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Abstract

It is natural to generalize the k-Server problem by allowing each request to specify not only a point p, but also a subset
S of servers that may serve it. To attack this generalization, we focus on uniform and star metrics. For uniform metrics,
the problem is equivalent to a generalization of Paging in which each request specifies not only a page p, but also a subset
S of cache slots, and is satisfied by having a copy of p in some slot in S. We call this problem Slot-Heterogenous Paging.

We parameterize the problem by specifying an arbitrary family S ⊆ 2[k], and restricting the sets S to S. If all request
sets are allowed (S = 2[k]), the optimal deterministic and randomized competitive ratios are exponentially worse than for
standard Paging (S = {[k]}). As a function of |S| and the cache size k, the optimal deterministic ratio is polynomial: at
most O(k2|S|) and at least Ω(

√
|S|). For any laminar family S of height h, the optimal ratios are O(hk) (deterministic)

and O(h2 log k) (randomized). The special case that we call All-or-One Paging extends standard Paging by allowing
each request to specify a specific slot to put the requested page in. For All-or-One Paging the optimal competitive ratios
are Θ(k) (deterministic) and Θ(log k) (randomized), while the offline problem is NP-hard. We extend the deterministic
upper bound to the weighted variant of All-or-One Paging (a generalization of standard Weighted Paging), showing that
it is also Θ(k).

Some of the upper bounds for the laminar case are shown via a reduction to a generalization of Paging in which each
request specifies a set P of pages, and is satisfied by fetching any page from P into the cache. The optimal ratios for the
latter problem (with laminar family of height h) are at most hk (deterministic) and hHk (randomized).



1 Introduction
It is natural to generalize the k-Server problem to allow each request to specify not only a point p, but also a subset S
of servers that may serve it. We call this generalization Heterogenous k-Server. To date, only a few special cases of this
problem have been studied [44]. Here, following the strategy taken for other hard generalizations of k-Server [6, 7, 11,
22, 29, 38], we attack the problem by focusing on its restriction to uniform and star metrics. For uniform metrics, the
problem is equivalent to a variant of Paging in which each request specifies a page p and a subset S of cache slots, to be
satisfied by having a copy of p in some slot in S. We call this Slot-Heterogenous Paging. For star metrics the problem
reduces to a weighted variant, where the cost of retrieving a page is the weight of the page. For reasons discussed below,
we parameterize these problems by allowing the requestable sets S to be restricted to an arbitrary but pre-specified family
S ⊆ 2[k]. (Restricting to S = {[k]} gives standard Paging and k-Server.) Next is a summary of our results, followed by a
summary of related work.

Slot-Heterogenous Paging (Section 3). As we point out, Slot-Heterogenous Paging easily reduces (preserving the
competitive ratio) to the so-0 Generalized k-Server problem in uniform metrics, for which upper bounds of k2k and
O(k2 log k) on the deterministic and randomized ratios are known [7, 11]. Our Theorems 3.2 (i) and 3.3 show that the
optimal deterministic and randomized competitive ratios for Slot-Heterogenous Paging are at least Ω(2k/

√
k) and Ω(k).

(The proofs of Theorems 3.2 and 3.3 use, respectively, adversary arguments and a reduction from standard Paging with
a cache of size exp(Θ(k)).) Hence, the optimal ratios for Slot-Heterogenous Paging are exponentially worse than for
standard Paging.

But these large ratios occur only for instances that use exponentially many distinct request sets S. This motivates us
to study the optimal ratios as a function of the family S of requestable slot sets, mentioned above, and to try to identify
natural families that admit more reasonable ratios.

Theorem 3.1 shows that the optimal deterministic ratio is at most k2|S| for any family S. Theorem 3.2 (ii) shows a
complementary lower bound: for infinitely many families S, every deterministic online algorithm has competitive ratio
Ω(
√
|S|). Together Theorems 3.1 and 3.2 (ii) imply that, as a function of |S| and k, the optimal deterministic ratio for

Slot-Heterogenous Paging is polynomial.

Slot-Laminar Paging (Section 5). We then consider the specific structure of S, showing better bounds when S is laminar.
This case, which we call Slot-Laminar Paging, models applications where slot (or server) capabilities are hierarchical.
Laminarity implies |S| < 2k, so (per Theorem 3.1 above) the optimal deterministic ratio is O(k3). Theorem 5.1 shows
that the optimal deterministic and randomized ratios are O(h2k) and O(h2 log k), where h ≤ k is the height of S. The
proof (described later) is via a reduction to an intermediate problem that we call Page-Laminar Paging. Theorem 5.2
tightens the deterministic bound to O(hk). Its proof refines the generic algorithm from Theorem 3.1. The dependence on
k in these bounds is asymptotically tight, as Slot-Laminar Paging generalizes standard Paging.

All-or-One Paging (Section 6). All-or-One Paging is the restriction of Slot-Laminar Paging (with height h = 2) to
S = {[k]} ∪ {{j}}j∈[k]. That is, only two types of requests are allowed: general requests (allowing the requested page
to be anywhere in the cache), and specific requests (requiring the page to be in a specified slot). Specific requests don’t
give the algorithm any choice, so may appear easy to handle, but in fact make the problem substantially harder than
standard Paging—Theorems 6.1 and 6.3 show that its optimal deterministic and randomized competitive ratios are at least
twice those for Paging and that the offline problem is NP-hard. Nonetheless, by Theorem 5.1 the optimal deterministic
and randomized ratios are O(k) and O(log k), respectively, and offline All-or-One Paging can be O(1)-approximated in
polynomial time. Theorem 6.2 tightens the deterministic upper bound to 3k − 2.

Weighted All-Or-One Paging (Section 7). Weighted All-Or-One Paging extends All-or-One Paging so that each page
has a non-negative weight and the cost of each retrieval is the weight of the page instead of 1. Theorem 7.1 shows that
the optimal deterministic ratio for Weighted All-Or-One Paging is O(k), matching the ratio for standard Weighted Paging
(a.k.a. Weighted Caching) up to a small constant factor. The algorithm in the proof is implicitly a linear-programming
primal-dual algorithm. The standard linear program for standard Weighted Paging does not force pages into specific slots.
Indeed, doing so makes the natural integer linear program an NP-hard multicommodity-flow problem. (Section 7 has an
example that illustrates the challenge.) We augment the linear program to partially model the slot constraints.

Page-Laminar Paging (Section 4). As mentioned above, Theorem 5.1 gives upper bounds for Slot-Laminar Paging by
reducing it to an intermediate problem that we call Page-Laminar Paging. This is a natural generalization of Paging in
which each request is a set P of pages from an arbitrary but fixed laminar family P , and is satisfiable by fetching any
page from P into any slot in the cache. Theorem 4.1 shows that the optimal deterministic and randomized ratios for Page-
Laminar Paging are at most hk and hHk, where h is the height of the laminar family and Hk =

∑k
i=1 1/i = ln k+O(1).

The proof is by a reduction to standard Paging, which replaces each set request P by a request to one carefully chosen
page in P , yielding an instance of Paging, while increasing the optimal cost by at most a factor of h.

Reducing Slot-Laminar Paging to Page-Laminar Paging. Theorem 5.1 reduces Slot-Laminar Paging to Page-Laminar
Paging via a relaxation of Slot-Laminar Paging that drops the constraint that each slot holds at most one page, while still
enforcing the cache-capacity constraint of k. This relaxed instance is naturally equivalent to an instance of Page-Laminar
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problem set family S (or P) deterministic randomized where
Slot-Heterogenous Paging 2[k] \ {∅} ≤ k2k ≤ O(k2 log k) via [7, 11]

– ” arbitrary S ≤ kmin(|S∗|,mass(S)) Thm. 3.1

– One-of-m Paging, m ≈ k/2
(
[k]
m

)
≥ Ω(2k/

√
k) ≥ Ω(k) Thms. 3.2(i), 3.3

– One-of-m Paging, any m
(
[k]
m

)
& Ω((4k/m)m/2/

√
m) Thm. 3.2(ii)

– Slot-Laminar Paging laminar S, height h ≤ 2mass(S) ≤ 2hk ≤ 3h2Hk Thms. 5.1, 5.2

– All-or-One Paging {[k]} ∪ {{s} : s ∈ [k]} ≥ 2k − 1 ≥ 2Hk −O(1) Thm. 6.1
– ” ” ≤ 3k − 2 Thm. 6.2

Weighted All-Or-One Paging {[k]} ∪ {{s} : s ∈ [k]} ≤ O(k) Thm. 7.1

Page-Subset Paging restricted to P =
(all pages

m

)
≥
(
k+m
k

)
− 1 [29]

” ≤ k(
(
k+m
k

)
− 1) ≤ O(k3 logm) [22]

– Page-Laminar Paging P laminar, height h ≤ hk ≤ hHk Thm. 4.1

Table 1: Summary of upper (≤) and lower (≥) bounds on optimal competitive ratios. Here mass(S) =
∑

S∈S |S| and S∗ =
⋃

S∈S 2S .
The lower bound for One-of-m Paging holds for some but not all m and k—see Theorem 3.2(ii). Also, offline All-or-One Paging and
its generalizations are NP-hard (Theorem 6.3), as is offline Page-Subset Paging ([22]).

Paging. The proof then shows how any solution for the relaxed instance can be “rounded” back to a solution for the
original Slot-Laminar Paging instance, losing an O(h) factor in the cost and competitive ratio.

Related work. Paging and k-Server have played a central role in the theory of online computation since their introduction
in the 1980s [12, 41, 46]. For k-Server, the optimal deterministic ratio is between k and 2k − 1 [37]. Recent work [27]
offers hope for closing this gap, while a recent breakthrough showed that the randomized ratio is Θ(polylog(k)) ([39],
see also [4, 17]). For weighted Paging the optimal ratios are k and Θ(log k) [1, 5, 30, 42, 46].

The standard k-Server and Paging models assume homogenous (interchangeable) servers and cache slots. They don’t
model applications where servers have different capabilities, nor the fact that modern cache systems often partition the
slots, sometimes dynamically, with some parts exclusively accessible by specific processors, cores, processes, threads, or
page sets (e.g., [28, 40, 47–49]).

Restricted Caching is one previously studied model with heterogenous cache slots. It is the restriction of Slot-
Heterogenous Paging in which each page p has one fixed set Sp ⊆ [k] of slots, and each request to p requires p to be
in some slot in Sp. For this problem the optimal randomized ratio is O(log2 k) [19]. Better bounds are possible given
some further restrictions on the sets, as in Companion Caching, which models a cache partitioned into set-associative and
fully-associative parts [15, 16, 32, 43]. It is natural to ask whether Restricted k-Server—the restriction of Heterogenous
k-Server that requires each point p to be served by a server in a fixed set Sp— might be easier than Heterogenous k-
Server, but in general (specifically, in metric spaces with no isolated points, such as Euclidean spaces) the two problems
are equivalent. The NP-hardness result for (offline) Restricted Caching from [16] implies that offline Slot-Heterogenous
Paging with S = {{s, k} : s ∈ [k − 1]} is NP-hard.

Other sophisticated online caching models include Snoopy Caching—in which multiple processors each have their
own cache and coordinate to maintain consistency across writes [36], Multi-Level Caching—where the cost to access a
slot depends on the slot [24], and Writeback-Aware Caching—where each page has multiple copies, each with a distinct
level and weight, and each request specifies a page and a level, and can be satisfied by fetching a copy of this page at
the given or a higher level [8, 9]. (This is a special case of weighted Page-Laminar Paging where P consists of pairwise-
disjoint chains.) Multi-Core Caching models the fact that faults can change the request sequence (e.g. [35]).

Patel’s master thesis [44] studies Heterogenous k-Server with just two types of requests—general requests (to be
served by any server) and specialized requests (to be served by any server in a fixed subset S′ of “specialized” servers)—
and bounds the optimal ratios for uniform metrics and the line. Recent independent work on deterministic algorithms for
online All-or-One Paging establishes a 2k − 1 lower bound (matching our result) and a 2k + 14 upper bound (improving
our result) [21]. We note that an earlier version of our results on online All-or-One Paging, including the 2k − 1 lower
bound and a 3k upper bound on deterministic algorithms, appeared in [34].

Heterogenous k-Server reduces (see Section 3) to the Generalized k-Server problem, in which each server moves in
its own metric space, each request specifies one point in each space, and the request is satisfied by moving any one server
to the point in its space [38]. For uniform metrics, the optimal competitive ratios for this problem are between 2k and k2k

(deterministic) and between Ω(k) and O(k2 log k) (randomized) [7, 11]. These ratios are exponentially worse than the
ratios for standard k-Server. Heterogenous k-Server, parameterized by S, provides a spectrum of problems that bridges
the two extremes.

Weighted k-Server is a restriction of Generalized k-Server in which servers move in the same metric space but have
different weights, and the cost is the weighted distance [33]. For this problem (in non-uniform metrics) the deterministic
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and randomized ratios are at least (respectively) doubly exponential [6, 7] and exponential [3, 23].
Page-Subset Paging, restricted to to m-element sets of pages, has been studied as (uniform) Metrical Service Systems

with Multiple Servers [22, 29]. For this problem the deterministic ratio is at least
(
k+m
k

)
− 1 [29], while the randomized

ratio is O(k3 logm) [22]. The k-Chasing problem extends k-Server by having each request P be a convex subset of Rd,
to be satisfied by moving any server to any point in P [18]. For k-Chasing, no online algorithm is competitive even for
d = k = 2 [18], while for k = 1 the ratios grow with d [2, 45].

