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Abstract
Huang andWong (Acta Inform 21(1):113–123, 1984) proposed a polynomial-time dynamic-
programming algorithm for computing optimal generalized binary split trees. We show that
their algorithm is incorrect. Thus, it remains open whether such trees can be computed in
polynomial time. Spuler (Optimal search trees using two-way key comparisons, PhD thesis,
1994) proposedmodifyingHuang andWong’s algorithm to obtain an algorithm for a different
problem: computing optimal two-way comparison search trees. We show that the dynamic
program underlying Spuler’s algorithm is not valid, in that it does not satisfy the necessary
optimal-substructure property and its proposed recurrence relation is incorrect. It remains
unknown whether the algorithm is guaranteed to compute a correct overall solution.

1 Introduction

Given an ordered set K of n keys, a generalized binary split tree T is a form of binary search
tree where each node N has two associated keys in K: an equality-test key and a split key [8].
For any query v ∈ K, a search for v in T starts at the root. If v equals the root’s equality-test
key, then the search halts. Otherwise, the search recurses in the left or right subtree, depending
on whether or not v is less than the root’s split key. A correct tree T must have n nodes, and
the search for each query v ∈ K must halt at the node whose equality-test key is v. (There
must be exactly one such node for each v ∈ K.) Given also a probability distribution p on K,
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Fig. 1 The picture on the left shows an example of a generalized binary split tree for key interval
{A, B,C,D, E, F}. Each node is labeled with its equality key and its probability, as well as the node’s split
key (except that split keys are omitted at leaves, where they are irrelevant). The total cost of this tree is
0.3 ·1+2 · (0.2 ·2)+3 · (0.1 ·3) = 2. In all figures in the paper we use a more compact representation, shown
on the right, where split keys are omitted. (Each node’s split key can be any key that separates the equality
keys in the left subtree from those in the right subtree.)

the cost of a tree T is the expected number of nodes visited when searching in T for a random
query v drawn from p. The goal, given K and p, is to compute a tree T of minimum cost
(thus minimizing, over any tree T of this form, the expected number of two-way comparisons
made when searching in T ). We denote this problem gbsplit. See Fig. 1 for an example.
Following Huang and Wong, here we focus on the so-called successful-queries variant, in
which all queries are guaranteed to be in K. (In the general variant, arbitrary queries are
allowed.)

Huang and Wong [8] proposed a polynomial-time algorithm for gbsplit. We show (in
Theorem 1, Sect. 2) that their algorithm and claimed proof of correctness are wrong. The rea-
son is that their dynamic program does not satisfy the claimed optimal-substructure property.
Consequently, as far as we know, it is not known whether gbsplit has a polynomial-time
algorithm.

A closely related problem is to find an optimal two-way comparison search tree, in which
each node is associated with just one key and one binary comparison operator—equality or
less-than. We use 2wcst to denote this problem. (See Fig. 4 for an example.) Spuler [14,15]
proposed several 2wcst algorithms. He described two of his proposed 2wcst algorithms (for
the successful-queries and general variants, respectively) as “straightforward” modifications
of Huang andWong’sgbsplit algorithm, but he gave no formal proof of correctness, explain-
ing only that correctness follows from the dynamic-programming formulation, in particular
from the underlying recurrence relation.

We show (Theorem 3, Sect. 3) that this recurrence relation is wrong, and his algorithm
computes incorrect solutions to some subproblems in the dynamic program. Here also the
dynamic program does not satisfy the assumed optimal-substructure property. This counter-
example is only for a subproblem, not a full instance, so the overall correctness of his proposed
algorithm remains open. (Here also we focus on the successful-queries variant only.)

Historical context. The study of optimal binary search trees began with three-way compar-
ison search trees. These have only one key associated with each node, and comparing the
given query to that key has three possible outcomes—less than, equal to, or greater than.
Knuth’s classical dynamic-programming algorithm computes a minimum-cost tree of this
kind (supporting both successful and unsuccessful queries) in time O(n2) [10].

Following Knuth’s suggestion [11, §6.2.2 ex. 33], various authors began exploring
trees based on two-way (binary) comparisons. Sheil [13] introduced median split trees—
generalized binary split trees where the split key at each node N must be a median key
among the set KN of keys whose search visits node N , and the equality-test key must be
a most likely key among KN . He gave an O(n log n)-time algorithm to compute a median
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split tree (for the successful-queries variant). Other authors [7,9,12] then introduced binary
split trees—generalized binary split trees with the added restriction that the equality-test key
at each node must be a most likely key among keys reaching the node. These trees can be
thought of as a relaxation of median split trees, without the restriction that the split key has
to be a median key. Their algorithms compute minimum-cost binary split trees in O(n5)

time for both the successful-queries and general variants. (See also the note at the end of
this paper.) Huang and Wong [8] then introduced gbsplit (generalized binary split trees) as
defined above, and proposed an O(n5)-time algorithm for the problem, the one we show here
to be incorrect.

Subsequently, the algorithm was extended by Chen and Liu to multiway gbsplit, a
variant of gbsplit that requires multiple split keys per node [2]. Chen and Liu’s algorithm
and proof of correctness are directly patterned on Huang and Wong’s. Their proof is invalid
(and we believe their algorithm to be incorrect) for the same reason that Huang and Wong’s
proof and algorithm fail. (See the remark at the end of Sect. 2.)

As mentioned above, Spuler [14,15] proposed several 2wcst algorithms without proof of
correctness. Anderson et al. [1] gave the first proof that 2wcst is in polynomial time. Their
algorithm runs in time O(n4) and is restricted to the successful-queries variant. Chrobak et
al. [3–5] gave a somewhat simpler O(n4)-time algorithm for the general variant.

Beyond pointing out errors in the literature on binary search trees, we hope that the
constructions underlying our counter-examples will contribute to a better understanding of
the difficulties involved in designing algorithms for gbsplit and 2wcst, leading to better
algorithms or even new hardness results.

2 Huang andWong’s gbsplit algorithm is incorrect

This section gives our first main result: a proof that Huang and Wong’s proposed gbsplit
algorithm [8] has a fundamental flaw.

