Q), each query set R that arises is a query interval. There are
O(n2) such query intervals, and for each the right-hand side of the recurrence can
be evaluated in O(n) time. This yields an O(n3)-time algorithm. This approach
mirrors a classical dynamic-programming algorithm for 3wcsts [9], as discussed
in the introduction.

The algorithm extends easily to arbitrary classifications C. Recall that a given
query set R can be handled by a leaf (at zero cost) if and only if R ⊆ c for some
c ∈ C. This condition can be checked in constant time given (!, r) such that
R = [!, r]

Q
(after an appropriate precomputation, e.g., for each !, precompute

the maximum r for which the condition holds).
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Identity Classification with Equality Tests Allowed. Next consider the variant
when C is the identity classification but both kinds of tests are allowed. This
is essentially the problem of computing a minimum-cost 2wcst. In this variant,
each node u in a tree T has query setQu = [minQu,maxQu]Q \holes(Qu). Apply-
ing the recurrence naively to cost(Q) can yield exponentially many subproblems
because holes(Qu) can be almost any subset of [minQu,maxQu]Q. However, as
mentioned in Sect. 1, it is known that some optimal tree T has the heaviest-first
property [1,4]: for each node u in T that does an equality test 〈 = h〉, the test
key h is the heaviest key reaching u. (Our tie-breaking scheme makes h unique.)
In such a tree there are no light holes. That is, the hole set of any given node u
is the set of heavy holes at u:

holes(Qu) = [minQu,maxQu]K ∩ heavier(k∗(Qu)).

(Note that, by the definition of k∗(Qu), no keys heavier than k∗(Qu) reach u,
so the set [minQu,maxQu]K ∩ heavier(k∗(Qu)) contains exactly the heavy holes
at u.)

A non-empty query set R without light holes is determined by the triple
(minR,maxR, k∗(R)), so there are O(n3) query sets without light holes.
This leads naturally to an O(n4)-time algorithm for instances with distinct
weights [1,4]. (Specifically, redefine cost(R) to be the minimum cost of any
heaviest-first, irreducible tree for π(R). Then cost(R) = ∞ if R has at least
one light hole. Add this case as a base case to the recurrence. Apply the mod-
ified recurrence recursively to calculate cost(Q). Then the number of distinct
non-trivial subproblems that arise is O(n3), and each can be solved in O(n)
time.)

Allowing Equality Tests and An Arbitrary Classification. The existing results
for 2wcsts don’t extend to 2wcdts because, as shown in Fig. 3, there are 2wcdt
instances with distinct weights for which no optimal tree is heaviest-first. But,
in some sense, the example in Fig. 3 is as bad as it gets. There is an optimal tree
in which an appropriate relaxation of the heaviest-first property holds, namely,
that each node’s query set is admissible. Roughly, this means that there are at
most three light holes, and the light holes must be taken heaviest first from those
keys that don’t belong to some class c ∈ C that contains k∗ (the heaviest key
reaching the node). Here’s the formal definition:

Definition 4 (admissible). Consider any query subset R ⊆ Q. The set R is
called admissible if it is non-empty and the set of light holes in R is either empty
or has the form

heaviestb( [minR,maxR]
K

∩ lighter(k∗(R))\c )

for some b ∈ [3] and c ∈ C such that k∗(R) ∈ c. A tree (or subtree) T is called
admissible if the query set of each node in T is admissible.

Above (and within any mathematical expression), for any integer i, the nota-
tion [i] denotes the set {1, 2, . . . , i}.
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To gain some intuition note that, by definition, for any query set R its holes
must be in [minR,maxR]

K
, and its light holes must be in lighter(k∗(R)). For

the algorithm, roughly, we redefine cost(R) = ∞ if R is not admissible, add a
corresponding base case to the recurrence and then recursively apply the mod-
ified recurrence to compute cost(Q). Each admissible query set R with no light
holes is determined by the triple (minR,maxR, k∗(R)). Per Definition 4, each
admissible query set R with at least one light hole is determined by a triple
(minR,maxR, k∗(R), b, c), where (b, c) ∈ [3] × C with k∗(R) ∈ c. It follows that
there are O(n3+n2m) = O(n2m) admissible query subsets, so that, in the recur-
sive evaluation of cost(Q), O(n2m) distinct non-trivial subproblems arise. These
are solvable in total time O(n3m). Section 4 gives the detailed proof.