In the k-Taxi problem each request (p, q) requires any server to move to p then (for free) to q. For this problem the
optimal ratios are exponentially worse than for standard k-Server [20, 26].

2 Formal Definitions

Slot-Heterogenous Paging. A problem instance consists of a set [k] = {1, 2, . . . , k} of cache slots, a family S ⊆ 2[k]\{∅}
of requestable slot sets, and a request sequence σ = {σt}Tt=1, where each request has the form σt = 〈pt, St〉 for some
page pt and set St ∈ S. A solution is a sequence {Ct}Tt=1 such that, at each time t ∈ [T ], the cache configuration Ct

assigns at most one page to each slot in [k], assigning page pt to at least one slot in St. The objective is to minimize the
number of retrievals, where a page p is retrieved in slot s at time t if Ct assigns p to s, but Ct−1 does not (or t = 1).
Slot-Laminar Paging. This is the restriction of Slot-Heterogenous Paging to instances where S is laminar: every pair
R,R′ ∈ S of sets is either disjoint or nested. (This implies |S| ≤ 2k.) The height of S is the maximum h such that S
contains a sequence of h strictly nested sets: R1 ( R2 ( . . . ( Rh.
All-or-One Paging. This is the restriction of Slot-Laminar Paging to instances with S = {[k]} ∪ {{j}}j∈[k]. That is,
there are two types of requests: general request of the form 〈p, [k]〉, requiring page p to be in at least one slot, and specific
request of the form 〈p, {j}〉 where j ∈ [k], requiring page p to be in slot j. For convenience, 〈p, ∗〉 is a synonym for
〈p, [k]〉, while 〈p, j〉 is a synonym for 〈p, {j}〉.
One-of-m Paging. This is the restriction of Slot-Heterogenous Paging to instances with S =

(
[k]
m

)
= {S ⊆ [k] : |S| =

m}, that is, every request specifies m slots. This problem plays a key role in our lower bounds.
Weighted Slot-Laminar Paging. This is the natural extension of Slot-Laminar Paging in which each page p is assigned a
non-negative weight wt(p), and the cost of retrieving p is wt(p) instead of 1.
Page-Subset Paging. An instance consists of k cache slots, a collection P of requestable sets of pages, and a request
sequence π = {Pt}Tt=1, where each Pt is drawn from P . A solution is a sequence {Ct}Tt=1 of cache configurations (as
previously defined) so that, at each time t ∈ [T ], Ct assigns at least one page in Pt to at least one slot. The objective is to
minimize the number of retrievals. (Slots are interchangeable here, so a cache configuration could be defined as a multiset
of at most k pages, but using slot assignments is technically more convenient.)

Online algorithms and competitive ratio. We use the standard framework of competitive analysis. An algorithm A is
c-competitive for a given cost minimization problem if, for each instance σ, A satisfies

costA(σ) ≤ c · opt(σ) + b.

In this inequality, costA(σ) is the cost of A on σ, opt(σ) is the optimum cost of σ, and b is a constant independent of
σ. The algorithm is assumed to know the underlying set family S (or P), but many of our algorithms work (or can be
adapted to work) without knowing the set family in advance.

3 Slot-Heterogenous Paging
Any instance of Slot-Heterogenous Paging can be reduced to an instance of Generalized k-Server in uniform spaces, as
follows. Represent each cache slot by a server in a uniform metric space whose points are the pages, then simulate each
request 〈p, S〉 by a sufficiently long sequence of request vectors that have p in the coordinates in S and alternate between
two different points on the remaining coordinates, in [k] \ S. Composing this reduction with the upper bounds from [7]
yields immediate upper bounds of O(k2k) and O(k3 log k) on the deterministic and randomized ratios for unrestricted
Slot-Heterogenous Paging (that is, with S = 2[k] \ {∅}).

Theorems 3.2 (i) (Section 3.2) and 3.3 (Section 3.3), show that these are tight within poly(k) factors: the optimal
ratios are at least Ω(2k/

√
k) and Ω(k), respectively. But restricting S allows better ratios: Theorem 3.1 (Section 3.1)

shows an upper bound of k2|S| on the optimal deterministic ratio for any family S . For One-of-m Paging, Theorems 3.1
and 3.2 (ii) (Section 3.2) imply that the optimal deterministic ratio is O(km+1) and Ω((4k/m)m/2/

√
m).
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input: Slot-Heterogenous Paging instance (k,S, σ = (σ1, . . . , σT ))

1. let the initial cache configuration C0 be arbitrary; let `← 1 — ` is the start of the current phase

2. for each time t← 1, 2, . . . , T :
3.1. if the current configuration Ct−1 satisfies the current request σt: ignore the request (take Ct = Ct−1)
3.2. else if any configuration satisfies all requests σ`, σ`+1, . . . , σt: let Ct be any such configuration
3.3. else: let `← t; let Ct be any configuration satisfying σt — start the next phase

Figure 1: Online algorithm EXHSEARCH for Slot-Heterogenous Paging.

3.1 Upper bounds for deterministic Slot-Heterogenous Paging
This section gives upper bounds on the optimal deterministic competitive ratio for Slot-Heterogenous Paging with any
slot-set family S, as a function of mass(S) =

∑
S∈S |S| ≤ k|S| and |S∗| = |⋃S∈S 2S |. The first bound follows from

an easy counting argument. The second bound uses a refinement of the rank method of [7], which bounds the number of
steps of a natural exhaustive-search algorithm by the rank of a certain upper-triangular matrix.

Theorem 3.1. Fix any S ⊆ 2[k]\{∅}. The competitive ratio of Algorithm EXHSEARCH in Figure 1 for Slot-Heterogenous
Paging with requestable sets from S is at most k ·min {|S∗|,mass(S)}.

The theorem implies that the competitive ratio of One-of-m Paging is polynomial in k when m is constant.

Proof of Theorem 3.1. By inspection of the algorithm, the length of each phase does not depend on previous phases. Focus
on any one phase. We first bound the length, say L, of the phase. To ease notation and without loss of generality, assume
the phase is the first (with ` = 1) and the algorithm faults in each step t, that is Ct−1 does not satisfy σt. (Otherwise first
remove such requests; this doesn’t change the algorithm’s cost or increase the optimal cost.) So the following property
holds:

(UT) For each time t ∈ [L], configuration Ct−1 satisfies requests σ1, σ2, . . . , σt−1, but not σt.

Next we observe that Property (UT) implies L ≤ mass(S). The property implies that every request σt in this phase is
distinct. (This is because for any t′ < t, Ct−1 satisfies σt′ but not σt, and the final cache configuration CL satisfies all of
these requests.) For any given set S ∈ S , there at most |S| distinct pages p such that 〈p, S〉 is requested in the phase (as
CL has each such page in a distinct slot in S) so the phase has at most |S| requests that use set S. Summing over S ∈ S:

L ≤ ∑
S∈S |S| = mass(S). (1)

The second part of the above argument is tight, in that putting a distinct page in each slot s ∈ [k] will satisfy mass(S)
distinct requests. Next we show a bound that is tighter for some families S.

Identify each page p with a distinct but arbitrary positive real number.1 For each cache configuration Ct, let Ci
t ∈ R

denote the page in slot i, if any, else 0. Define matrix M ∈ RL×L by

Mst =
∏
i∈St

(Ci
s−1 − pt),

so that Mst = 0 if and only if Ci
s−1 = pt for some i ∈ St, that is, if and only if Cs−1 satisfies σt. So Property (UT)

implies that M is upper-triangular and non-zero on the diagonal. So M has rank L.
Expanding the formula for Mst, we obtain

Mst =
∑
S⊆St

(∏
i∈S

Ci
s−1
)
·
( ∏

i∈St\S
−pt

)
=

∑
S⊆St

(∏
i∈S

Ci
s−1
)
·(−pt)|St|−|S| =

∑
S∈S∗

AsS ·BSt ,

where S∗ =
⋃

S∈S 2S and matrices A ∈ RL×S∗ and B ∈ RS∗×L are defined by

AsS =
∏
i∈S

Ci
s−1 and BSt =

{
(−pt)|St|−|S| if S ⊆ St

0 otherwise.

That is, M = AB, where A and B (and therefore M ) have rank at most |S∗|. And M has rank L, so

L ≤ |S∗|. (2)

1We use R, but the argument could be made over any sufficiently large field.
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Consider any phase other than the last. Let t′ and t′′ be the start and end times. Suppose for contradiction that the
optimal solution incurs no cost (has no retrievals) during [t′ + 1, t′′ + 1]. Then its configuration at time t′ satisfies all
requests in [t′, t′′ + 1], contradicting the algorithm’s condition for terminating the phase. So the optimal solution pays at
least 1 per phase (other than the last). In any phase of length L the algorithm pays at most kL (at most k per step). This
and bounds (2) and (1) imply Theorem 3.1.

Theorem 3.1 can be strengthened slightly by making the algorithm retrieve at most min(t, k) pages for the tth request
in each phase.

3.2 Lower bounds for deterministic Slot-Heterogenous Paging
This section proves the lower bounds for Slot-Heterogenous Paging and One-of-m Paging given in Table 1.

Theorem 3.2. (i) For all odd k, the optimal deterministic ratio for One-of-m Paging with m = (k + 1)/2 is at least(
k
m

)
= Ω(2k/

√
k). For all k the optimal ratio with m = b(k + 1)/2c is Ω(2k/

√
k).

(ii) For any even m ≥ 2 and any k > m that is an odd multiple of m−1, the optimal deterministic ratio for One-of-m
Paging is at least

(
m−1
m/2

)(
k

m−1
)m/2

= Θ((4k/m)m/2/
√
m) = Ω(

√
|S|), where S =

(
[k]
m

)
.

Before proving Theorem 3.2, we prove a utility lemma (Lemma 3.1). It states that for any S the existence of a family
Z ⊆ 2[k] with certain properties implies a lower bound of |Z| on the competitive ratio. The proof of the theorem then
constructs such families Z for appropriate families S of requestable sets.

Throughout this section X denotes the complement of the set X ⊆ [k], that is X = [k] \X .

Lemma 3.1. For some S ⊆ 2[k], suppose there are set families G ⊆ S and Z ⊆ 2[k] such that
(gz0) For each X ⊆ [k] there is S ∈ G such that S ⊆ X or S ⊆ X .
(gz1) If Z ∈ Z then Z /∈ Z .
(gz2) For each S ∈ G there is Y ∈ Z such that S 6⊆ Z and S 6⊆ Z for all Z ∈ Z \ {Y }.

Then the optimal deterministic competitive ratio for Slot-Heterogenous Paging with family S is at least |Z|.

Proof. The proof is an adversary argument based on the following idea. At each step, the adversary chooses a request
that forces the algorithm to fault but causes at most two faults total among a fixed set of 2|Z| other solutions. At the end,
the algorithm’s total cost is at least |Z| times the average cost of these other solutions, so its competitive ratio is at least
|Z|. This general approach is common for lower bounds on deterministic online algorithms (see e.g. lower bounds on the
optimal ratios for k-Server [41], for Metrical Task Systems [14] and for Generalized k-Server on uniform metrics [38]).

Here are the details. Let A be any deterministic online algorithm for Slot-Heterogenous Paging with slot-set family S.
The adversary will request just two pages, p0 and p1. For a set X ⊆ [k], let CX denote the cache configuration where the
slots in X contain p0 and the slots in X contain p1. Without loss of generality assume that each slot of A’s cache always
holds p0 or p1—its cache configuration is CX for some X .

At each step, if the current configuration of A is CX , the adversary chooses S ∈ G such that either S ⊆ X or S ⊆ X .
(Such an S exists by Property (gz0).) If S ⊆ X , then all slots in S hold p0, and the adversary requests 〈p1, S〉, causing
a fault. Otherwise, S ⊆ X , so all slots in S hold p1. In this case the adversary requests 〈p0, S〉, causing a fault. The
adversary repeats this K times, where K is arbitrarily large. Since A faults at each step, the overall cost of A is at least
K.

It remains to bound the optimal cost. Let Z̃ =
{
Z : Z ∈ Z

}
. By Property (gz1), we have Z̃ ∩ Z = ∅. For each

Z ∈ Z ∪ Z̃ define a solution called the Z-strategy, as follows. The solution starts in configuration CZ . It stays in CZ

for the whole computation, except that on requests 〈pa, S〉 that are not served by CZ (that is, when all slots of CZ in S
contain p1−a), it retrieves pa to any slot j ∈ S, serves the request, then retrieves the page p1−a back into slot j, restoring
configuration CZ . This costs 2.