Theorem 1 Huang and Wong’s gbsplit algorithm [8] is incorrect. There is a gbsplit
instance (K, p) for which it returns a non-optimal tree.

We summarize their algorithm and analysis, give the intuition behind the failure, then
prove the theorem. The basic intuition is that, for the dynamic program that Huang andWong
define, the optimal-substructure property fails. The proof gives a specific counter-example
and verifies it. The counter-example can also be verified computationally by running the
Python code for Huang and Wong’s algorithm in Appendix A.

Fix any gbsplit instance (K, p). Assume without loss of generality that the keys are
K = {1, 2, . . . , n}. Regarding the probability vector p, for convenience, throughout the
paper we drop the constraint that the probabilities must sum to 1, and we use “probabilities”
and “weights” synonymously, allowing their values to be arbitrary non-negative reals. (To
represent probabilities, these values can be appropriately normalized.)

During a search, the outcome of each less-than comparison narrows the current search
interval, while the outcome of each (failed) equality test removes one key within the interval
from consideration. Thus, at each node in any search tree, the set of keys reaching the
node consists of some interval of keys, minus some so-called holes—keys removed from
consideration by previous equality tests. Next, we formally define an exponentially large (!)
class of subproblems that arise in this way, along with a natural recurrence relation for their
cost. We then discuss how Huang and Wong attempt to reduce the number of subproblems
to O(n3).
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Abusing notation, a query interval I = [i, j] is the set of contiguous keys {i, i +1, . . . , j}.
Given any query interval I and any subset H ⊆ I of “hole” keys, consider the subproblem
(I , H) formed by the subset of keys I \ H , with the weight distribution obtained from p by
restricting to I \ H . Let opt(I , H) denote the minimum cost of any generalized binary split
tree for this subproblem. Let p(I \ H) = ∑

k∈I\H pk denote the total weight of its keys.
If H = I then the subproblem can be handled by an “empty” tree, so opt(I , H) =

0. Otherwise, letting I = [i, j], the definition of generalized binary split trees gives the
recurrence

opt(I , H)= p(I\H)+ min
s∈[i, j+1];

e∈I\H

(
opt([i, s − 1], He ∩ [i, s − 1])+ opt([s, j], He ∩ [s, j]))

where He = H ∪ {e}. (Here s ∈ [i, j + 1] ranges over the possible split keys;1 e ∈ I \ H
ranges over the possible equality keys.)

The goal is to compute opt(K,∅). The recurrence above allows arbitrary equality keys
e, so it gives rise to exponentially many hole sets H , resulting in a dynamic program with
exponentially many subproblems. Huang andWong propose a dynamic program with O(n3)

subproblems (I , h), one for each interval I and integer h ≤ |I |. Specifically, they define

opt∗(I , h) = min{ opt(I , H) : H ⊆ I , |H | = h },
which is the minimum cost of any tree for interval I minus any hole set of size h. Each such
tree will have |I |− h nodes. (Their paper uses “p[i −1, j, h]” to denote opt∗([i, j], h).) We
refer to any such subproblem (I , h) as an HW-subproblem.

They develop a recurrence for opt∗(I , h) as follows. For any node N in an optimal tree,
define N ’s interval IN and hole set HN in the natural way so that interval IN contains those
key values that, if searched for in T with the equality tests ignored, would reach N , and
HN ⊆ IN contains those keys in interval IN that are equality keys at ancestors of N . Hence,
the set of keys reaching N is IN \ HN , and the subtree rooted at N is a solution for the
subproblem (IN , HN ), as well as the HW-subproblem (IN , |HN |), which we refer to as the
HW-subproblem arising at N . Huang and Wong’s Lemma 1 states:

Lemma 1 (From [8] (ambiguous)) “Subtrees of an optimal generalized binary split tree are
optimal generalized binary split trees.”

This statement is ambiguous in that it doesn’t specify for which subproblem the subtree is
optimal. Consider any subtree T ′ of an optimal tree T ∗. Let T ′ have root N , interval IN and
hole set HN . The first interpretation of their Lemma1 is that T ′ must be an optimal solution for
(IN , HN ). With this interpretation (following the first recurrence above), the lemma is indeed
true. But another interpretation is that T ′ must be an optimal solution for the HW-subproblem
(IN , |HN |) arising at N . This interpretation is not the same—the HW-subproblem specifies
only the number of holes, and choosing different holes can give a cheaper tree, so it can be that
opt∗(IN , |HN |) < opt(IN , HN ). As we shall see below, it is the second interpretation that
underlies the recurrence relation that Huang andWong propose, but, with that interpretation,
as our Theorem 2 shows, the above lemma is false because the HW-subproblems do not have
optimal substructure.

The ambiguity in Lemma 1 appears to be their first misstep. They follow it with the
following (correct) observation:

1 Huang and Wong allow n + 1 as a split key, which is inconsistent with their stated definition of gbsplit.
This is a minor technicality—any tree that uses n + 1 as a split key is easily converted into an equally good
tree that does not.
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Lemma 2 (From [8] (correct)) Let N be the root of a subtree T ′ with interval I in an optimal
generalized binary split tree T ∗. The equality-test key eN of N must be the least frequent key
among those in N’s interval IN that do not occur (as an equality-test key) in the left and
right subtrees of N .2

Proof The proof is a simple exchange argument. Suppose for contradiction that eN is more
likely than some key k in IN and k does not occur as an equality-test key in the left and right
subtrees of N . Then k is a hole at N , so it must be the equality-test key k = eN ′ of some
ancestor N ′ of N . A contradiction is obtained by observing that exchanging eN and eN ′ gives
a correct tree cheaper than T ∗. 
�

Huang and Wong’s Lemma 2 above (with the second, incorrect interpretation of their
Lemma 1) suggests the following idea. To find a hopefully optimal tree τ(I , h) for the HW-
subproblem (I , h), consider each possible root split key and each possible split of the h hole
slots. For each, first find optimal left and right subtrees for their respective subproblems, and
then take the equality key at the root to be the least-likely key in I that is not an equality test
in either subtree. Among trees obtained in this way, take τ(I , h) to be one of minimum cost.
Following this idea, their algorithm (as detailed on pages 118–120 of their paper) solves any
given HW-subproblem (I , h), where I = [i, j] is non-empty, as follows:

1. For each triple (s, h1, h2) where s ∈ [i, j + 1] (the split key), and h1 and h2 (the
numbers of holes in the left and right subtrees) are non-negative integers such that
h1 + h2 = h + 1, h1 ≤ |[i, s − 1]| = s − i , and h2 ≤ |[s, j]| = j − s + 1,
construct one possible candidate tree T (s, h1, h2) as follows:
1.1. Give T (s, h1, h2) left and right subtrees τ([i, s − 1], h1) and τ([s, j], h2).
1.2. Give the root of T (s, h1, h2) split key s and equality-test key e,

where e is a least-likely key in I that is not an equality-test key in either subtree.
2. Among trees T (s, h1, h2) so constructed, take τ(I , h) to be one of minimum cost.

The algorithm is not hard to implement. Appendix A gives Python code for it (30 lines).
Note that, by their Lemma 2, the choice for e in Line 1.2 would be correct if the second

interpretation of their Lemma 1 was correct. We surmise that this line of thinking led Huang
and Wong to their algorithm.

To justify the algorithm, Huang and Wong proceed as follows. Fix any execution of the
algorithm (breaking ties arbitrarily; see the remarks below). For any HW-subproblem (I , h)

that it solves, let opt∗(I , h) denote the minimum cost of any tree for the subproblem. Recall
that τ(I , h) denotes the algorithm’s solution (tree) for the subproblem, presumably of cost
opt∗(I , h). Huang and Wong first state a correct base case:

Lemma 3 (From [8] (correct))

opt∗(∅, 0) = 0.

But their Lemma 4 then claims that, for any non-empty interval I = [i, j] and any number
of holes h ≤ |I |, the following recurrence relation holds:

2 To avoid confusion, note that the lemma does not preclude a descendant D of N from having an equality-test
key eD that is more likely than eN , because eN might not be in D’s interval. So it does not imply that the
equality-test key eN at N is as likely as all equality-test keys in the subtree rooted at N . For example, see keys
A2 and D1 in tree T2a in Fig. 2.
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Lemma 4 (From [8] (incorrect))

opt∗(I , h) = min
s,h1

(
p(T (s, h1, h2)) + opt∗([i, s − 1], h1) + opt∗([s, j], h2)

)

where the minimum is over all legal combinations of s and h1, and h2 = h − h1 + 1, and
p(T (s, h1, h2)) is the weight of keys in the tree T (s, h1, h2) as defined above.

Ambiguities in Lemma 4. During the execution of the algorithm, in Steps 1.2 and 2, ties
may arise in choosing a minimizer. Different choices can lead to different subtrees for any
given T (s, h1, h2), with different hole sets. Huang and Wong do not explicitly discuss tie-
breaking, and in the absence of such a rule p(T (s, h1, h2)) is not uniquely determined by
the subproblem (I , h) and the parameters (s, h1, h2). But the refutations we give here hold
no matter how ties are broken.

More significantly, our statement of their Lemma 4 corrects what we believe is an error.
Namely, their statement of the lemma has “w(I , h)” where we have “p(T (s, h1, h2))”, with
w(I , h) (on their page 118) defined as the “total weight of the optimal GBST for” the HW-
subproblem (I , h). We believe that they had in mind the recurrence as we give it (using
p(T (s, h1, h2))), mainly because this recurrence is the one that their algorithm, as defined
on pages 118–120 of their paper, actually uses.

Our Theorem 2, next, refutes their Lemma 4 regardless of this issue—it refutes any recur-
rence based on the class of HW-subproblems {(I , h)}, by showing that the class doesn’t have
the optimal-substructure property. In Theorem 1 and elsewhere, by “Huang andWong’s algo-
rithm”, we mean the algorithm as defined in pages 118–120 of their paper (independently of
their statement of Lemma 4). Our refutation of that algorithm, after Theorem 2 below, gives
an instance on which it fails.

Theorem 2 There exists a gbsplit instance (K, p) with the following property. In every
optimal tree T ∗ for (K, p), there is at least one node N such that the subtree T ∗

N rooted
at N in T ∗ is not optimal for the HW-subproblem (IN , |HN |) arising at N. (The tree T ∗

N has
cost strictly larger than opt∗(IN , |HN |).)
Proof Before we describe (K, p), we first describe an HW-subproblem for which using a
minimum-cost tree T ′ can be a bad choice globally. The HW-subproblem is (I9, 2), with
h = 2 holes and interval I9 consisting of nine keys I9 = {A1, A2, A3, B0, B4, C0, D0, D1,
E0}, ordered lexicographically, with weights as follows:

Figure 2 shows two possible subtrees T2a and T2b for (I9, 2), each with seven nodes. By
calculation, subtree T2b costs 1 more than subtree T2a for (I9, 2). (Indeed, key C0 contributes
5 units more to T2b than to T2a , while key B4 contributes 4 units less to T2b than key D1
contributes to T2a .)

Although T2b costs 1 more than T2a , choosing subtree T2b instead of T2a can decrease
the cost of the overall tree! To see why, suppose that T2a occurs as a subtree of some tree
T ∗, in which T2a has parent A3 and grandparent B4 as shown in the figure. (See also Fig. 3.)
Consider replacing T2a and its two hole keys A3 and B4 by T2b and its two hole keys A3 and
D1. This replacement decreases the cost of the entire tree by 1 unit, because the contribution
of C0 increases by 5, swapping B4 and D1 decreases the cost by 6, and the contributions
of other nodes do not change. But a different calculation gives better intuition why Huang
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Fig. 2 Subtrees T2a and T2b for 9-key interval I9 with h = 2. T2a is missing the two keys A3, B4; T2b is
missing A3,D1. Each node shows its equality key and the frequency of that key; split keys are not shown. (For
each node, take the split key to be any key that separates the keys in the left and right subtrees.) The costs of
T2a and T2b are 209 and 210, respectively, but in T2a , the total weight of the keys is larger by 2
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Fig. 3 Trees T3a and T3b for an instance of gbsplit with 31-key interval I31. Key order is lexicographic:
A0 < A1 < A2 < A3 < B0 < · · · . As in Fig. 2, split keys are not shown. Huang and Wong’s algorithm gives
a tree of cost 1763, such as T3a , but tree T3b costs 1762