3 Some Optimal Tree is Admissible

This section proves Theorem 1: if the instance is feasible, then some optimal tree
is admissible. Along the way we establish quite a bit more about the structure of
optimal trees. Section 3.1 introduces the aforementioned splitting operation (Def-
inition 7), a correctness-preserving local rearrangement of the tree that extends
the well-studied rotation operation to trees whose allowed tests induce a lami-
nar family (Property 1). (These trees subsume 2wcdts and 2wcsts.) Splitting
is used to prove two weight bounds (Lemmas 3 and 4), which are used in turn
to prove the main structural theorem (Theorem 3). The theorem says that if
one child of a node u1 is lighter than some descendant ud of the other child,
then the path from u1 to ud must have a highly restricted structure. (Roughly,
for any two distinct nodes ui and uj along the path, the outcome from ui that
remains on the path is consistent, per Definition 5, with both outcomes leaving
uj .) Theorem 3 holds for any class of trees whose allowed tests induce a laminar
family. Lemmas 5 and 6 use Theorem 3 to prove Theorem 1 for distinct-weights
instances. A perturbation argument then extends the result to all instances.

We start with some general terminology for how pairs of tests can relate.
Recall that (Q,w, C,K) is a problem instance with at least one correct tree. In
any such tree, each edge u → v from a node to its child corresponds to one of
the two possible outcomes of the test at u. We use u → v to denote both the
edge and the associated outcome at u. For example, if u is 〈 < 3〉, and v is the
no-child of u, then outcome u → v means the queried value is at least 3.

Definition 5. Two such outcomes u → v and x → y are called consistent if Q
contains a query value that satisfies them both. Otherwise they are inconsistent.

Two tests are said to be equivalent if either for all q ∈ Q the tests give the
same outcome for q, or for all q ∈ Q the tests give opposite outcomes for q.

For example, assume Q = [4]. The yes-outcome of 〈 < 3〉 is inconsistent with
the yes-outcome of 〈 = 4〉 and with the no-outcome of 〈 < 4〉, but is consistent
with both outcomes of 〈 = 2〉, and with both outcomes of 〈 < 2〉. The tests
〈 < 4〉 and 〈 = 4〉 are equivalent.

Most of the proof requires only the following property of tests:
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Property 1 (laminarity). Let u and x be test nodes. (i) If u and x do non-
equivalent tests, then, among the four pairs of outcomes between the two nodes,
exactly one pair is inconsistent, while the other three pairs are consistent. For-
mally, let u → v, u → v′, x → y, and x → y′ be the two outcomes from u and
the two outcomes from x. Then exactly one pair in {u → v, u → v′} × {x →
y, x → y′} is inconsistent. (ii) If u and x do equivalent tests, each outcome at u
is consistent with a distinct outcome at x.

Property 1 is easily verified. (Note that, by the definition of 2wcdts in Sect. 2,
and assuming there is more than one test, each outcome of each test is satisfied
by at least one query inQ.) We call Property 1 laminarity because it is equivalent
to the laminarity of the collection of sets that has, for each possible test, one set
containing the queries that satisfy the test. In our case this laminar collection is

{
{q ∈ Q : q < k} : k ∈ K\{minQ}

}
∪

{
{q} : q ∈ K

}
.

As an example, consider the query set Q = [4]. Then the yes-outcome of
〈 < 3〉 and the yes-outcome of 〈 = 4〉 are inconsistent, while every other pair of
outcomes is consistent; e.g., the yes-outcome of 〈 < 3〉 and the no-outcome of
〈 = 4〉 are consistent, as they are both satisfied by the query value 2.