We next observe that in each step at most one Z-strategy faults (and pays 2). Assume that the request at a given step
is to p0 (the case of a request to p1 is symmetric). Let this request be 〈p0, S〉, where S ∈ G. Let Y ⊆ [k] be the set
from Property (gz2). For all Z ∈ (Z ∪ Z̃) \ {Y, Y }, then, S ∩ Z 6= ∅, implying that configuration CZ has a slot in S
that contains p0—in other words, configuration CZ satisfies S. Also, either S ∩ Y 6= ∅ or S ∩ Y 6= ∅, so one of the
configurations CY or CY also satisfies S. Therefore only one Z-strategy (Y or Y ) might not satisfy S. So, in each step,
at most one Z-strategy faults (and pays 2).

Thus the combined total cost for all Z-strategies (not counting the cost of moving to Z at the beginning) is at most
2K. There are 2|Z| such strategies, so their average cost is at most (2K + k)/2|Z|. The cost of A is at least K, so the
ratio is at least

K

(2K + k)/2|Z| =
|Z|

1 + k/2K
.

Taking K arbitrarily large, the lemma follows.

Now we use Lemma 3.1 to prove Parts (i) and (ii) of Theorem 3.2.
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Figure 2: Illustration of the proof of Theorem 3.2 Part (ii) for k = 35, m = 6, and ` = 7. The figure shows the partition of all slots
into m − 1 = 5 sets B1, . . . , B5, each represented by a cycle. To avoid clutter, each slot bec is represented by its index c within Be.
The picture shows set S = {b12, b13, b26, b27, b44, b45} ∈ G, marked by dashed ovals. It also shows ZS′ ∈ Z , represented by orange/shaded
circles, for S′ = {b12, b13, b34, b35, b47, b41}.

Proof (Theorem 3.2). Part (i). Recall m = b(k + 1)/2c. First consider the case that that k is odd. Apply Lemma 3.1,
taking both G and Z to be

(
[k]
m

)
. Properties (gz0) and (gz1) follow directly from k being odd and the definitions of G and

Z . Property (gz2) also holds with Y = S. (For any S ∈ G, every Z ∈ Z has size |Z| = |S| > |Z|, so S 6⊆ Z, while
S ⊆ Z implies Z = S.) So by Lemma 3.1 the ratio is at least |Z| =

(
k

(k+1)/2

)
= Ω(2k/

√
k). This proves Part (i) for

odd k. For even k, apply the Part (i) for odd k to k′ = k − 1, using just cache slots in [k′], that is, using slot-set family
S ′ =

(
[k′]
m

)
⊆
(
[k]
m

)
= S, with slot k playing no role as it is never requested.

Part (ii). Fix such an m and k. Let ` = k/(m− 1) so ` ≥ 3 is odd. Recall that S =
(
[k]
m

)
is the family of requestable

slot sets. Partition [k] arbitrarily into m − 1 disjoint subsets B1, B2, . . . , Bm−1, each of cardinality `. For each Be,
order its slots arbitrarily as Be = {be1, be2, . . . , be`}. For any index c ∈ {1, 2, . . . , `} and an integer i, let c ⊕ i denote
((c + i − 1) mod `) + 1. In other words, we view each Be as an odd-length cycle, and this cyclic structure is important
in the proof. Any consecutive pair {bec, bec⊕1} of slots on this cycle is called an edge. Thus each cycle Be has ` edges.

First we define G ⊆ S for Lemma 3.1. The sets S in G are those obtainable as follows: choose any m/2 edges, no
two from the same cycle, then let S contain the m slots in those m/2 chosen edges. (The six slots inside the three dashed
ovals in Figure 2 show one S in G.) This set of m/2 edges uniquely determines S, and vice versa.

We verify that G has Property (gz0) from Lemma 3.1. Indeed, consider any X ⊆ [k]. Call the slots in X white and
the slots in X black. Each cycle Be has odd length, so has an edge {bec, bec⊕1} that is white (with two white slots) or
black (with two black slots). So either (i) at least half the cycles have a white edge, or (ii) at least half have a black edge.
Consider the first case (the other is symmetric). There are m − 1 cycles, and m is even, so at least m/2 cycles have a
white edge. So there are m/2 white edges with no two in the same cycle. The set S comprised of the m white slots from
those edges is in G, and is contained in X (because its slots are white). So G has Property (gz0).

Next we define Z ⊆ 2[k] for Lemma 3.1. The set Z contains, for each set S′ ∈ G, one set ZS′ , defined as follows.
For each of the m/2 cycles Be having an edge {bec, bec⊕1} in S′, add to ZS′ the two slots on that edge, together with the
(` − 3)/2 slots bec⊕3, b

e
c⊕5, . . . , b

e
c⊕(`−2). For each of the m/2 − 1 remaining cycles Be, add to ZS′ the (` − 1)/2 slots

be1, b
e
3, . . . , b

e
`−2. (The orange/shaded slots in Figure 2 show one set ZS′ in Z .) Then ZS′ contains exactly m/2 edges (the

ones in S′) while its complement ZS′ contains exactly m/2 − 1 edges (one from each cycle with no edge in S′). This
implies Property (gz1). Note that ZS′ 6= ZS′′ for different sets S′, S′′ ∈ G.

Next we show Property (gz2). Given any set S ∈ G, let Y = ZS ∈ Z . Consider any ZS′ ∈ Z such that S ⊆ ZS′ or
S ⊆ ZS′ . We need to show ZS′ = ZS , i.e., S′ = S. It cannot be that S ⊆ ZS′ , because S contains m/2 edges, whereas
ZS′ contains m/2− 1 edges. So S ⊆ ZS′ . But S and ZS′ each contain exactly m/2 edges, which therefore must be the
same. It follows from the definition of ZS′ that S′ = S. So Property (gz2) holds.

So G and Z have Properties (gz0)-(gz2) from Lemma 3.1. Directly from definition we have |Z| = |G|, while |G| =(
m−1
m/2

)
`m/2 because there are

(
m−1
m/2

)
ways to choose m/2 distinct cycles, and then for each of these m/2 cycles there

are ` ways to choose one edge. Lemma 3.1 and ` = k/(m − 1) imply that the optimal deterministic ratio is at least
f(m, k) =

(
m−1
m/2

)
(k/(m− 1))m/2.

To complete the proof of part (ii) we lower-bound f(m, k). We start by observing that

4m = Ω(
√
m (k/(k −m))k−m+1/2). (3)

This can be verified by considering two cases: If k ≥ m+2 then, using 1+z ≤ ez , we have
√
m (k/(k−m))k−m+1/2 =√

m(1 + m/(k −m))k−m+1/2 ≤ √m · e5m/4 ≤ 2 · 4m, for all m ≥ 1. In the remaining case, for k = m + 1, we have√
m(k/(k −m))k−m+1/2 =

√
m(1 +m)3/2 ≤ 2 · 4m. Thus (3) indeed holds.

Now, recalling that f(m, k) =
(
m−1
m/2

)
(k/(m− 1))m/2, we proceed in two steps. First,

f(m, k) = Θ
(
(2m/

√
m) · (k/(m− 1))m/2

)
(Stirling’s approximation)

= Θ
(
(4k/m)m/2 · (1 + 1/(m− 1))m/2/

√
m
)

(rewriting)

= Θ
(
(4k/m)m/2/

√
m
)

(using (1 + 1/(m− 1))m/2 ≤ e) (4)

6



This gives us the first estimate on the competitive ratio in Theorem 3.2(ii). To obtain the second estimate, squaring both
sides of (4), we obtain

f(m, k)2 = Ω
(
(4k/m)m/m

)
= Ω

(
(k/m)m · 4m/m

)
= Ω

(
(k/m)m · (k/(k −m))k−m+1/2/

√
m
)

(using (3))

= Ω(
(
k
m

)
) = Ω(|S|) (Stirling’s approximation)

Therefore f(m, k) = Ω(
√
|S|), as claimed, completing the proof of Theorem 3.2(ii).

3.3 Lower bound for randomized Slot-Heterogenous Paging
Next we show a lower bound on the optimal competitive ratio for randomized algorithms:

Theorem 3.3. The optimal randomized ratio for One-of-m Paging with m = bk/2c is Ω(k).

The proof is by a reduction from standard Paging with some N pages and a cache of size N − 1. For any N , this
problem has optimal randomized competitive ratio HN−1 = Θ(logN) [31]. This and the next lemma imply the theorem.

Lemma 3.2. Every f(k)-approximation algorithm A for One-of-m Paging with m = bk/2c can be converted into an
O(f(k))-approximation algorithm B for standard Paging withN pages and a cache of sizeN−1, whereN = exp(Θ(k)),
preserving the following properties: being polynomial time, online, and/or deterministic.

Proof. Fix a sufficiently large k. Assume without loss of generality that k is even (otherwise apply the construction below
to slots in [k − 1], ignoring slot k as it is never requested). Take N = bexp(k/16)c.

To ease exposition, view the Paging problem with N pages and a cache of size N − 1 as the following equivalent
online Cat and Rat game on any set H of N holes (see e.g. [13, §11.3]). The input is a sequence µ = (R0, C1, . . . , CT )
of holes (i.e., R0 ∈ H and Ct ∈ H for all t). A solution is any sequence (R1, . . . , RT ) of holes such that Rt 6= Ct for
all t ∈ [T ]. Informally, at each time t ∈ [T ], the cat inspects hole Ct, and if the rat’s hole Rt−1 at time t − 1 was Ct,
the rat is required to move to some other hole Rt ∈ H \ {Ct}. (For the solution to be online, Rt must be independent of
Ct+1, Ct+2, . . . , CT for all t ≥ 0.) The goal is to minimize the number of times the rat moves, |{t ∈ [T ] : Rt 6= Rt−1}|.

Reduce a given instance µ on a set H of N holes to an instance σ of One-of-(k/2) Paging as follows. Use just two
pages, p0 and p1. Call a cache configuration C balanced if k/2 of its cache locations contain p0 and the others contain p1.
Recall N = bexp(k/16)c. Fix any collection B of N balanced configurations such that the Hamming distance between
every two distinct configurations in B is at least k/16. The existence of B can be shown using a greedy construction
(as in [11]) or by a probabilistic proof: if one forms B by randomly sampling N times with replacement uniformly from
the balanced configurations, then by a standard Chernoff bound and the naive union bound B has these properties with
positive probability.

Claim 3.3. For each configuration C ∈ B, the set B \ {C} has a forcing sequence F (C): a request sequence such that
the cache configurations that satisfy all requests in it without cost are exactly those in B \ {C}.

To verify the claim, take F (C) to be the sequence formed by (any ordering of) all those allowed requests that are
satisfied by all configurations in B′ = B \ {C} (that is, all requests 〈pi, S〉 such that i ∈ {0, 1} and |S| = k/2, with
S ∩ Si 6= ∅ for all C(S0, S1) ∈ B′). Each configuration in B′ (by definition) satisfies all requests in F (C), so we only
need show the converse. Consider any configuration C(S′0, S

′
1) not in B′. We will show that there is a request 〈pi, S〉 that

isn’t satisfied by C(S′0, S
′
1) but is in F (C), that is, it is satisfied by all configurations in B′. In the case that C(S′0, S

′
1) is

balanced, by Observation 3.4, below, the request 〈p1, S′0〉 suffices.

Observation 3.4. Any request 〈p1, S〉 (with |S| = k/2) is satisfied by every balanced configuration except C(S, S).

Next consider the case that C(S′0, S
′
1) is not balanced. Assume without loss of generality that |S′0| > k/2. (The

other case is symmetric.) Let B0 and B′0 be any two size-k/2 subsets of S′0 such that B0 and B′0 are at Hamming-
distance 1 from each other. Then C(B0, B0) and C(B′0, B

′
0) are at Hamming distance 2, so cannot both be in B (using

here the assumption k is sufficiently large). Assume without loss of generality that C(B0, B0) is not in B. Then the
request 〈p1, B0〉 isn’t satisfied by C(S′0, S

′
1) (as B0 ⊆ S′0) but is satisfied by every configuration in B, just because (by

Observation 3.4) the only balanced configuration that doesn’t satisfy the request is C(B0, B0), which is not in B. This
shows the claim.

Assume without loss of generality (by identifying holes with configurations) thatH = B. Obtain σ from π as follows:
for each time t ∈ [T ], replace the request Ct in π by F (Ct)

k, that is, k repetitions of the sequence that forces B \ {Ct}.
Given an optimal solution (R1, . . . , RT ) for µ = (R0, C1, . . . , CT ), consider the corresponding solution D for σ that

starts in configuration R0, then, for each t ∈ [T ], responds to F (Ct)
k by having its cache in configuration Rt ∈ B \ {Ct}

for all requests in F (Ct)
k. For each t ∈ [T ], its response to F (Ct)

k costs D nothing if Rt−1 = Rt (the rat didn’t move)
and otherwise costs at most k (to transition the cache from Rt−1 to Rt). This shows opt(σ) ≤ k opt(µ).
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Now consider any f(k)-approximate solution D for σ. For each t ∈ [T ], as D responds to F (Ct)
k, it either incurs

cost at least k, or uses at least one configuration (denote itRt) in B\{Ct}. Assume without loss of generality that only the
latter case occurs (otherwise modify D to move into any configuration in B \ {Ct} at the end of its response to F (Ct)

k;
these modifications at most double D’s cost), let R0 be D’s starting configuration, and define D′ = (R1, . . . , RT ). This
D′ is a valid solution to µ, because Rt ∈ B \ {Ct} for t ∈ [T ]. Whenever the rat moves (i.e., Rt−1 6= Rt), by the
definition of B, the Hamming distance between Rt−1 and Rt is Ω(k), so D paid Ω(k) to transition from Rt−1 to Rt

(possibly in multiple steps). It follows that cost(D′) = O(cost(D)/k) = O(f(k)opt(σ)/k) = O(f(k)opt(µ)) (as D is
an f(k)-approximation and opt(σ) ≤ k opt(µ)). That is, D′ is an O(f(k))-approximate solution for µ.