and Wong’s algorithm fails. The contribution of the subtree T2a to the overall cost equals the
cost of T2a in isolation plus twice the weight of keys in T2a (because T2a has two ancestors).
The modification increases the cost of the subtree by 1 (so it is no longer optimal for its
subproblem) but decreases the total weight of its keys by 2. Thus, the subtree’s contribution
to the overall cost changes by +1− 2 · 2 = −3. This decrease of 3 is more than the increase
of 2 that comes from changing the key B4 at the overall root to D1, which is 2 units heavier.

Next we use this HW-subproblem to obtain the complete instance (K, p) for Theorem 2.
The instance has a 31-key interval I31, which extends the previously considered interval I9
by appending two “neutral” subintervals, with 7 and 15 keys. Figure 3 shows two trees T3a
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and T3b for (K, p). As shown there, the new keys are given weights so that each of the two
added subintervals (without any holes) has a self-contained, optimal balanced subtree. To
finish proving Theorem 2, we prove that (K, p) has the necessary properties:

Lemma 5 Let T ∗ be any optimal tree for this gbsplit instance (K, p). At some node N of T ∗
the HW-subproblem (I9, 2) arises, but the subtree T ∗

N rooted at N has cost at least 210 for
(I9, 2), while opt∗(I9, 2) ≤ 209.

To bound tree costs, define a key placement (for a tree T ) to be an assignment of the
equality-test keys in T to distinct nodes in the infinite rooted binary tree T∞. Define the cost
of the placement to be the average weighted depth of the placed keys, weighted according
to the key weight-vector p. Each correct gbsplit tree T yields a placement of equal cost by
placing each equality-test key in the same place in T∞ that it occupies in T . The converse
does not hold, partly because placements can ignore the ordering of keys.

By an exchange argument, a placement has minimum cost if and only if it puts the weight-
22 key D1 at depth 0, the fourteen weight-20 keys at depths 1–3, and the sixteen remaining
(weight-10 and weight-5) keys at depth 4. By calculation, such a placement costs 1757.
No placement costs less, so no tree costs less. Tree T3b almost achieves a minimum-cost
placement—it fails only in that it places the weight-5 key at depth 5, so costs 1762, just 5
units more than the minimum placement cost.

Claim 6 T ∗ has the following structure:

(i) It places the fifteen keys of weight 20 or more at depths 0–3.
(ii) It places the fifteen weight-10 keys at depth 4.

Next we prove the claim. Since T ∗ is optimal it costs at most 1762 (the cost of T3b), so its
placement also costs at most 1762. Suppose for contradiction that (i) doesn’t hold. Then T ∗
places a key k of weight 20 or more at depth at least 4. Also, in depths 1–3, it either places at
least one key k′ of weight 10, or places fewer than fifteen keys. In either case, by exchanging
k and k′, or just re-placing k in depth 1–3, we can obtain a key placement that costs at least
10 units less than 1762. But this is impossible, as the minimum placement cost is 1757. So
(i) holds. Now suppose for contradiction that (ii) doesn’t hold. Then there is a weight-10 key
k′ at depth 5 or more, and at most fifteen keys at depth 4, so k′ can be re-placed in depth 4,
yielding a key placement that costs 10 less, which is impossible. This proves the claim.

Key placements ignore the ordering of keys. The following order property captures the
restrictions on key placements due to the ordering.

Let T be any correct gbsplit tree. Let P and P ′ be nodes in T with equality-test keys
k and k′. Let Q be the least-common ancestor of P and P ′. If P is in Q’s left subtree,
and P ′ is in Q’s right subtree, then k < k′.

The property holds simply because k and k′ are separated by M’s split key.
Fix any optimal tree T ∗ for (K, p). Claim 6 imposes stringent constraints on the depth of

all keys in T ∗, except for the weight-5 key C0. There are two cases:

Case 1: T ∗ places C0 at depth 4. With Claim 6, this implies that T ∗ is a complete balanced
binary tree of depth 4 (like T3a), whose sixteen depth-4 nodes hold the fifteen weight-10 keys
and C0. By the order property, these depth-4 keys are ordered left to right, just as they are in
T3a , with the left-most four nodes at depth 4 having keys B0, C0, D0 and E0.
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Table 1 The HW-subproblems used to solve HW-subproblem (I9, 2), with I9 = [1, 9]

The left spine has only five nodes. By the order property, all five keys less than C0 cannot
be elsewhere than on the spine. So D1 is not on the left spine.

Let M be the parent of sibling leaves D0 and E0. Since D0 < D1 < E0, by the order
property, D1must lie on the path from M to the root. Since D1 is not on the left spine, and M
is the only node on this path that is not on the left spine, D1 must be M . So D1 has depth 3
in T ∗. Now exchanging D1 with the root key gives a placement that costs at least 6 less, that
is, at most 1762 − 6 < 1757, which is impossible as the minimum placement cost is 1757.
So Case 1 cannot happen.

Case 2: T ∗ places C0 at depth 5. Let L0, L1, . . . , L� be the left spine of T ∗, starting at the
root. Take T ′ to be the subtree of T ∗ rooted at L2. By Claim 6, T ∗ has fifteen depth-4 nodes,
holding the fifteen weight-10 keys. By the order property, these depth-4 keys are ordered
left to right within their level and at most twelve of them are not in T ′. This implies that the
weight-10 keys B0, D0 and E0 must be in T ′.

The next larger weight-10 key, N0, cannot be in T ′. Indeed, if it were, then by the order
property, all keys less than or equal to N0 would be in T ′ ∪ {L1, L0}. But there are twelve
keys less than or equal to N0 and at most eight keys in T ′.