Throughout most of the rest of this section (including Sects. 3.1 and 3.2), fix
T to be an arbitrary irreducible tree.

Property 2. (i) In T , if u is a proper ancestor of a test node v then the outcome
of u leading to v is consistent with both outcomes at v, and the other outcome
of u is consistent with exactly one outcome at v. (ii) No two nodes in T are
equivalent.

Proof. The irreducibility of T implies the first part of (i) (that the outcome of
u leading to v is consistent with both outcomes at v). So Property 1(ii) implies
that u and v are not equivalent. Then Property 1(i) implies the second part of
(i) (that the outcome at u leading away from v is consistent with exactly one
outcome at v.) To justify Property 2(ii), let x and y be two different test nodes in
T . We have already established that if one of x, y is an ancestor of the other then
they cannot be equivalent. In the remaining case, let u be the lowest common
ancestor of x and y. Using (i) twice, the outcome at u leading to x is consistent
with both outcomes at x but is consistent with exactly one of the outcomes at
y. So x and y cannot be equivalent. 01

3.1 Two Weight Bounds, via Splitting

This section defines splitting and proves the weight bounds (Lemmas 3 and 4).

Definition 6 (x-consistent path). Let u be a node in T , Tu the subtree of
T rooted at u, and x any allowed test (not necessarily in T ). The x-consistent
path from u is the maximal downward path from u in Tu such that each outcome
along this path is consistent with both outcomes at x.
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The x-consistent path from u is unique because (by laminarity) at most one
outcome out of any given node is consistent with both outcomes at x. In the case
that Tu contains a node x̃ that is equivalent to x, the x-consistent path from u is
the path from u to x̃ (using here the irreducibility of T and that neither outcome
at x̃ is consistent with both outcomes at x). In the case that Tu contains no such
node x̃, this x-consistent path from u ends at a leaf.

Fix a node u in T and a test node x, not necessarily in T . Informally, splitting
Tu around x replaces subtree Tu of T by the subtree T ′

x obtained by the following
process: initialize T ′

x to a subtree with root x, whose yes- and no-subtrees are
each a copy of Tu, then splice out each redundant test (that is, each test w such
that one of the outcomes at w is inconsistent with the outcome at x that leads
to w, implying that every query reaching w satisfies the other outcome at w).
The resulting subtree T ′

x has a particular structure that we’ll need to use. The
formal definition, below, makes this structure explicit.

This construction and the proofs below use notation u1 → u2 → · · · → uj

for a downward path in T , and use u′
i to denote the sibling of ui, so each edge

ui → u′
i+1 leaves the path.

Definition 7 (splitting). Splitting Tu around x yields the subtree T ′
x produced

by the following process. Let u1 → u2 → · · · → ud be the x-consistent path from
u = u1, as defined in Definition 6. Initialize T ′

x to have root x, with yes- and
no-subtrees, denoted T yes

u and T no
u , each a copy of Tu.

For each outcome α ∈ {yes, no} at x, modify Tα
u within T ′

x as follows. For
each i ∈ [d − 1], if outcome ui → u′

i+1 is inconsistent with the α-outcome at x,
within Tα

u , delete node ui and the subtree Tu′
i+1

, making ui+1 the child of the
current parent of ui in place of ui. For i = d, if ud is a leaf, stop. Otherwise
(ud is a test node), let ud → y′ be the outcome at ud that is inconsistent with
the α-outcome at x. Within Tα

u , delete node ud and the subtree Ty′ , making the
other child y of ud the child of the current parent of ud in place of ud.

Note that, for each α ∈ {yes, no}, by the definition of the x-consistent path
from u and Property 1 (laminarity), outcome ui → u′

i+1 is inconsistent with
exactly one outcome at x. Also, if ud is a test node then it must be equivalent
to x, so exactly one outcome at ud is inconsistent with the α-outcome at x. (See
Lemmas 1 and 2 in the full paper [6] for a more detailed characterization of the
result of splitting.) Figs. 4 and 5 give examples of splitting. In Fig. 4, d = 4 and
x is a test node in Tu (in fact x = u4). In Fig. 5, x is a new node (not equivalent
to any node in Tu, where u = u1), d = 5 and u5 is a leaf.