Finally, the solutionD′ for µ can be computed in polynomial time fromD, and is online and/or deterministic provided
D is. This proves the lemma.

4 Page-Laminar Paging
Recall that Page-Laminar Paging generalizes Paging by allowing each request to be a set P of pages. The request P is
satisfiable by having any page p ∈ P in the cache. We require P ∈ P , where P is a pre-specified laminar collection
of sets of pages. This section shows the following upper bounds for Page-Laminar Paging. Throughout this section h
denotes the height of P .

Theorem 4.1. Page-Laminar Paging admits the following polynomial-time algorithms: an hk-competitive deterministic
online algorithm, an hHk-competitive randomized online algorithm, and an offline h-approximation algorithm.

The proof is by reduction to standard Paging. Known polynomial-time algorithms for standard Paging include an
optimal offline algorithm [10], a deterministic k-competitive online algorithm [46] and a randomized Hk-competitive
online algorithm [1]. Theorem 4.1 follows directly from composing these known results with the following reduction of
Page-Laminar Paging to standard Paging:

Lemma 4.1. Every f(k)-approximation algorithm A for Paging can be converted into an hf(k)-approximation algorithm
B for Page-Laminar Paging, preserving the following properties: being polynomial-time, online, and/or deterministic.

Proof. Let A be any (possibly online, possibly randomized) f(k)-approximation algorithm for Paging. Let Page-Laminar
Paging instance π be the input to algorithm B. For any set P ∈ P , let ct(P ) denote the child of P whose subtree
contains π’s most recent request to a proper descendant of P . This is the child c of P such that Pt′ ⊆ c, where t′ =
max{i ≤ t : Pi ⊂ P}. If there is no such request (t′ is undefined), then define ct(P ) = P . Define pt(P ) inductively via
pt(P ) = pt(ct(P )) when ct(P ) 6= P , and otherwise pt(P ) is an arbitrary (but fixed) page in P . Call ct(P ) and pt(P )
the preferred child and preferred page of P at time t. At any time, P ’s preferred page can be found by starting at P and
tracing the path down through preferred children.

Define a Paging instance σ from the given instance π by replacing each request Pt in π by its preferred page pt(Pt)
(so σt = pt(Pt)). Algorithm B just simulates Paging algorithm A on input σ, and maintains its cache exactly as A does.
(Note that σ can be computed online, deterministically, in polynomial time.) Algorithm B is correct because any solution
to σ is also a solution to π (because σt = pt(Pt) ∈ Pt). And cost(B(π)) = cost(A(σ)). To finish proving the lemma, we
show opt(σ) ≤ h opt(π).

For any requested set P , define a P -phase of π to be a maximal contiguous interval [i, j] ⊆ [1, T ] such that σt 6⊂ P
for t ∈ [i + 1, j]. The P -phases for a given P partition [1, T ]. Each P -phase [i, j] (except possibly the first, with i = 1)
starts with a request to a proper descendant of P , but there are no such requests during [i + 1, j]. It follows that ci(P )
and pi(P ) remain the preferred child and page of P throughout the phase, that the preferred child ci(P ) of P also has
the same preferred page pi(P ) throughout the phase, and that [i, j] is contained in some ci(P )-phase. By definition of σ,
each request to P in the given instance π is replaced in σ by a request to P ’s preferred page, pi(P ).

Let C = (C1, . . . , CT ) be an optimal solution for π. Figure 3 gives a “repair” algorithm that incrementally modifies
C and π, phase by phase, maintaining the invariant that the current solution, denoted C ′, is always correct for the current
instance, denoted π′. (In π′, some requests will be to a page, rather than a set. Any such requests is satisfied only by
having the requested page in the cache.) At the end the modified instance π′ will equal σ, so that the modified solution C ′

will be a correct solution for σ.
Specifically, we will show the following claim (whose proof we postpone):

Claim 4.2. The repair algorithm maintains the invariant that the current solution C ′ is correct for the current instance
π′, so at termination C ′ is a correct solution for σ.

Next we bound the cost, as follows. Call a phase costly if its repair increases the cost of C ′, and free otherwise. We
show that the number of costly phases is at most (h − 1)cost(C), and that the repair of each phase increases the cost of
C ′ by at most 1. This implies that the final cost of C ′ is at most cost(C) + (h − 1)cost(C) = h cost(C), as desired.
Specifically, we will show the following claims (whose proofs we postpone):

Claim 4.3. For any requested set P , the repair of any P -phase [i, j] increases the cost of C ′ by at most 1, and only if
j 6= T .
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1. Initialize the current instance π′ and current solution C ′ to the given instance π and its solution C.
2. Incrementally modify π′ and C ′ by repairing each phase, as follows.
3. While there is an unrepaired phase, choose any unrepaired P -phase [i, j] such that all proper descendants of P
have already been repaired, then repair the chosen phase as follows:

4.1. Modify the current instance π′ by replacing each request to P during [i, j] in π′ by a request to P ’s preferred
page pi(P ). (So, after all phases are repaired, the current instance π′ will equal σ.)

4.2. Modify the current solution C ′ during [i, j] accordingly, to ensure that C ′ continues to satisfy π′. To do that, we
will establish a stronger property throughout [i, j], namely: whenever C ′ has at least one page in P cached, C ′ has
P ’s preferred page cached.

Let c = ci(P ) and p = pi(P ) be the preferred child and page of P at the start of the phase. Recall that throughout
the entire phase c remains P ’s preferred child, while p remains the preferred page of both P and c. (In the case that
no proper descendant of P has yet been requested, c = P .)

Say that time t ∈ [i, j] needs repair if, at time t, C ′ caches at least one page in P , but not p.
For t ← i, i + 1, . . . , j, if time t needs repair, modify what C ′ caches at time t by replacing one of its currently

cached pages from P , say qt, by p, defining qt greedily as follows

qt =

{
qt−1 if qt−1 is defined and still cached at time t
any page in P cached at time t otherwise.

This completes the repair of this P -phase [i, j]. The algorithm terminates after it has repaired all phases.

Figure 3: The algorithm that transforms (π,C) into (σ,C′), by repairing each phase.

Claim 4.4. For any non-leaf set P , the number of costly P -phases is at most the cost paid by C for pages in P (that is,
the number of retrievals of pages in P by C).

Each leaf set P has only one P -phase [1, T ] (by definition of P -phase), so by Claim 4.3 only non-leaf sets have costly
phases. Each page p is in at most h− 1 non-leaf sets P , so Claim 4.4 implies that the total number of costly phases is at
most (h−1)cost(C). This and Claim 4.3 imply that final cost of C ′ is at most h cost(C) = h opt(π), proving Lemma 4.1.

It remains only to prove the three claims.

Proof of Claim 4.2. The invariant holds initially when C ′ = C and π′ = π, just because by definition C is an (optimal)
solution for π. Suppose the invariant holds just before the repair of some P -phase [i, j]. We will show that it continues to
hold after. The repair modifies π′ by replacing each request to P during [i, j] by a request to its preferred page p = pi(P ).
Consider any time t ∈ [i, j]. First consider the case that (before the repair) π′ requested P at time t. In this case, C ′

cached some page in P , so (by the definition of the repair), after the repair C ′ has the preferred page p cached, so satisfies
the modified request (for p). In the remaining case the repair doesn’t modify the request at time t (by π′). In this case,
either the repair doesn’t modify the cache at time t (in which case C ′ continues to satisfy π′), or the repair replaces some
page qt in the cache by p. If that happens, the page qt is also in P . Also, the request in π at time t cannot be to a proper
descendant of P (by definition of P -phase) so the request in π′ at time t is either to an ancestor of P , a set disjoint from
P , or (if already repaired) a page not in P . (We use here that no proper ancestors of P have yet had their phases repaired.)
In all three cases, after swapping p for qt (with p, qt ∈ P ), the request must still be satisfied. So the invariant holds after
the repair. At termination the invariant holds so C ′ is correct for σ.

Proof of Claim 4.3. Consider the repair of any P -phase [i, j] for any requested set P . This repair modifies the cache only
at times in t ∈ [i, j]. Recall that the cost of C ′ at time t is the number of retrievals at time t, where a retrieval is a page
that C ′ caches at time t but not at time t− 1.

At each time t ∈ [i, j] that needed repair (as defined in the algorithm), the repair of the phase replaced some page qt
in the cache at time t by the preferred page p. This can increase the cost only at times in [i, j + 1], and by at most 1 at
each such time.

We claim the cost cannot increase at time i. Indeed, in the case that i = 1, the cost at time i equals the number of
pages cached at time i, which a repair at time 1 doesn’t change. In the case that i > 1, at time i no repair is done, because
π requests a proper descendant d of P , and the d-phase containing [i, j] has already been repaired, so π′ requests pi(d) at
time i, so (using the invariant) C ′ already caches pi(d) at time i. But by definition pi(P ) = pi(d), so C ′ already caches
P ’s preferred page at time i. So the cost cannot increase at time i.

So consider any time t ∈ [i+ 1, j]. To prove the claim, we show that the repair didn’t increase the cost at time t. The
repair can introduce up to two new retrievals at time t: a new retrieval of p, and/or a new retrieval of qt−1. We show that,
for each retrieval that the repair introduced, it removed another one.
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Suppose it introduced a new retrieval of p at time t. That is, it replaced qt by p in the cache at time t and (after
modification) C ′ doesn’t cache p at time t− 1. The latter property (by inspection of the repair algorithm) implies that C ′

caches no pages in P at time t− 1 (before or after modification). It follows that the repair removed one retrieval of qt at
time t.

Now suppose the repair introduced a new retrieval of qt−1 at time t. That is, it removed qt−1 from the cache at time
t − 1 (replacing it by p) and (after modification) C ′ caches qt−1 at time t. The latter property implies that time t did
not need repair (because if it did the repair would have taken qt = qt−1). So C ′ cached p at time t (before and after
modification). So the repair removed a retrieval of p at time t.

So, for each retrieval introduced, another was removed, and the cost at time t didn’t increase.

Proof of Claim 4.4. Fix any non-leaf set P . First consider the repair of any P -phase [i, j] with i > 1. Let c = ci(P ) 6= P
and p = pi(P ) = pi(c) be the preferred child and page throughout the phase. When the repair starts, the c-phase
containing [i, j] has already been repaired. By inspection, that repair established the following property of C ′ throughout
[i, j]: whenever C ′ has at least one page in c cached, C ′ has c’s preferred page p cached. None of the ancestors of c
(including P ) have had their phases repaired since then, so this property still holds just before the repair of P .

At time i (using here the definition of P -phase and that i > 1), the instance π requests a descendant of c, so C caches
at least one page p′ in c. Suppose that C doesn’t evict p′ during [i + 1, j]. Then, at every time during [i, j], C caches at
least one page in c. Each repair for c or a descendant of c preserves this property (because such a repair only replaces
cached pages in c by other pages in c). Throughout [i, j], then, C ′ also caches at least one page in c and, by the previous
paragraph, must cache P ’s preferred page p. (Recall that P and c have the same preferred page throughout [i, j].) In
this case, by inspection of the algorithm the repair of this P -phase does not change C ′, and the phase is not costly. We
conclude that, for the phase to be costly, C must evict p′ during [i+ 1, j].

Note that p′ ∈ c ⊂ P . Also, by Claim 4.3, this is not the final P -phase (that is, j < T ). It follows that the number of
costly P -phases with i > 1 is at most the number of evictions of pages in P by C, before the final P -phase (with j = T ).

Regarding the P -phase [i, j] with i = 1, if it is costly, then j < T and, by the reasoning in the paragraph before last,
in the final P -phase, there is a page p′ in P that C either evicts or leaves in the cache at time T .

By the above reasoning, the number of costly P -phases is at most the number of evictions by C of pages in P , plus
the number of pages left cached by C at time T . This sum is the number of retrievals of pages in P by C, proving
Claim 4.4.

5 Slot-Laminar Paging
This section gives upper bounds for Slot-Laminar Paging. Theorem 5.1 bounds the optimal ratios by 3h2k (deterministic),
3h2Hk (randomized) and 3h2 (offline polynomial-time approximation). Theorem 5.2 tightens the deterministic upper
bound to 2hk.

5.1 Upper bounds for randomized and offline Slot-Laminar Paging
Theorem 5.1. Slot-Laminar Paging admits the following polynomial-time algorithms: a deterministic 3h2k-competitive
online algorithm, a randomized 3h2Hk-competitive online algorithm, and an offline 3h2-approximation algorithm.