We now focus on the cost of T ′. By the previous two paragraphs, T ′ has exactly three
keys at depth 2, namely B0, D0 and E0. By the order property and the assumption for Case
2, C0 must be (the only key) at depth 3 in T ′ (as the child of either B0 or D0). By Lemma 8,
the three keys at depths 0 and 1 in T ′ have weight 20 or 22. Therefore, by calculation, the
cost of T ′ is at least 210 (see Fig. 2).

Since E0 is in T ′, by the order property, all eight keys less than E0 are in T ′ ∪ {L0, L1}.
That is, T ′ ∪ {L0, L1} contains at least the 9 keys in I9. But (as observed above) T ′ has seven
nodes. So T ′ ∪ {L0, L1} contains exactly the 9 keys in I9, and the HW-subproblem solved
by T ′ must be (I9, 2). As observed above, T ′ costs at least 210. But tree T2a (Fig. 2) of cost
209 also solves (I9, 2), so opt∗(I9, 2) ≤ 209.

This proves Lemma 5 and Theorem 2. 
�
We prove one final utility lemma before we prove Theorem 1. Consider any execution

of Huang and Wong’s algorithm on the input (K, p) defined in the proof of Theorem 2. Let
T = τ(I31, 0) be the algorithm’s solution.

Lemma 7 If T contains a node N whose HW-subproblem is (I9, 2), then the subtree τ(I9, 2)
rooted at N costs at most 209 for (I9, 2).

Proof Abusing notation, for 1 ≤ i < j ≤ 9, let [i, j] denote the i th through j th keys in
interval I9, as shown in Fig. 3. (See also Fig. 2 for intuition.) Consider Table 1:
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Each row of the table is for oneHW-subproblem (I , h) (shown in the leftmost column) and
demonstrates that the cost of the tree τ(I , h) computed by the algorithm for that subproblem
is as shown in the fifth column (“cost for τ(I , h)”). The last column lists the keys that are holes
in τ(I , h). The first four rows are singleton cases (key sets of size one), and their correctness
and optimality can be verified by straightforward inspection. For each subsequent row, the
second column gives one of the triples (s, h1, h2) considered by the algorithm for the given
HW-subproblem (I , h), where s is the split key, and h1 and h2 are the numbers of holes
allocated to the left and right subtrees. Columns “left” and “right” show the left and right
HW-subproblems that follow from that choice of (s, h1, h2), and column “cost for τ(I , h)”
gives the cost of tree T (s, h1, h2) resulting from that choice. Likewise, the final column
“holes” describes the possible hole sets (in order to achieve the given cost,covering all ways
to break ties). For the HW-subproblems in rows five and six, the choices of (s, h1, h2) in the
table are optimal. For the seventh subproblem, the cost of 209 is an upper bound (in fact it
is optimal, but we don’t need that here). Each row can be verified by manual computation
assuming inductively that the previous rows are correct.

To illustrate how to verify the rows, we explain the information included in the 5th row, for
HW-subproblem (I , h) = ([1, 6], 3). This subproblem involves interval [1, 6] that consists
of keys A1, A2, A3, B0, B4, C0, with 3 of the keys being holes. For the choice (s, h1, h2) =
(C0, 4, 0) in the algorithm (the 2nd column), the left and right HW-subproblems will be
([1, 5], 4) and ([6, 6], 0) (the 3rd and 4th column). Their solutions are summarized in the
1st and 2nd row of the table. (These solutions are: τ([1, 5], 4) contains only node B0, and
τ([6, 6], 0) contains only node C0.) The algorithm will then choose any key from A1, A2,
A3, B0, as the equality key in the root of tree T (C0, 4, 0), since they all have the same weight
20. The weight of T (C0, 4, 0) is then 35, so its cost will be 50, and the holes will be any three
keys among A1, A2, A3, B0. (Note: another choice in the algorithm that gives the same tree
is (s, h1, h2) = (B4, 3, 1).) As claimed in the paragraph above, this tree T (C0, 4, 0) is an
optimal solution for HW-subproblem ([1, 6], 3), that is T (C0, 4, 0) = τ([1, 6], 3). Indeed,
T (C0, 4, 0) is the only tree for ([1, 6], 3) that contains only one key of weight 20, and any
tree that has two keys of weight 20 will have cost at least 60. 
�

By Lemmas 5 and 7, the tree T computed by Huang and Wang’s algorithm for (K, p)

cannot be optimal: Lemma 5 states that all optimal trees for (K, p) contain a node with a
certain property, while Lemma 7 states that T does not contain such a node. This proves
Theorem 1.

For empirical verification, note that executing the algorithm on (K, p), via the Python
code in Appendix A,3 returns a tree of cost 1763. This tree is not optimal, as T3b costs 1762.
The tree does have the HW-subproblem (I9, 2), and executing the algorithm directly on that
subproblem does return a tree of cost 209.

Remark on Chen and Liu’s algorithm for multiway gbsplit [2]. Chen and Liu’s algorithm
[2] and analysis are patterned directly on Huang and Wong’s, and the proofs they present
also conflate (their equivalents of) opt∗(I , h) and opt(I , H), leading to the same problems
with optimal substructure. For example, Property 1 of [2] states “Any subtree of an optimal
(m+1)-way generalized split tree is optimal.”They do not define “optimal”, so their Property
1 has the same problem as Huang and Wong’s Lemma 1: it is true if “optimal” means “with
respect to their equivalent of opt(I , H)”, but does not necessarily hold if “optimal” means
“with respect to their equivalent of opt∗(I , h)”. Lemmas 2, 3 and 4 of [2], which state

3 The code there is modified to return, for each subproblem, not just one tree but all “candidate” trees of
minimum cost, where a candidate is a tree that the recurrence could consider by any way of breaking ties. If
any way of breaking ties will solve all of the relevant subproblems optimally, this simulation will find it.
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Fig. 4 A two-way-comparison search tree with keys K = {1, 2, 3, 4, 5, 6}. Below each leaf is its weight. The
cost of this tree is 0.6 · 1 + 0.1 · 3 + 0.1 · 3 + 0.05 · 4 + 0.05 · 4 + 0.1 · 3 = 1.9

the recurrence relations for their dynamic program, are direct generalizations of Huang and
Wong’s Lemma 4. Their recurrence chooses equality keys by first finding optimal subtrees
for the children, then taking the equality keys to be the least-likely keys that are not equality
keys in the children’s subtrees. As pointed out in the proof of Theorem 1, correctness of
this approach requires the optimal-substructure property to hold with respect to opt∗(I , h).
But it does not. For these reasons, their proof of correctness is not valid. We believe that
their algorithm for multiway gbsplit is also incorrect, but describing their algorithm and
analysis in detail, and giving a complete counter-example, are out of the scope of this paper.