The proofs of the following weight bounds take advantage of laminarity.
Specifically, as T is irreducible, Property 2(i) implies that if ui is a proper ances-
tor of uj then outcome ui → u′

i+1 is consistent with one outcome at uj and
inconsistent with the other.

Lemma 3. Suppose T is optimal. Let u1 → · · · → uj+1 be any downward path
in T . For 1 ≤ i ≤ j−1, let δi be the number of ancestors us of ui on the path such
that outcomes us → u′

s+1 and ui → u′
i+1 are consistent with opposite outcomes
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Fig. 4. Splitting a subtree Tu (where u = u1) around descendant u4. The figures in
this section draw Tu by drawing ui and u′

i as the left and right children of their parent
ui−1, so that the u4-consistent path from u1 is drawn as a prefix of the left spine. Each
rounded half-circle represents a subtree, labeled with its root. Here outcomes u1 → u′

2

and u3 → u′
4 are consistent with the outcome u4 → u5 at u4 while outcome u2 → u′

3 is
consistent with the other outcome u4 → u′

5. In the notation of Lemma 3 (taking j = 4)
δ2 = δ3 = 1 and β = 2, and the lemma gives the bound w(u′

2) ≥ w(u5) + 2w(u′
5).

at uj. Let β be the number of ancestors us of uj−1 whose outcome us → u′
s+1 is

consistent with outcome uj → uj+1 (so 0 ≤ β ≤ j − 1). Then

w(u′
2) ≥ (j − 1 − β)w(uj+1) + βw(u′

j+1) +
∑j

i=3(δi−1 − 1 )w(u′
i).

Lemma 4. Suppose T is optimal. Let x be any test node, not necessarily in T .
Let u1 → · · · → uj+1 be a prefix of the x-consistent path from u1. For 1 ≤ i ≤
j − 1, let δi be the number of ancestors us of ui on the path such that outcomes
us → u′

s+1 and ui → u′
i+1 are consistent with opposite outcomes at uj. Let β′ be

the number of ancestors us of uj whose outcome us → u′
s+1 is consistent with

the yes-outcome of x (so 0 ≤ β′ ≤ j). Then

w(u′
2) ≥ min(j − 1 − β′,β′ − 1)w(uj) +

∑j
i=3(δi−1 − 1)w(u′

i).

The proofs (in the full paper) show that if the claimed inequalities are not
met, then splitting the subtree Tu around uj (for Lemma 3) or x (for Lemma 4)
would give a cheaper optimal tree.

3.2 Structural Theorem

As in the previous section, for any downward path u1 → u2 → · · · → uj , the
sibling of ui is denoted u′

i (for 2 ≤ i ≤ j).

Theorem 3. Suppose T is optimal. Let u1 → u2 → · · · → ud be any downward
path in T (not necessarily starting at the root) such that w(u′

2) < w(ud). Then,
for all different nodes ui, uj on the path, with i, j < d, both outcomes at ui are
consistent with outcome uj → uj+1.



Classification via Two-Way Comparisons (Extended Abstract) 287

Tu u1

u2

u3

u4

u5 u′
5

u′
4

u′
3

u′
2

=⇒
x

u1

u2

u3

u4

u5 u′
5

u′
4

u′
3

u′
2

u1

u2

u3

u4

u5 u′
5

u′
4

u′
3

u′
2

=⇒

T ′
x x

u1

u3

u5 u′
4

u′
2

u2

u4

u5 u′
5

u′
3

Fig. 5. Splitting a subtree Tu (where u = u1) around a new node x (not equivalent
to any node in Tu). The x-consistent path from u1 is u1 → · · · → u5. Here u1 → u′

2

and u3 → u′
4 are consistent with the left outcome at x, while u2 → u′

3 and u4 → u′
5

are consistent with the right outcome. In the notation of Lemma 4 (taking j = 4)
δ2 = δ3 = 1 and β′ = 2. The lemma gives the bound w(u′

2) ≥ w(u4).