Recall that h is the height of the laminar family. The factor of 3h in the theorem has not been optimized. For example,
when h = 2, the 3h = 6 can be improved to 3. Likewise, one can show that for k = h = 2 there is a 3-competitive
algorithm for Slot-Laminar Paging. (This matches the lower bound from Theorem 6.1 and hints that 2k − 1 might be
achievable.)

Note that Section 5.2 gives a better deterministic algorithm.
The proof is by a reduction of Slot-Laminar Paging to Page-Laminar Paging, in Lemma 5.1 below. The reduction

uses a natural relaxation of Slot-Laminar Paging that relaxes the constraint that each slot hold at most one page (but
still enforces the cache-capacity constraint). This relaxation naturally gives an instance of Page-Laminar Paging. The
reduction simulates the given Page-Laminar Paging algorithm on multiple instances of Page-Laminar Paging— one for
each requested set S ∈ S, obtained by relaxing the subsequence that contains just those requests contained in S —
then aggregates the resulting Page-Laminar Paging solutions to obtain the Slot-Laminar Paging solution. Lemma 5.1 and
Theorem 4.1 (for Page-Laminar Paging) immediately imply Theorem 5.1.

Lemma 5.1. Every fh(k)-approximation algorithm A for Page-Laminar Paging can be converted into a 3hfh(k)-
approximation algorithm B for Slot-Laminar Paging, preserving the following properties: being polynomial-time, online,
and/or deterministic.
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Proof. We first define the Page-Laminar Paging relaxation of a given Slot-Laminar Paging instance. The idea is to relax
the constraint that each slot can hold at most one page, while keeping the cache-capacity constraint. The relaxed problem
is equivalent to a Page-Laminar Paging instance over “virtual” pages corresponding to page/slot pairs, where a given
virtual page v(p, s) represents page p and slot s and can be placed in any slot.

Definition 5.2. Fix any k-slot Slot-Heterogenous Paging instance σ = (σ1, . . . , σT ) with requestable slot-set family S.
For any page p and S ∈ S , define V (p, S) = {v(p, s) : s ∈ S}, where v(p, s) is a virtual page for the pair (p, s)
(representing page p being in slot s). Define the relaxation of σ to be the k-slot Page-Subset Paging instance π =
(P1, . . . , PT ) defined by Pt = V (pt, St) (where σt = 〈pt, St〉, for t ∈ [T ]). The requestable set family for π is P ={
V (p, S) : p is any page and S ∈ S

}
.

Instance π is a relaxation of σ in the sense that for any solution C for σ there is a solution D for π with cost(D) ≤
cost(C). (Namely, have D keep in its cache the virtual pages v(p, s) such that C has page p cached in slot s.) It follows
that opt(π) ≤ opt(σ). Crucially, if σ is slot-laminar with height h, then π is page-laminar with the same height h.

Next we define the algorithm B. Fix the fh(k)-approximation algorithm A for Page-Laminar Paging. Fix the input σ
with σt = 〈pt, St〉 (for t ∈ [T ]) to Slot-Laminar Paging algorithm B. We assume for ease of presentation that Algorithm
A is an online algorithm, and present Algorithm B as an online algorithm. If A is not online, B can easily be executed as
an offline algorithm instead.

Assume that the family S has just one rootR with |R| ≤ k. (This is without loss of generality, as multiple roots, being
disjoint, naturally decouple any Slot-Laminar Paging instance into independent problems, one for each root.)

For each S ∈ S , define S’s Slot-Laminar Paging subinstance σS to be obtained from σ by deleting all requests that
are not subsets of S. Let πS denote the (Page-Laminar Paging) relaxation of σS . Algorithm B on input σ executes,
simultaneously, A(πS) for every requestable set S ∈ S, giving each execution A(πS) its own independent cache of size
|S|, composed of copies of the slots in S.

For each such S, Algorithm B will build its own solution, denoted B(σS), for σS , also using its own independent
cache of size |S| composed of copies of the slots in S. The desired solution to σ will then be B(σR) (note σ = σR).

For internal bookkeeping purposes only, in presenting Algorithm B, we consider each virtual page v(p, s) (as defined
for Page-Laminar Paging) to be a copy of page p (functionally equivalently to p), and we have B maintain cache con-
figurations that place these virtual pages in specific slots, with the understanding that the actual cache configurations are
obtained by replacing each virtual page v(p, s) (in whatever slot its in) by a copy of page p. When we analyze the cost,
we will consider two copies v(p, s) and v(p′, s′) to be distinct unless (p′, s′) = (p, s). In particular, if B evicts v(p, s)
while retrieving v(p, s′) (with s′ 6= s) in the same slot, this contributes 1 to the cost of B. We will upper bound B’s cost
overestimated in this way.

Correctness. Algorithm B will somehow maintain the following invariant over time:

For each requestable set S, for each virtual page v(p, s) currently cached by A(πS):

1. the solution B(σS) caches v(p, s) in some slot in S, and

2. if S has a child c with s ∈ c, and B(σc) has v(p, s) in a slot s′, then B(σS) has v(p, s) in s′.

The invariant suffices to guarantee correctness of the solution B(σS) for each instance σS . Indeed, when B(σS)
receives a request 〈pt, St〉, its relaxation A(πS) has just received the request {v(pt, s) : s ∈ St}, so A(πS) is caching a
virtual page v(pt, s) (for some s ∈ St) in S. By Condition 1, then, B(σS) also has v(pt, s) in some slot in S. In the case
S = St, this suffices for B(σS) to satisfy the request. In the remaining case S has a child c with St ⊆ c, and B(σC) just
received the same request, so (assuming inductively that B(σc) is correct for σc) B(σc) has v(pt, s) in some slot s′ in St,
so by Condition 2 of the invariant B(σS) has v(pt, s) in the same slot s′ in St, as required. In particular, B(σR) will be
correct for σR, as required.

To maintain the invariant B does the following for each requestable set S. Whenever the relaxed solution A(πS) evicts
a page v(p, s), the solution B(σS) also evicts v(p, s). Whenever A(πS) retrieves a page v(p, s), the solution B(σS) also
retrieves v(p, s), into any vacant slot in S (there must be one, because A(σS) caches at most |S| pages). This retrieval
can cause up to two violations of Condition 2 of the invariant: one at B(σS), because v(p, s) is already cached by a child
B(σc) but in some slot s1 6= s′; the other at the parent B(σP ) of B(σS) (if any), because v(p, s) is already cached by the
parent, but in some slot s2 6= s′. In the case that the retrieval does create two violations (and s1 6= s2), B restores the
invariant by “rotating” the contents of the slots s1, s′, and s2 in B(σS) and in each ancestor, as shown in Figure 4 (note
that pages in gray are not moved). This restores the invariant at the expense of three retrievals at the root. (Note that yi+3

and zi+2 cannot be v(p, s), so moving v(p, s) out of slots s′ and s2 doesn’t introduce a violation there.) Each remaining
case can be handled similarly, also with at most three retrievals (in fact at most two) at the root.
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before
slot s1 slot s′ slot s2

root R : x1 y1 z1
...

...
...

xi yi zi
parent B(σP ) : xi+1 yi+1 v(p, s)

B(σS) : xi+2 v(p, s) zi+2

child B(σc) : v(p, s) yi+3 zi+3

=⇒

after
slot s1 slot s′ slot s2
z1 x1 y1
...

...
...

zi xi yi
v(p, s) xi+1 yi+1

v(p, s) xi+2 zi+2

v(p, s) yi+3 zi+3

Figure 4: “Rotating” slots in B(σS) and ancestors to preserve the invariant.

input: Slot-Laminar Paging instance (k,S, σ = (σ1, . . . , σT ))

1. let C0 be the empty cache configuration
2. for t← 1, 2, . . . , T , respond to the current request σt = 〈p, S〉 as follows:
3.1. if Ct−1 satisfies the request: let Ct = Ct−1; let Rt = Rt−1 ∪ {σt}
3.2. else if the set of requests in the current phase is not coverable:
3.3.1. start new phase; use any slot in S to cover σt (set all other slots to free) to obtain Ct; let Rt = {σt}
3.4. else:
3.5.1. determine minimal sequences 〈s1, . . . , sm〉, 〈S0 = S, S1, . . . , Sm−1〉, and 〈p0 = p, p1, . . . , pm−1〉 with m ≤
k + 1− |S| such that
(i) for 1 ≤ i < m, Si−1 ⊂ Si and si ∈ Si−1
(ii) si currently covers 〈pi, Si〉 ∈ rep(Rt−1) for 1 ≤ i < m and
(iii) sm ∈ Sm−1 is either free or currently covers 〈p, S′〉 ∈ rep(Rt−1) where S ⊂ S′

3.5.2. bring pi−1 to slot si to cover 〈pi−1, Si−1〉 for 1 ≤ i ≤ m to obtain Ct; let Rt = Rt−1 ∪ {σt}

Figure 5: Deterministic online Slot-Laminar Paging algorithm REFSEARCH

Total cost. Each retrieval by some A(σS) causes at most three retrievals in B(σR), so

cost(B(σR)) ≤
∑
S∈S

3 cost(A(πS)) ≤
∑
S∈S

3 fh(|S|)opt(πS) ≤ 3fh(k)
∑
S∈S

opt(σS) ≤ 3fh(k)h opt(σR).

The second step uses that A(πS) is fh(|S|)-competitive for πS . The third step uses that πS is a relaxation of σS so
opt(πS) ≤ opt(σS), and that |S| ≤ k so fh(|S|) ≤ fh(k).2 The last step uses that the sets within any given level
i ∈ {1, 2, . . . , h} of the laminar family are disjoint, so opt(σR) is at least the sum, over the sets S within level i, of
opt(σS). This shows that B is an fh(k)-approximation algorithm. To finish, we observe that B is polynomial-time,
online, and/or deterministic if A is.

5.2 Improved upper bound for deterministic Slot-Laminar Paging
For Slot-Laminar Paging, this section presents a deterministic algorithm with competitive ratio O(hk), improving upon
the bound of O(h2k) from Theorem 5.1. The algorithm, REFSEARCH, refines EXHSEARCH. Like EXHSEARCH, it is
phase-based and maintains a configuration that can cover all requests in a phase; however, in order to satisfy the next
request in the current phase, the particular configuration is chosen by judiciously moving pages in certain slots that are
serving requests along a path in the laminar hierarchy.

Theorem 5.2. For Slot-Laminar Paging, Algorithm REFSEARCH (Fig. 5) has competitive ratio at most 2·mass(S) ≤ 2hk.

Before we prove the theorem we define the terminology used in the algorithm and establish some useful properties.
Say that a set R of requests is coverable if there exists a configuration that covers every request in R. To determine
if a set R of requests is covered by a configuration, it is sufficient (and necessary) to examine the maximal subset of
“deepest” requests in the laminar hierarchy, as observed in Claim 5.3 below. Formally, a request 〈p, S〉 is an ancestor
(resp., descendant) of 〈p, S′〉 if S ⊇ S′ (resp., S ⊆ S′). For any set R of requests, define rep(R) as the set of requests in
R that do not have any proper descendants in R. That is, rep(R) = {〈p, S〉 ∈ R | ∀S′ ⊂ S, 〈p, S′〉 /∈ R}. For r = 〈p, S〉,
define anc(r,R) = {〈p, S′〉 ∈ R|S ⊆ S′}.

2We assume here that fh(|S|) ≤ fh(k), which is without loss of generality as one can simulate a cache of size |S| ≤ k using a cache of size k by
introducing artificial requests that force k − |S| slots to be continuously occupied.
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Claim 5.3. Let R be a set of requests. R is coverable iff rep(R) is coverable. No two requests in rep(R) can be covered
by the same slot.

Proof. Since rep(R) ⊆ R, if R is coverable, so is rep(R). Also, if C covers rep(R), then C covers R since every r in R
is an ancestor of some r′ in rep(R), and can be covered by the same slot covering r′. The second part of the claim holds
since any two requests in rep(R) request either different pages or disjoint slot sets.

Algorithm REFSEARCH is defined in Figure 5. Following Claim 5.3, REFSEARCH maintains the current configuration
by using a distinct slot to cover each request in rep(R), where R is the current set of requests in the phase, and designates
any remaining slots as free. The following lemma establishes the validity of step 3.5.1.

Lemma 5.4. Let R be a set of requests covered by configuration C, and r = 〈p0, S0〉 be such that r is not covered
by C and R ∪ {r} is coverable. Then, there exist sequences 〈s1, . . . , sm〉, 〈S0, S1, . . . , Sm−1〉, and 〈p0, p1, . . . , pm−1〉
where m ≤ k + 1 − |S| such that (i) for 1 ≤ i < m, Si−1 ⊂ Si and si ∈ Si−1 (ii) si is currently covering request
〈pi, Si〉 ∈ rep(R) for 1 ≤ i < m and (iii) sm ∈ Sm−1 is either a free slot or is currently covering 〈p0, Sm〉 ∈ rep(R).
Furthermore, transforming C by moving page pi−1 to slot si, for 1 ≤ i ≤ m, yields a configuration that covers R ∪ {r}.

Proof. The proof is by induction on the laminar hierarchy in top-down order. We begin with the following helper claim
that analyzes when a particular request is not covered by a given configuration.