3 A 2wcst algorithm by Spuler fails on some subproblems

This section concerns 2wcst, the problem of computing an optimal two-way comparison
search tree, given a set K of n keys and their weight distribution p. Such a tree T is a rooted
binary tree, where each non-leaf node N has two children, as well as a key kN ∈ K and
a binary comparison operator (equality or less-than). Denote such a node by 〈v = kN 〉 or
〈v < kN 〉, depending on which comparison operator is used. The tree T has n leaves, each
labeled with a unique key in K.

The search for a query v in T starts at the root. If the root is a leaf, the search halts.
Otherwise, it compares v to the root’s key using the root’s comparison operator, then recurses
left if the comparison succeeds, and right otherwise. For the tree to be correct,4 the search
for any query v ∈ K must end at the leaf that is labeled with v. Given an instance (K, p), the
problem is to find a tree that minimizes the weighted average depth of the leaves (in the case
that p is a probability distribution, this is the expected number of comparisons in a search
for a query v drawn randomly according to p). Figure 4 shows an example.

Spuler’s thesis proposed various algorithms for 2wcst and for gbsplit, for both the
successful-queries variant and the general variant [15].5 Here we discuss the (successful-
queries) 2wcst algorithm that Spuler presented as a modification of Huang and Wong’s
gbsplit algorithm in Section 6.4.1 of his thesis [15, Section 6.4.1]. That section starts with
the following remark:

4 Note that, in contrast to GBSPLIT trees, there are no comparisons at leaf nodes. For simplicity, we discuss
here only the successful-queries variant, in which only queries in K are allowed.
5 We remark that Spuler [15, Section 4.8] pointed out, and claimed to fix, several flaws in the pseudo-code
that Huang and Wong gave for their gbsplit algorithm. Those flaws are relatively minor and do not include
the deeper errors discussed in Sect. 2.
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“The changes to the optimal generalized binary split tree algorithm of Huang and
Wong [8] to produce optimal generalized two-way comparison trees are quite straight
forward.”

(“Generalized two-way comparison trees” in the thesis are two-way comparison search trees
as defined herein.) The remainder of his Section 6.4.1 sketches the code for the algorithm.
His Appendix A.4.1. gives complete code. Spuler does not explicitly define the dynamic
program or recurrence that he has in mind; however, it is implicitly defined by his algorithm
as described below. In addition to lacking proofs of correctness, these algorithms have not
appeared in any peer-reviewed publication, although Spuler did refer to them in his journal
paper [14], and they have been cited in the literature as the first polynomial-time algorithms
for 2wcst [1].

Following Huang and Wong, Spuler’s algorithms are based on a dynamic program where
each subproblem is specified by an interval of keys and a number of holes, and each sub-
problem is solved using a recurrence relation. In the remainder of the section, we prove that
the dynamic program is flawed:

Theorem 3 There is an instance (K, p) of 2wcst for which the dynamic program used by
Spuler’s 2wcst algorithm [15, Section 6.4.1] has the following flaws: for some subproblems,
the recurrence relation is incorrect and the algorithm computes non-optimal solutions.

Note that Theorem 3 does not imply that the algorithm is incorrect, in the sense that it
gives an incorrect solution to some full instance (where the number h of holes is 0).

Following Huang and Wong, the dynamic program implicit in Spuler’s algorithm has a
subproblem (I , h) for each query interval I and number of holes h. In what follows we
call any such subproblem (I , h) an S-subproblem. The definition of a correct tree for an S-
subproblem is a natural extension of the definition for full instances: a correct tree for (I , h)

must have exactly |I | − h leaves, each labeled with a unique key from I ; however, all keys
in I can be used as inequality-comparison keys. We use opt∗(I , h) to denote the minimum
cost of any tree for S-subproblem (I , h). The underlying flaw is the same as in Huang and
Wong’s dynamic program—S-subproblems do not have optimal substructure.

Given any S-subproblem (I , h), where I = [i, j] and the subproblem size |I |− h is more
than one, Spuler’s algorithm computes a tree τ(I , h) for S-subproblem (I , h) by combining
trees τ(I ′, h′) that it has computed for smaller S-subproblems, as follows:

1. Construct one candidate tree with an equality test at the root, as follows:
1.1. Let e be a least-likely key in I that is not a leaf in τ(I , h + 1).
1.2. The candidate tree has root 〈v = e〉 and right subtree τ(I , h + 1).

2. For s ∈ [i + 1, j] and (h1, h2) s.t. h1 + h2 = h, s − i − h1 ≥ 1 and j − s + 1 − h2 ≥ 1:
2.1. Make a candidate tree with root 〈v < s〉 and subtrees τ([i, s − 1], h1), τ([s, j], h2).

3. Among the candidate trees so constructed, let τ(I , h) be one of minimum cost.

Remarks. The algorithm is not hard to implement. Appendix B gives Python code (42 lines).
As noted earlier, Spuler does not explicitly define his dynamic program or recurrence relation
for opt∗(I , h); however, it is implicitly defined by his algorithm and his assumption that each
tree τ(I , h) is optimal for S-subproblem (I , h) (so has cost opt∗(I , h)).