For intuition, suppose a node u in T does an equality test 〈 = h〉, and, in the
no-subtree of u, some node x has w(x) > w(h). By the theorem, then, the query
value q = h satisfies all outcomes along the path from the no-child of u to x.

The only property of the admissible tests that Theorem 3 relies on is laminar-
ity. The proof (in the full paper) uses Lemma 3 twice, and a careful induction.

3.3 Proof of Theorem 1 (Some Optimal Tree is Admissible)

The proofs above rely only on laminarity. The proofs below use the particular
structure of less-than and equality tests, and the properties of u-consistent paths.
In particular, when x is an equality test, say x is 〈 = h〉, the x-consistent path
from u is the path that a search for h would take if started at u.

Lemma 5. Suppose the instance has distinct weights and T is optimal. Consider
any equality-test node 〈 = h〉 and a key k with w(k) > w(h) reaching this node.
Then a search for h from the no-child of 〈 = h〉 would end at the leaf Lk for k,
and the path from 〈 = h〉 to Lk has at most four nodes (including 〈 = h〉 and
Lk). Also, h is not in the class that T assigns to k.

The proof (in the full paper) has several parts. First it applies Theorem 3 to
the path from 〈 = h〉 to Lk to show that, for any two different test nodes ui, uj

along the path, both outcomes at ui are consistent with uj → uj+1. This (with
i = 1) implies that a search for h starting at u2 ends at Lk. A local-exchange
argument shows h is not in the class that T assigns to k. That the path has at
most four nodes then follows from Lemma 4 and local-exchange arguments.

Lemma 6. If the instance has distinct weights, every irreducible optimal tree is
admissible.

The lemma follows from a careful application of Lemma 5 and the definition
of admissible trees. Here is the full proof.
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Proof. Let T be any irreducible optimal tree. Consider any node u in T . To prove
the lemma we show that u’s query set is admissible. If Qu has no light holes, then
we are done, so assume otherwise. Let k∗ = k∗(Qu) be the heaviest key reaching
u. Let Hu = holes(Qu)∩lighter(k∗) be the set of light holes at u and b = |Hu|. Let
c be the class that T assigns to k∗ and S = [minQu,maxQu]K ∩ lighter(k∗)\c.
We want to show Hu = heaviestb(S) and b ∈ [3].

First we show Hu ⊆ S. By definition, Hu ⊆ [minQu,maxQu]K ∩ lighter(k∗).
For any light hole h ∈ Hu, key k∗ is heavier than h and reaches the ancestor
〈 = h〉 of u. Applying Lemma 5 to that ancestor, hole h is not in c. It follows
that Hu ⊆ S.

Next we show Hu = heaviestb(S). Suppose otherwise for contradiction. That
is, there are k ∈ S\Hu ⊆ Qu and h ∈ Hu such that k is heavier than h. Keys
k∗ and k reach the ancestor 〈 = h〉 of u. Applying Lemma 5 (twice) to that
ancestor, the search path for h starting from the no-child of 〈 = h〉 ends both
at Lk∗ and at the leaf Lk for k. So Lk = Lk∗ , which implies that k is in c,
contradicting k ∈ S. Therefore Hu = heaviestb(S).

Finally, we show that b ≤ 3. Let h ∈ Hu be the light hole whose test node
〈 = h〉 is closest to the root. Key k∗ reaches 〈 = h〉 and weighs more than h.
Applying Lemma 5 to 〈 = h〉 and key k∗, the path from 〈 = h〉 to Lk∗ has at
most four nodes (including the leaf). Each light hole has a unique equality-test
node on that path. So (using that u is on this path) there are at most three light
holes in Qu. 01

Finally we prove Theorem 1:

Theorem 1. If the instance is feasible, then some optimal tree is admissible.