Lemma 5.5. Let R be a set of requests covered by configuration C, and r = 〈p, S〉 be a request not covered by C. If
R ∪ {r} is coverable, then there exists a slot s in S that is either free or covering 〈p, Ss〉 ∈ rep(R) where S ⊂ Ss.

Proof. Suppose, for the sake of contradiction, that C covers R but does not cover 〈p, S〉, and R ∪ {r} is coverable, yet
every slot s is not free, and is covering 〈ps, Ss〉 in rep(R) with ps 6= p or S ( Ss. Since no two requests in rep(R) can
be covered by the same slot, |rep(R)| = k. Since C does not cover 〈p, S〉, for every s either s is not at p or S ( Ss.
Thus, for every s at p, Ss is neither an ancestor or descendant of S. Therefore, |rep(R∪ {r})| = |rep(R)∪ {r}| = k+ 1,
implying that rep(R) ∪ {r} is not coverable.

We return to the proof of the lemma. For the induction base, consider S0 = [k]. Since r is not covered by C, R ∪ {r}
is coverable, and every slot set is subset of [k], so by Lemma 5.5 there is a free slot s1 ∈ S0. The desired claim of the
lemma holds with m = 1 and sequences 〈s1〉, 〈S0〉 and 〈p0〉 which satisfy (i), (ii), and (iii). Since s1 is free, bringing
page p0 to slot s1 yields a new configuration that covers R ∪ {r}.

We now establish the induction step. Let R, C, and r = 〈p0, S0〉 be as given. By Lemma 5.5 there are two cases. In
the first case, there is a free slot s1 ∈ S0. Then the desired claim holds with m = 1, and sequences 〈s1〉, 〈S0〉 and 〈p0〉.

The remainder of this proof concerns the second case, in which there is a slot s1 ∈ S0 currently covering a request
r′ = (p1, S1) in rep(R) with S0 ⊂ S1. Let C ′ denote the configuration, which is identical to C except that C(s1) = p0.
Let R′ = R ∪ {r} \ anc(r′, R). Then, C ′ covers R′, but does not cover r′. However, since R′ ∪ {r′} is a subset of
R∪{r}, which is coverable, R′ ∪{r′} is also coverable. Since S1 ⊃ S0, by the induction hypothesis, there are sequences
〈s2, . . . , sm〉, 〈S1, S2, . . . Sm−1〉 and 〈p1, p2, . . . , pm−1〉 where m − 1 ≤ k + 1 − |S1| such that (i) si ∈ Si−1 and
Si−1 ⊂ Si for all 2 ≤ i < m; (ii) si is currently covering (pi, Si) ∈ rep(R′); and (iii) either sm is a free slot in C ′ or
is currently covering a request (p1, Sm) ∈ rep(R′) such that S1 ⊂ Sm. Furthermore, transforming C ′ to C ′′ by moving
page pi−1 to si for 2 ≤ i ≤ m, covers R′ ∪{r′}. Note that sm has to be a free slot in C ′ since the latter case of (iii) above
cannot hold: any request (p1, Sm) is in anc(r′, R), all requests of which are excluded from R′.

We now establish the desired claim for C, R, and r. Consider sequences 〈s1, . . . , sm〉, 〈S0, S1, . . . Sm−1〉 and
〈p0, . . . , pm−1〉. The desired conditions (i) and (ii) follow from (i) and (ii) of the induction hypothesis and the fact
that in C, s1 ∈ S0 is currently covering a request (p1, S1) in rep(R) with S0 ⊂ S1. For (iii), note that since sm is a
free slot in C ′, either sm is a free slot in C or (p0, Sm) is in rep(R), where S0 ⊂ Sm, thus establishing (iii). Finally,
transforming C to C ′′ by moving pi−1 to si for 1 ≤ i ≤ m, covers R′ ∪ {r′}; since rep(R ∪ {r}) = rep(R′ ∪ {r′}), C ′′

also covers R ∪ {r}.

Proof of Theorem 5.2. We first show that the number of page retrievals during a phase of the algorithm REFSEARCH is at
most 2 · mass(S). Let R denote the set of requests in the current phase. Let C be the current configuration. Recall that
the algorithm designates a distinct slot to cover each request in rep(R), and sets any remaining slot as free. We maintain
a potential Φ, which equals the sum, over every slot s that is currently covering a request (p, S), of one plus the distance
of S from the root of the laminar hierarchy.

We will show that Φ never decreases in a phase, and that for every step containing a page retrieval, Φ increases and the
increase is at most one less than the number of page retrievals in the step. This implies that the number of page retrievals
in a step is at most twice the increase in potential.

Consider new request r = 〈p, S〉. If the current configuration satisfies r, no page is retrieved, and Φ remains the same.
If there is no configuration that can satisfy all requests in this phase, then the phase ends and Φ equals 0.

It remains to consider the case where R∪ {r} is coverable, yet the current configuration covering R does not cover r.
The algorithm computes minimal sequences 〈si〉, 〈Si〉, and 〈pi〉 satisfying the three conditions described in the algorithm;
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these sequences exist by Lemma 5.4. Then, the algorithm replaces the page in each slot si, for 1 ≤ i < m: instead of
covering 〈pi, Si〉, si now covers 〈pi−1, Si−1〉, each replacement increasing Φ by at least one.

Finally, we analyze slot sm. There are two cases. The first case is where there does not exist 〈p, S′〉 ∈ rep(R) such that
S ⊂ S′. If sm is not free, Lemma 5.4 states that sm is covering a request of form 〈p, S′〉 ∈ rep(R) where S ⊂ S′, which
contradicts the assumption of this case. So, slot sm must be free, and pm−1 is retrieved into sm to cover 〈pm−1, Sm−1〉.
This increases Φ by at least one, establishing the desired claim.

In the second case, there exists 〈p, S′〉 ∈ rep(R) such that S ⊂ S′. Note that in C there is a slot s′ ∈ S′ that covers
〈p, S′〉 but does not cover r. As the algorithm uses s1 to cover r, slot s′ becomes free. Since S ⊂ S′ and S ⊂ Sm−1,
either Sm−1 ⊂ S′ or S′ ⊂ Sm−1. There are two sub-cases. If Sm−1 ⊂ S′, by condition (iii) of Lemma 5.4, sm is either
free in C or sm is covering 〈p, S′〉 ∈ rep(R). If sm is free, then the algorithm uses sm to cover 〈pm−1, Sm−1〉, and since
s′ was set free from covering 〈p, S′〉, Φ increases by at least one, establishing the desired claim. Otherwise, sm = s′

retrieves a page so that instead of covering 〈p, S′〉, it now covers 〈pm−1, Sm−1〉, increasing Φ by at least one unit, again
establishing the desired claim.

If S′ ⊆ Sm−1, note that sm = s′ and Sm−2 ⊂ S′. Otherwise, the sequences 〈s1, . . . , sm−2, s′〉, 〈S0, . . . , Sm−1〉,
and 〈p0, p1, pm−1〉 satisfy the three conditions of Lemma 5.4, implying that the sequences selected by the algorithm are
not minimal. The slot sm now covers 〈pm−1, Sm−1〉 instead of covering 〈p′, S′〉; this decreases Φ. However, the increase
in Φ due to the movement of sm−1 from covering 〈pm−1, Sm−1〉 to covering 〈pm−2, Sm−2〉 is greater than this decrease
since Sm−2 ⊂ S′ ⊂ Sm−1, implying that the increase in Φ is at most one less than the number of page retrievals.

Since Φ cannot exceed mass(S), the maximum number of page retrievals in a phase by the algorithm is at most 2 ·
mass(S). Furthermore, the optimal algorithm has a cost of at least one per phase since a phase ends if no configuration can
cover all requests in the phase and the new incoming request. This shows that the algorithm is 2·mass(S)-competitive.

6 All-or-One Paging
Recall that All-or-One Paging is the extension of standard Paging that allows two types of requests: A general request for
a page p, denoted 〈p, ∗〉, can be served by having p in any cache slot. A specific request 〈p, j〉, where j ∈ [k], must be
served by having p in slot j of the cache. (Section 2 gives a formal definition.) It is a restriction of Slot-Laminar Paging
with h = 2.

For All-or-One Paging, this section first shows that the optimal ratios are at least 2k−1 (deterministic) and 2Hk−O(1)
(randomized). It then shows that the optimal deterministic ratio is at most 3k− 2, and finishes by showing that the offline
problem is NP-hard.

6.1 Improved lower bound for All-or-One Paging
Theorem 6.1. Every online deterministic (resp., randomized) algorithm A for the All-or-One Paging problem has com-
petitive ratio at least 2k − 1 (resp., 2Hk −O(1)).

Proof. We construct an instance with k + 1 pages p1, p2, . . . , pk+1. The adversary strategy consists of L phases, for
some sufficiently large integer L. When each phase starts, both the algorithm and the adversary have exactly the same
cache configuration. To describe one phase, assume without loss of generality that when the phase starts each page pi, for
i = 1, 2, . . . , k, is in cache slot i. The adversary request sequence in this phase starts with the following 2k − 1 requests:

〈pk+1, ∗〉 , 〈pi1 , i1〉 , 〈pk+1, ∗〉 , 〈pi2 , i2〉 , . . . 〈pk+1, ∗〉 , 〈pik−1
, ik−1〉 , 〈pk+1, ∗〉 ,

where ij is the index of the cache slot which A used to serve the jth general request. Note that in this sequence after each
specific request the cache content of A is the same as in the beginning. (Without loss of generality we can assume that at
each fault A changes only one cache slot.)

The adversary can serve the above sequence by fetching pk+1, at the beginning of the phase, into any slot other than
i1, i2, .., ik−1. To finish the phase, the adversary can force A to reach the same configuration as the one of the adversary,
by repeatedly making specific requests, free for her, to cache locations where A has a different page. Then the adversary’s
total cost for the phase is 1 and the total cost of A is at least 2k − 1.

The above lower bound can be combined with the strategy for proving an Hk lower bound for Paging to give a lower
bound of 2Hk −O(1) on the competitive ratio of randomized algorithms for All-or-One Paging.

6.2 Improved upper bound for All-or-One Paging
This section shows that the optimal deterministic ratio for All-or-One Paging is at most 3k−2. This strengthens the bound
of 4k implied by Theorem 5.2.

Theorem 6.2. The competitive ratio of Algorithm FLUSHANDMARK (Figure 6) is at most 3k − 2.

14



input: All-or-One Paging instance (k, σ = (σ1, . . . , σT ))

At each step, each cache slot is either empty or full, and some full slots may be marked.
The algorithm partitions the input sequence into phases. When a phase starts, all slots are empty.

1. for each t← 1, 2, . . . , T , respond to the current request σt = 〈p, s〉 as follows:
2.1. flush the cache and start a new phase if any of the following conditions holds:

(pe1) σt is a general request, the cache is full, and p is not in the cache
(pe2) σt is a specific request, the cache is full, and each slot containing p is marked and differs from s

(pe3) σt is a specific request, p is not in slot s, and s is marked

3. if σt is a general request and p is not in the cache:
4.1. place p in any empty slot (which exists by Condition (pe1))
5. else if σt is a specific request and s is not marked: — if s is marked it contains p (by Condition (pe3))

6.1. if there some other unmarked slot contains p: remove p from that slot
6.2. place p in s and mark s (if s was full, evict the page in s first)

Figure 6: Deterministic online All-or-One Paging algorithm FLUSHANDMARK.

Proof. A filling event is a step when a page is put in an empty slot. A marking event is a step when a non-marked slot
gets marked. After a marking event of slot s, s will remain marked throughout the phase (and its content will not change).
Thus there are at most k marking events. Marking slot s can also empty some other full slot if it has the requested page.
The number of such emptying events is at most k. Each filling event of a slot s is either the first filling of s or the last
event involving slot s was an emptying event. So the total number of filling events is at most 2k. Each page retrieval
corresponds to either a filling or a marking event; therefore the cost per phase is at most 3k.

This cost bound can be improved to 3k − 2 as follows. If the number of marking events is at most k − 1, then the
number of emptying events is also at most k − 1, so the number of filling events is at most 2k − 1, giving us the cost of
at most 3k− 2. So assume that there are exactly k marking events, and consider the last one, say a specific request 〈p, s〉.
By the definition of marking events, s is unmarked. There are two cases:

• If s is empty when 〈p, s〉 is issued then s is the only empty slot, so instead of the request 〈p, s〉, view this as a
〈p, ∗〉-request and bring p to s. Then the bound above for the case with at most k − 1 marking events applies.

• If s is full but not marked, then it must be hold p, because otherwise the phase would end. Thus the request on p does
not cost anything, and it does not empty any slots, so there are at most 2k − 1 filling events, so the total cost is at most
3k − 2.

We next lower bound the adversary cost. We show that the adversary cost is at least one per every shifted phase, where
shifted phase i starts with the second request of phase i and ends with the first request of phase i+ 1 (both inclusive). We
assume that the phases are numbered 1, 2, . . ..

Fix phase j. Consider the request 〈p, s〉 that ends phase j; that is, 〈p, s〉 is the first request in phase j + 1. If
condition (pe3) holds, then slot s is marked and does not have p; therefore among the requests in phase j and the request
〈p, s〉, we have two different specific requests for slot s, so the adversary retrieves at least one page to slot s in shifted
phase j, and pays at least 1.