Although ties may arise in choosing the minimizers in Lines 1.1 and 3, Spuler does not
discuss ties.We’ll show that his recurrence relation is incorrect nomatter how ties are broken.
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Fig. 5 Three trees (circled and lightly shaded) for S-subproblem (I8, 1). T5a has cost 49 and weight 22. T5b
and T5c have cost 50 but weight 20. T5a is optimal for (I8, 1). Among trees that don’t contain the weight-7
key 1, trees T5b and T5c have minimum cost. Subtrees marked with 0 (dark shaded) contain keys of weight 0

Given an S-subproblem (I , h), Spuler’s algorithm constructs its tree τ(I , h) out of trees
τ(I ′, h′) that it built for smaller S-subproblems. This only works if S-subproblems have
optimal substructure. To complete the proof of Theorem 3, we show that they do not:

Theorem 4 There exists a 2wcst S-subproblem (I , h) with the following property. In every
optimal tree T ∗ for (I , h), there is at least one node N such that, for the S-subproblem (IN , h′)
arising at N, the subtree T ∗

N rooted at N in T ∗ does not have minimum cost, opt∗(IN , h′),
for that S-subproblem.6

Proof Before we describe the full S-subproblem (I , h), we describe one smaller S-
subproblem (I ′, h′) for which using a minimum-cost tree T ′ can be a bad choice globally.
It is (I8, 1), with one hole and interval I8 having keys {1, 2, . . . , 8} whose weights are as
follows:

Figure 5 shows three possible subtrees T5a , T5b and T5c for (I8, 1). By inspection, T5a has
cost 49 for S-subproblem (I8, 1), while T5b and T5c cost 50 but weigh 2 units less. Suppose,
in a larger tree, that T5a occurs as the left child of a node N , as shown in Fig. 5. Let TN be
the subtree rooted at N . Suppose that the interval of the left child of TN (that is, the root of
T5a) contains all keys 1, 2, . . . , 8. (For example, N might be 〈v < 9〉.) Then replacing T5a

by T5b would reduce the overall cost by at least 1 unit. This is because the contribution of
T5a to the cost of TN is not the cost of T5a ; rather, it is its cost plus its weight, and the cost
plus weight of T5b is 1 unit less.

Next we construct the full S-subproblem (I , h) = (I15, 2) for Theorem 4. It has two holes,
and extends the above S-subproblem (I8, 1) to a larger interval I15 = {1, 2, . . . , 15} with the
following symmetric weights:

6 Note that h′ is h plus the number of equality tests on the path from the root of T ∗ to N . The algorithm does
not determine which keys are used in those equality tests until after it solves (IN , h′).

123



M. Chrobak et al.

We use the following terminology to distinguish the different types of keys in a subtree.
Given an S-subproblem (I ′, h′) of (I , h), and a tree T ′ for (I ′, h′), the keys of I ′ that appear
in the leaves of T ′ are T ′-queries. The other keys in interval I ′, which are holes in T ′, are
T ′-holes. (We don’t introduce new terminology for the comparison keys in T ′.) We drop the
prefix T ′ from these terms when it is understood from context.

To analyze (I15, 2) we need some utility lemmas. We start with one that will help us
characterize how weight-0 queries increase costs. This lemma (Lemma 8 below) is in fact
general and it holds for S-subproblems of an arbitrary instance of 2wcst. Define two integer
sequences {dm} and {em}, as follows: d1 = 0, d2 = 3, e1 = 0, e2 = 2, e3 = 6 and

dm = m + min {di + dm−i : 1 ≤ i < m} form ≥ 3,

em = m + min {di + em−i : 1 ≤ i < m} form ≥ 4.

By calculation, d3 = 6, d4 = 10, d5 = 14, e4 = 9, e5 = 13 and e6 = 18.
Consider a tree T ′ for an S-subproblem of some arbitrary instance of 2wcst (not neces-

sarily our specific instance (K, p)). A subset Q of T ′-queries will be called T ′-separated (or
simply separated, if T ′ is understood from context) if for any two k, k′ ∈ Q, with k < k′,
there is a T ′-query k′′ that separates them, that is k < k′′ < k′. Also, if Q\{ f } is T ′-separated
for some f ∈ Q, then we say that Q is nearly T ′-separated.

Lemma 8 Let T be a tree for an S-subproblem of some arbitrary instance of 2wcst. Let Q
be a set of T -queries and m = |Q|. (i) If Q is T -separated then the total depth (i.e., the sum
of the depths) in T of the keys in Q is at least dm. (ii) If Q is nearly T -separated then the
total depth in T of the keys in Q is at least em.

The proof of Lemma 8 is a straightforward induction—we postpone it to the end of this
section and proceed with our analysis.

Now we focus our attention on our instance (K, p), and we characterize the weights and
costs of optimal subtrees for certain subproblems. For 1 ≤ � ≤ 14, let I� = {1, 2, . . . , �}
denote the subinterval of I15 containing its first � keys. These keys have � weights (in order)
{7, 5, 0, 5, . . .}: one key of weight 7, then ��/2� even keys of weight 5, separated by odd keys
of weight 0. Let �+ = 1+ ��/2� be the number of positive-weight keys in I�. Note that each
S-subproblem (I�, h′) can be solved by a tree with �+ − h′ positive-weight queries, having
h′ (positive-weight) hole keys.

Lemma 9 Consider any S-subproblem (I�, h′) with � ≤ 14 and �+ − h′ = 4. Let T ′ be an
optimal tree for (I�, h′). Then T ′ has weight 22 and cost 49 (like T5a).

Proof As T ′ is fixed throughout the proof, the terms holes, queries, and separated, mean
T ′-holes, T ′-queries and T ′-separated as defined earlier, unless otherwise specified.

Let h0 be the number of weight-0 holes and q+ the number of queries with positive weight.
We use the following facts about T ′.

(F1) T ′ costs at most 49. Indeed, oneway to solve (I�, h′) is as follows: take the h′ rightmost
weight-5 keys in I� to be the holes, then handle the remaining �+ − h′ = 4 queries
with positive weight (queries 1, 2, 4, 6), along with any weight-0 queries 3, 5, 7, . . .,
using tree T5a , at cost 49.