The proof (in the full paper) is a somewhat subtle perturbation argument,
showing (informally) that every instance I is “arbitrarily close” to a distinct-
weights instance I∗ that shares the same set of admissible trees, and such that
any optimal tree for I∗ is also optimal for I. By Lemma 6, I∗ has an optimal
tree that is admissible, which is therefore also optimal and admissible for I.

4 Algorithm

This section proves Theorem 2, that the problem admits an O(n3m)-time algo-
rithm. The input is an arbitrary 2wcdt instance (Q,w, C,K). In this section,
for any R ⊆ Q redefine cost(R) to be the minimum cost of any admissible tree
for the subproblem π(R) = (R,w, C,K) obtained by restricting the query set to
R. (Take cost(R) = ∞ if there is no admissible tree for π(R).) The algorithm
returns cost(Q), the minimum cost of any admissible tree for (Q,w, C,K). By
Theorem 1, this equals the minimum cost of any tree.

The algorithm computes cost(Q) by using memoized recursion on the follow-
ing recurrence relation:
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Recurrence 1. For any R ⊆ Q,

cost(R) =






∞ (R 2∈ A)
0 (R ∈ A ∧ (∃c ∈ C)R ⊆ c)
w(R) + minu

(
cost(Ryes

u ) + cost(Rno
u )

)
, (otherwise)

where above A denotes the set of admissible query subsets of Q (per Definition 4),
(Ryes

u , Rno
u ) is the bipartition of R into those values that satisfy test u and those

that don’t, and u ranges over the allowed tests (per Definition 1) such that Ryes
u

and Rno
u are admissible. (If there are no such tests then the minimum is infinite.)

There are O(n2m) admissible query sets. (Indeed, for any admissible set R,
if R has no light holes it is determined by the triple (minR,maxR, k∗(R)). Oth-
erwise, per Definition 4, R is determined by a tuple (minR,maxR, k∗(R), b, c),
where (b, c) ∈ [3] × C with k∗(R) ∈ c.) So O(n2m) subproblems arise in recur-
sively evaluating cost(Q). To finish we describe how to evaluate the right-hand
side of Recurrence 1 for a given R in O(n) amortized time.

Assume (by renaming elements in Q in a preprocessing step) that Q = [n].
Given a non-empty query set R ⊆ Q, define the signature of R to be

τ(R) = (minR,maxR, k∗(R),H(R)),

where H(R) = holes(R) ∩ lighter(k∗(R)) is the set of light holes in R.
For any R, its signature is easily computable in O(n) time (for example,

bucket-sort R and then enumerate the hole set [!, r]
Q
\R to find H(R)). Each

signature is in the set

S = Q × Q × (K ∪ {⊥}) × 2Q

of potential signatures. Conversely, given any potential signature t =
(!, r, k,H ′) ∈ S, the set τ−1(t) with signature t, if any, is unique and computable
from t in O(n) time. (Specifically, τ−1(t) is Qt = [!, r]

Q
\((K ∩ heavier(k))∪H ′)

provided Qt is non-empty and has signature t.)
Lemma 7. After an O(n3m)-time preprocessing step, given the signature τ(R)
of R ∈ A, the right-hand of Recurrence 1 is computable in amortized time O(n).

The proof of the lemma is in the full paper. Theorem 2 follows.

Extending the Algorithm to Other Inequality Tests. Our model considers decision
trees that use less-than and equality tests. Allowing the negations of these tests is
a trivial extension. (E.g., every greater-than-or-equal test 〈 ≥ k〉 is equivalent by
swapping the children to the less-than test 〈 < k〉.) We note without proof that
our results also extend easily to the model that allows less-than-or-equal tests
(of the form 〈 ≤ k〉). The proof of Theorem 3 requires only a minor adjustment:
such tests need to be taken into account when proving the first claim in the proof
of Lemma 5; the extended algorithm then allows such tests in Recurrence 1.

Acknowledgements. Thanks to Mordecai Golin and Ian Munro for introducing us
to the problem and for useful discussions.
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