In the rest of the argument, assume that (pe3) is not true. Suppose that either (pe1) or (pe2) holds. Then the algorithm’s
cache is full when 〈p, s〉 is issued, and its slots are of two types: (i) marked slots, each resulting from a specific request to
this slot, and (ii) slots that contain pages that were fetched into the cache on a general request and not requested specifically
later. All these requests occurred during phase j. After the first request phase j, the adversary must have the requested
page in the cache, and if she did not fault in the remaining steps of this phase then the adversary must have exactly the
same pages in the cache as the algorithm, and the marked pages must be in the same slots. But then, in Case (pe1), the
adversary would not have p in its cache, and in Case (pe2), she would not have p in slot s. Thus the adversary must pays
at least 1 in shifted phase j.

For any sequence of requests, the cost of Algorithm FLUSHANDMARK is at most 3k− 2 times the number of phases,
and the cost of the adversary is at least the number of full shifted phases, which is at most one less than the number
of phases. The cache is initially empty, so in the first shifted phase the adversary cost is actually k. (With a different
assumption about the initial configuration, we would have to allow an additive O(k) term in the competitive bound.) This
yields the desired 3k − 2 upper bound on the competitive ratio of FLUSHANDMARK.

The analysis above is tight. To see this, consider an instance with k pages p1, p2, . . . , pk. The adversary has each pi in
slot i. Algorithm FLUSHANDMARK starts with empty cache. After making general requests 〈pi, ∗〉, for i = 1, 2, . . . , k,
breaking the tie, assume that the algorithm loads each pi into slot i+ 1, for i = 1, 2, . . . , k − 1, and pk into slot 1. So far
the algorithm’s cost is k. Now the adversary makes a specific request 〈p1, 1〉, on which the algorithm moves p1 from slot
2 to slot 1, evicting pk, and marks slot 1. Next the adversary requests 〈p2, ∗〉, on which the algorithm fetches pk into slot
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2. This is followed by request 〈p2, 2〉, on which the algorithm moves p2 from slot 3 to slot 2, evicting pk, and marking
slot 2. This process is then repeated for slots 3, 4, . . . , k− 1, adding 2k− 2 to the algorithm’s cost, for the total of 3k− 2.
This example can be modified to show that even if Algorithm FLUSHANDMARK does not actually empty cache slots, but
instead only designates them as “virtually” empty, there is a refined adversary strategy that does not require tie breaking
and still forces the ratio to be at least 3k − 2.

Theorems 6.1 and 6.2 still leave a gap between the lower and upper bounds. We leave closing this gap as an open
problem. One can show that for k = 2 there is a 3-competitive algorithm, matching the lower bound from Theorem 6.1,
and hinting that 2k−1 might be achievable. The main difficulty in improving the upper bound of 3k−2 is in maintaining
a good estimate for the optimum cost. This is not unexpected though, given the NP-hardness result in Section 6.3, next.

6.3 NP-completeness of offline All-or-One Paging
Theorem 6.3. The offline version of All-or-One Paging is NP-complete.

Proof. Let G = (V,E) be a graph with vertex set V = {0, 1, . . . , n− 1}. Given an integer k, 1 ≤ k ≤ n, we compute in
polynomial time a request sequence σ and an integer F such that the following equivalence holds: G has a vertex cover
of size k if and only if there is a schedule for σ whose cost with a cache size k + 2 is at most F .

At a fundamental level our proof resembles the argument in [25], where NP-completeness of an interval packing
problem was proved. The basic idea of our proof is to represent the vertices by a collection of intervals with specified
endpoints that are to be packed into a strip of width k. These intervals will be represented by pairs of requests, one at the
beginning and one at the end of the interval, and the strip to be packed is the cache. Since the strip’s capacity is bounded
by k, only a subset of intervals can be packed, and the intervals that are packed correspond to a vertex cover.

There will actually be many “bundles” of such intervals, with each bundle containing n intervals corresponding to the
n vertices. If we had |E| bundles and if we forced each bundle’s packing (that is, the packed subset) to be the same, we
could add an edge-gadget to each bundle that will verify that all edges are covered. While it does not seem possible to
design these bundles to force all bundles’ packings to be equal, there is a way to design them to ensure that the packing of
each bundle is dominated (in the sense to be defined shortly) by the next one, and this dominance relation has polynomial
depth. So with polynomially many bundles we can ensure that there will be |E| consecutive equally packed bundles,
allowing us to verify whether the vertex set corresponding to this packing is indeed a correct vertex cover.

Set dominance. We consider the family of all k-element subsets of V . For any two k-element sets X,Y ⊆ V , we say
that Y dominates X , and denote it X � Y , if there is a 1-to-1 function ψ : X → Y such that x ≤ ψ(x) for all x ∈ X .
We write X ≺ Y iff X � Y and X 6= Y . The dominance relation is a partial order. The following lemma from [25] will
be useful:

Lemma 6.1. Let X1, X2, . . . , Xp ⊆ V be sets of cardinality k such that X1 ≺ X2 ≺ . . . ≺ Xp. Then p ≤ k(n− k).

Cover chooser. We start by specifying the “cover chooser” sequence σ′ of requests. In this sequence some time slots will
not have assigned requests. Some of these unassigned slots will be used later to insert requests representing edge gadgets.

Let m = |E| + 1. (For notation-related reasons, it is convenient to have m be one larger than the number of edges.)
Let also P = k(n− k) + 1 and B = mP . In σ′ we will use the following pages and requests:

• We have nB pages xb,j , for b = 0, 1, . . . , B − 1 and j = 0, 1, . . . , n− 1. For each page xb,j there are two general
requests 〈xb,j , ∗〉 in σ′ at time steps τb,j = 9(bn + j) and τ ′b,j = 9(bn + j) + 9n − 6. These requests are called
vertex requests. They are grouped into bundles of requests, where bundle b consists of all 2n general requests to
pages xb,0, xb,1, . . . , xb,n−1. See Figures 7 and 8 for illustration.

• We have B pages yb, for b = 0, 1, . . . , B − 1. For each page yb we have two specific requests 〈yb, k + 1〉 and
〈yb, k + 2〉 in σ′, at times θb = τ ′b,0 − 2 = τb,n−1 + 1 and θ′b = τ ′b,0 − 1 = τb,n−1 + 2, respectively. For each b,
these requests are called b-blocking requests, because for each page xb,j in bundle b we have θb, θ′b ∈ [τb,n−1, τ ′b,0],
so these two requests make it impossible to have both requests 〈xb,j , ∗〉 served in cache slots k + 1 or k + 2 with
only one fault.

Slots 1, 2, . . . , k in the cache will be referred to as vertex slots. Slot k + 1 is called the edge-gadget slot, and slot k + 2 is
called the junkyard slot.

Let F ′ = (2n − k + 2)B. For any schedule S of σ′ and any bundle b, denote by VS,b the set of vertices j ∈ V for
which σ′ has a hit in S on request 〈xb,j , ∗〉 at time τ ′b,j . In other words, S keeps xb,j in the cache throughout the time
interval [τb,j , τ

′
b,j ].

Lemma 6.2. (a) The minimum number of faults on σ′ in a cache of size k + 2 is F ′. (b) If S is a schedule for σ′ with at
most F ′ faults, then for any b = 0, 1, . . . , B − 2 we have VS,b � VS,b+1.
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9

⌧b,4⌧b,3⌧b,2⌧b,1

⌧ 0b,0 ⌧ 0b,1 ⌧ 0b,2 ⌧ 0b,3 ⌧ 0b,4

⌧b,0 ⌧b+1,0 ⌧b+1,1 . . .

hxb,1, ⇤i
hxb,2, ⇤i

hxb,3, ⇤i
hxb,4, ⇤i

hxb+1,0, ⇤i

hxb�1,4, ⇤i
hxb,0, ⇤i

Figure 7: The sequence of vertex requests, for n = 5. The shaded region contains requests from bundle b.

1

⌧ 0b,j⌧ 0b,j�1 ⌧b+1,j�1 ⌧b+1,j

hxb,j�1, ⇤i hxb+1,j�1, ⇤i

hxb+1,j , ⇤ihxb,j , ⇤i

Figure 8: A more detailed picture showing relations between general requests to pages xb,j−1, xb,j , xb+1,j−1, and xb+1,j , where
1 ≤ j ≤ n− 1.

Proof. (a) There are 2B specific b-blocking requests 〈yb, k + 1〉 and 〈yb, k + 2〉 and all of these are faults. Consider a
bundle b. For this bundle, for each j, the two requests 〈xb,j , ∗〉 at times τb,j and τ ′b,j are separated by requests 〈yb, k + 1〉
and 〈yb, k + 2〉. Thus if S has a hit at time τ ′b,j then page xb,j must have been stored in one of the vertex slots 1, 2, . . . , k
throughout the time interval [τb,j , τ

′
b,j ]. As there are k vertex slots, S can have at most k hits on the requests in bundle b.

So, including the faults at 〈yb, k + 1〉 and 〈yb, k + 2〉, the number of faults in S associated with this bundle b will be at
least 2 + k + 2(n− k) = 2n− k + 2. We thus conclude that the total number of faults is at least F ′.

It is also possible to achieve only F ′ faults on σ′, as follows: for each b, and for each vertex j = 0, 1, . . . , k − 1, at
time τb,j load xb,j into cache slot j + 1 and keep it there until time τ ′b,j . For j = k, . . . , n − 1, load each request to xb,j
into slot k + 2. This will give us exactly F ′ faults.

(b) If S makes at most F ′ faults, since there are 2B faults on the blocking requests and for each bundle S makes at
least 2n− k faults on vertex requests, S must make exactly 2n− k faults on vertex requests from each bundle, including
one request for each vertex j ∈ VS,b and two requests for each vertex j /∈ Vs,b. If u ∈ VS,b and xb,u is stored by S in slot
` of the cache throughout its interval [τb,u, τ

′
b,u], and if some xb+1,v , for v ∈ VS,b+1, is stored by S in slot ` throughout

its interval [τb+1,v, τ
′
b+1,v], then we must have v ≥ u. This is because otherwise we would have τb+1,v < τ ′b,u, that is

the intervals of xb,u and xb+1,v would overlap, so we would fault at least three times on the requests to these pages. This
implies part (b).

We partition all bundles into phases, where phase p = 0, 1, . . . , P−1 consists ofm bundles b = pm, pm+1, . . . , pm+
m− 1. (Recall that m = |E|+ 1.) The corollary below states that there is a phase p in which all sets VS,b must be equal.
It follows directly from Lemmas 6.1 and 6.2, by applying the pigeonhole principle.

Corollary 6.3. If S is a schedule for σ′ with F ′ faults, then there is index p, 0 ≤ p ≤ P − 1, for which VS,pm =
VS,pm+1 = · · · = VS,pm+m−1.

Edge gadget. For each fixed phase p, we create m edge gadgets, one for each edge. Ordering the edges arbitrarily, the
gadget for the eth edge, where 0 ≤ e ≤ m − 2, will be denoted ωp,e, and it will consist of 8 requests between times
θ′pm+e and θpm+e+1, that is in the region where bundles pm+ b and pm+ b+ 1 overlap.

Let the eth edge be (u, v), where u < v. Edge gadget ωp,e will consist of the following requests:

• Two specific requests 〈zp,u, k + 2〉 at times τ ′pm+e,u + 2 and τ ′pm+e,u + 4, and two specific requests 〈zp,v, k + 2〉
at times τ ′pm+e,v + 2 and τ ′pm+e,v + 4.

• General requests 〈gp,u, ∗〉, 〈gp,v, ∗〉, at times τ ′pm+e,u + 3 and τ ′pm+e,v + 3.
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• A pair of requests 〈hp,u, k + 1〉, 〈hp,u, ∗〉, the first one specific and the second one general, at times τ ′pm+e,u + 1
and τ ′pm+e,v + 1, respectively.

• A pair of requests 〈hp,v, ∗〉, 〈hp,v, k + 1〉, the first one general and the second one specific, at times τ ′pm+e,u + 5
and τ ′pm+e,v + 5, respectively.

1

⌧ 0pm+e,u ⌧ 0pm+e,v ⌧pm+e+1,v⌧pm+e+1,u

hxpm+e,u, ⇤i hxpm+e+1,u, ⇤i

hxpm+e+1,v, ⇤ihxpm+e,v, ⇤i

hgp,v, ⇤i

hgp,u, ⇤i

hhp,u, ⇤i

hhp,v, ⇤i hhp,v, k + 1i
hhp,u, k + 1i

hzp,u, k + 2i hzp,u, k + 2i hzp,v, k + 2i hzp,v, k + 2i

Figure 9: Gadget ωp,e. Requests 〈xpm+e,u, ∗〉 , 〈xpm+e+1,u, ∗〉, 〈xpm+e,v, ∗〉 , and 〈xpm+e+1,v, ∗〉 are not part of this gadget; they
are shown only to illustrate how gadget ωp,e fits into the overall request sequence.

Consider now possible schedules of gadget ωp,e. Notice that this gadget will require 7 faults even if scheduled all by
itself, since we need to make two faults on requests 〈gp,u, ∗〉, 〈gp,v, ∗〉, at least two faults on requests to pages 〈zp,u, k + 2〉,
〈zp,v, k + 2〉, and at least three faults on requests 〈hp,u, k + 1〉, 〈hp,u, ∗〉, 〈hp,v, ∗〉, and 〈hp,v, k + 1〉. (This is because
if we retain page hp,u in slot k + 1 until time τ ′pm+e,v + 1, so that we have a hit on 〈hp,u, ∗〉, then we will fault on
both requests 〈hp,v, ∗〉, and 〈hp,v, k + 1〉.) Another important observation is that if we fault only 7 times on ωp,e then
one of requests 〈gp,u, ∗〉, 〈gp,v, ∗〉 must be put in a vertex cache slot (that is, one of slots 1, 2, . . . , k). A schedule that
puts 〈gp,u, ∗〉 in a vertex slot is called a u-schedule of ωp,e and a schedule that puts 〈gp,v, ∗〉 in a vertex slot is called a
v-schedule of ωp,e. (A schedule of ωp,e can be both a u-schedule schedule and a v-schedule.)

Complete reduction. Let F = F ′ + 7P (m − 1). Our request sequence σ constructed for G consists of σ′ and of all
P (m− 1) edge gadgets ωp,e defined above inserted into σ at their specified time steps. (At some time steps there will not
be any requests.) To complete the proof it is now sufficient to show the following claim.

Claim 6.4. G has a vertex cover of size k if and only if σ has a schedule with at most F faults in a cache of size k + 2.

(⇒) Suppose that G has a vertex cover U of size k. We schedule σ as follows. Each vertex j ∈ U is assigned to some
uniqe vertex cache slot and all 2B requests 〈xb,j , ∗〉 associated with vertex j are served in this slot. This will create kB
faults. For j /∈ U , all requests 〈xb,j , ∗〉 are served in the junkyard slot k + 2 at cost 2(n − k)B. Together with the 2B
blocking requests 〈yb, k + 1〉 and 〈yb, k + 2〉, this will give us F ′ = (2n− k+ 2)B faults. For each p = 0, 1, . . . , P − 1,
and for each e = 0, 1, . . . ,m − 2, we do this: Let the eth edge of G be (u, v). Since U is a vertex cover, we either have
u ∈ U or v ∈ U . If u ∈ U , we use the u-schedule for gadget ωp,e, with g∗p,u served in the cache slot associated with u. If
v ∈ U , we use the v-schedule for gadget ωp,e, with 〈gp,v, ∗〉 served in the cache slot associated with v. This will give us
7 faults for this gadget, adding up to 7P (m − 1) faults on all edge gadgets. Then the total number of faults on σ will be
F ′ + 7P (m− 1) = F .

(⇐) Now suppose that there is a schedule S for σ with at most F faults. By the earlier observations, we know that
S must have exactly F faults, including exactly F ′ faults on the request in σ′ and exactly 7 faults per each edge gadget.
As there are F ′ faults on σ′, we can find some p, 0 ≤ p ≤ P − 1, such that VS,pm = VS,pm+1 = · · · = VS,pm+m−1, per
Corollary 6.3. Let U = VS,pm. For each j ∈ U , all requests x∗b,j , for b = pm, pm + 1, . . . , pm + m− 1, must be in the
same slot, that we refer to as the slot associated with vertex j. The size of U is k, and we claim that U must be a vertex
cover. To show this, let (u, v) be an edge, and let e be its index. Schedule S makes 7 faults on gadget ωp,e, so for this
gadget it must be either a u-schedule or a v-schedule. If it is a u-schedule then 〈gp,u, ∗〉 is served in some vertex cache
slot. But the only vertex slot available in that time step is the slot associated with vertex u. This means that u must be in
U . The case of a v-schedule is symmetric. Thus we obtain that either u ∈ U or v ∈ U . This holds for each edge, implying
that U is a vertex cover. This proves the claim, and the theorem.

7 Weighted All-Or-One Paging
This section initiates the study of Heterogenous k-Server in non-uniform metrics. Weighted All-Or-One Paging is the
natural weighted extension of All-or-One Paging (allowing general and specific requests) in which the pages have weights
and the cost of retrieving a page is its weight. (This is equivalent to Heterogenous k-Server in star metrics with S =
{[k]} ∪ {[s] : s ∈ [k]}.) The section proves the following theorem:
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input: Weighted All-Or-One Paging instance (k, σ) where σt = 〈pt, st〉 for t ∈ [T ]

1. initialize cap[t]← credit[t]← 0 for each t ∈ [T ]

2. assume WLOG that 〈pt, st〉 = 〈0, t〉 for t ∈ [k] — k specific requests to artificial weight-zero page in each slot

3. for t← k + 1, k + 2, . . . , T :
3.1. if 〈pt, st〉 is a specific request with no equivalent request t′ (s.t. 〈pt′ , st′〉 = 〈pt, st〉) in the cache:
3.1.1. evict any cached general request to page pt, and any cached request in slot st
3.1.2. put t in slot st — note cap[t] = credit[t] = 0

3.2. else if 〈pt, st〉 is a general request not satisfied by any cached request t′ (s.t. pt′ = pt):

3.2.1. define


`t(s) := max{t′ ≤ t : st′ = s} — the last (most recent) specific request to slot s

A := {s ∈ [k] : wt(pt) ≤ 2 cap[`t(s)] and slot s does not hold a specific request}
B := {s ∈ [k] : slot s holds a general request of weight at least wt(pt)/2}

3.2.2. while |A| ≤ |B|:
3.2.2.1. continuously raise cap[`t(s)] for s ∈ [k] and credit[t′] for each cached request t′, at unit rate,
3.2.2.2. evicting each request t′ such that credit[t′] = wt(pt′), and updating A and B continuously
3.2.3. choose a slot s ∈ A \B; evict the request t′ currently in slot s (if any)
3.2.4. put t in slot s — note credit[t] = 0

3.3. else: classify the (already satisfied) request as redundant and ignore it

Figure 10: An O(k)-competitive online algorithm for Weighted All-Or-One Paging. For technical convenience, we present the algo-
rithm as caching request times rather than pages, with the understanding that request t represents page pt.

Theorem 7.1. Weighted All-Or-One Paging has a deterministic O(k)-competitive online algorithm.

The bound is optimal up to a small constant factor, as the optimal ratio for standard Weighted Paging is k. Figure 10
shows the algorithm. It is implicitly a linear-programming primal-dual algorithm. Note that the standard linear program
for standard Weighted Paging doesn’t have constraints that force pages into specific slots — indeed, those constraints
make even the unweighted problem an NP-hard special case of Multicommodity Flow. A small example that illustrates
the challenge is to take k = 2 slots then repeatedly request a weight-1 page (in any slot) and weight-zero pages in slots
1 and 2. The weight-zero requests force the weight-1 page to be evicted with each round, so that the cost is the number
of rounds. But without the specific-slot constraints the total cost would be at most 1, so that the classical linear-program
relaxation cannot be used to bound the competitive ratio.

To ease notation, assume that the first k requests are specific requests for an artificial weight-zero item in each of the
k slots. (This is without loss of generality as these requests cost nothing.) Consider any execution of the algorithm on
a k-slot instance σ. Assume that each request is not redundant (per Step 3.3). (This is without loss of generality, as the
algorithm ignores redundant requests, and removing them doesn’t increase the optimum cost.) For technical convenience,
we think of the algorithm and the optimal solution as caching request times rather than pages, with the understanding that
request t represents page pt.

We prove the following key lemma, then the theorem.

Lemma 7.1. Suppose that Step 3.2.2.1 is executing in response to a request t. In any optimal solution, just after the
solution has responded to request t, either the optimal solution has evicted some request t′ currently cached by the
algorithm, or, for some slot s ∈ [k], after the most recent specific request `t(s) to slot s the optimal solution has incurred
cost more than cap[`t(s)] for retrievals into s.

Proof. Assume otherwise for contradiction. That is, there is an optimal solution that, just after responding to request
t, both (a) caches every request t′ that is cached by the algorithm, and (b) for every slot s ∈ [k], has incurred cost at
most cap[`t(s)] for retrievals to slot s after the most recent specific request `t(s) to slot s. By (a), and the fact that the
optimal solution caches the current general request pt, this optimal solution has at least |B|+ 1 generally requested pages
of weight at least wt(pt)/2 in the cache. We claim that the optimal solution must cache each such page pt′ in a slot in
A, which implies |B| + 1 ≤ |A|, contradicting the loop condition. To verify the claim, note that by definition of A each
slot s not in A either has cap[`t(s)] < wt(pt)/2 ≤ wt(pt′) (so by (b) the optimal solution cannot cache pt′ in s) or holds
a specific request in the algorithm’s cache, and therefore (by (a)) is also occupied by a specific request in the optimal
solution’s cache.

Proof (Theorem 7.1). Fix an optimal solution. For each t ∈ [T ], let xt ∈ {0, 1} be an indicator variable for the event
that the solution evicts request t before there is another request t′ > t that can be satisfied by the page/slot pair that
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satisfied t. Let R ⊆ [T ] contain the specific requests, and for each t ∈ R, let yt be the amount the solution pays to retrieve
pages into slot st before the next specific request to slot st (if any). Define the pseudo-cost of the optimal solution to be∑T

t=1 wt(pt)xt +
∑

t∈R yt. The pseudo-cost is at most 2 opt(σ). As the algorithm proceeds, define the residual cost to
be ∑T

t=1 max(0,wt(pt)xt − credit[t]) +
∑

t∈R max(0, yt − cap[t]).

The residual cost is initially the pseudo-cost (at most 2 opt(σ)), and remains non-negative throughout, so the total decrease
in the residual cost is at most 2 opt(σ). By Lemma 7.1,3 whenever the algorithm is raising credits and capacities at time
t, there is either a cached request t′ with xt′ = 1 and credit[t′] < wt(pt′), or there is a slot s with yt′ > cap[t′], where
t′ = `t(s). It follows that the residual cost is decreasing at least at unit rate.

On the other hand, the algorithm is raising k capacities and at most k credits, so the value of φ =
∑T

t=1 credit[t] +∑
t∈R cap[t] is increasing at rate at most 2k. It follows that the final value of φ is at most 4k opt(σ). To finish, we show

that the algorithm’s cost is O(1) times the final value of φ plus opt(σ).
Assume that the sequence ends with k specific requests (one per slot) to a weight-zero page. (This is without loss of

generality because such requests don’t increase the optimal cost.) Count the costs that the algorithm pays as follows:

1. Requests remaining in the cache at the end (time T ). By the assumption on the last k requests, these cost nothing
to bring in. All other requests are evicted. To finish we bound the evicted requests.

2. Requests evicted in Line 3.2.2.2. Each such request t′ is evicted only after credit[t′] reaches wt(pt′). So these have
total weight at most

∑T
t′=1 credit[t

′].

3. Specific requests t′ evicted from slot st in Line 3.1.1. Throughout the time interval [t′, t− 1], the algorithm has pt′
in slot st′ = st, and σ has neither an equivalent specific request nor a general request to pt (by our non-redundancy
assumption). The optimal solution opt has pt′ in slot st′ at time t′, but not at time t, so evicts it during [t′ + 1, t].
So the total cost of such requests is at most the total weight of specific requests evicted by opt, and thus at most
opt(σ).

4. General requests evicted from slot st in Line 3.1.1. By Line 3.2.3, any general request in slot st at time t has weight
at most 2 cap[`t−1(st)]. So the total weight of such requests is at most

∑
t′∈R 2 cap[t′].

5. General requests to page pt evicted in Line 3.1.1. The algorithm replaces each such general request t′ by a specific
request t (which it later evicts, unless the weight is zero) to the same page. Have general request t′ charge its cost
wt(pt′) = wt(pt), and any amount charged to t′ (in Item 6 below), to specific request t. (We analyze the charging
scheme for Items 5 and 6 below.)

6. General requests t′ evicted in Line 3.2.3. Have request t′ charge the cost of its eviction, and any amount charged to
t′ to general request t. Note that by inspection wt(pt′) ≤ wt(pt)/2.

Charging scheme for Items 5 and 6 above. In Items 5 and 6 above, each specific request t is charged by at most one
general request t′ of the same weight. Each general request t is charged by at most one (general) request t′ of half the
weight. By induction, one can show that each general request is charged at most its weight, so that each specific request
is charged at most twice its weight. So the total cost of requests in Items 5 and 6 above is at most twice the total cost of
all other requests.

8 Open Problems
The results here suggest many open problems and avenues for further research. Closing or tightening gaps left by our upper
and lower bounds would be of interest. For example, for Slot-Heterogenous Paging, is the upper bound in Theorem 3.1
tight for every S ⊆ 2[k] \ {∅}, within poly(k) factors? What are the optimal randomized ratios as a function of |S| and
k? For Slot-Laminar Paging, do the optimal ratios need to depend on the height h? For Weighted All-Or-One Paging, is
the optimal randomized ratio O(polylog(k))? The status of Heterogenous k-Server in arbitrary metric spaces is widely
open. Can ratio dependent only on k be achieved? This question, while challenging, should still be easier to resolve for
Heterogenous k-Server than for Generalized k-Server.
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