(F2) q+ = 4 + h0. This follows by simple calculation: q+ = �+ − (h′ − h0) = 4 + h0.
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T6a T6b

Fig. 6 Trees T6a and T6b , with five positive weight queries. Tree T6a has cost 69 and weight 27. Tree T6b has
cost 70 and weight 25

(F3) T ′ does not contain four separated weight-5 queries. Indeed, otherwise, by Lemma 8,
T ′ would cost at least 5 · d4 = 50 > 49, contradicting (F1).

To finish we show that T ′ costs at least 49. Along the way we show it has weight 22.

Case 1: First consider the case that h0 = 0. By (F2), there are 4 positive-weight queries in
T ′. Since h0 = 0, all weight-0 keys are queries in T ′, so the set of all weight-5 queries in T ′ is
separated, and by (F3), there are at most three such queries. The fourth positive-weight query
must be the weight-7 query, query 1. So the positive-weight queries in T ′ are the weight-7
query and three separated weight-5 queries.

So T ′ has totalweight 22, as desired. Further, byLemma8, the four positive-weight queries
in T ′ have total depth at least e4 in T ′. So T ′ costs at least 5 ·e4+(7−5) · j = 45+2 j , where
j is the depth of the weight-7 query. If j ≥ 2, by the previous bound, T ′ costs at least 49, and
we are done. In the remaining case we have j = 1 (as j = 0 is impossible), so the weight-7
query is a child of the root. The three weight-5 queries are in the other child’s subtree (and
are a separated subset there), so by Lemma 8 have total depth at least d3 = 6 in that subtree,
and therefore total depth at least 9 in T ′. So the total cost of T ′ is at least 7 + 5 · 9 > 49,
contradicting (F1).

Case 2: In the remaining case h0 ≥ 1. By (F2), there are q+ = 4+h0 positive-weight queries
in T ′. Let q5 ≥ q+ − 1 be the number of weight-5 queries in T ′. Since all but h0 of the
weight-0 queries are in T ′, there is a separated set of q5 −h0 weight-5 queries in T ′. By (F3),
q5 − h0 ≤ 3.

This (with q+ = 4 + h0 and q5 ≥ q+ − 1) implies q5 = h0 + 3 = q+ − 1. This implies
that the weight-7 query is in T ′, along with some q5 − h0 = 3 separated weight-5 queries.
Reasoning as in Case 1, the cost of these four queries alone is at least 49. But T ′ contains at
least one additional weight-5 query (as q5 = 3 + h0 > 3), so T ′ costs strictly more than 49,
contradicting (F1). Thus Case 2 cannot actually occur. 
�
Lemma 10 Consider any S-subproblem (I�, h′) with � ≤ 14 and �+ − h′ = 5. Let T ′ be an
optimal tree for (I�, h′). Then T ′ has weight 27 and cost 69 (like T6a in Fig. 6).

Proof Again, throughout the proof, unless otherwise specified, the terms holes, queries, and
separated, are all with respect to T ′. Let h0 be the number of weight-0 holes and q+ the
number of queries with positive weight. We use the following facts about T ′.
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(F4) T ′ costs at most 69. Indeed, one can solve (I�, h′) as follows: take the h′ rightmost
weight-5 keys in I� to be the holes, then handle the remaining �+ − h′ = 5 queries
with positiveweight (queries 1, 2, 4, 6, 8), alongwith anyweight-0 queries 3, 5, 7, . . .,
using tree T6a at cost 69.

(F5) q+ = 5+h0. This followsby straightforward calculation:q+ = �+−(h′−h0) = 5+h0.

(F6) T ′ does not contain five separated weight-5 queries. Indeed, otherwise, by Lemma 8,
T ′ would cost at least 5 · d5 = 70 > 69, a contradiction.

To finish, we show that T ′ has cost at least 69. Along the way we show it has weight 27.

Case 1: First consider the case that h0 = 0. By (F5), there are 5 positive-weight queries in
T ′. Also, since h0 = 0, all weight-0 keys are queries in T ′, so the set of all weight-5 queries
in T ′ is separated, and by (F6), there are at most four of them. The fifth positive-weight query
must be the weight-7 query, query 1. So the positive-weight queries in T ′ are the weight-7
query and four separated weight-5 queries.

So T ′ has total weight 27. Further, by Lemma 8, the five positive-weight queries in T ′
have total depth at least e5 in T ′. So T ′ costs at least 5 · e5 + (7 − 5) · j = 65 + 2 j , where
j is the depth of the weight-7 query. If j ≥ 2 then, by the previous bound, T ′ costs at least
69, and we are done. In the remaining case we have j = 1 (as j = 0 is impossible), so
the weight-7 query is a child of the root. The four weight-5 queries are in the other child’s
subtree (and form a separated set there), so by Lemma 8 have total depth at least d4 = 10
in that subtree, and therefore total depth at least 14 in T ′. So the total cost of T ′ is at least
7 + 5 · 14 > 69, contradicting (F4).

Case 2: In the remaining case, h0 ≥ 1. By (F5), there are q+ = 5 + h0 positive-weight
queries in T ′. Let q5 ≥ q+ − 1 be the number of weight-5 queries in T ′. Since all but h0 of
the weight-0 queries are in T ′, there is a separated set of q5 − h0 weight-5 queries in T ′. By
(F6), q5 − h0 ≤ 4.

This (with q+ = 5+h0 and q5 ≥ q+ −1) implies q5 = h0 +4 = q+ −1. This implies that
the weight-7 query is in T ′, along with some separated set of q5 − h0 = 4 weight-5 queries.
Reasoning as in Case 1, the cost of these five queries alone is at least 69. But T ′ contains at
least one additional weight-5 query (as q5 = 4 + h0 > 4), so T ′ costs strictly more than 69,
contradicting (F4). Thus, Case 2 cannot actually occur. 
�

To conclude the proof of Theorem 4, we prove that (I15, 2) has the necessary properties:

Lemma 11 Let T ∗ be any optimal tree for S-subproblem (I15, 2). Then T ∗ has at least one
node N such that, for the S-subproblem (IN , |HN |) arising at N, the subtree T ∗

N rooted at N
in T ∗ does not have minimum cost, opt(IN , |HN |), for that S-subproblem.

Throughout the proof, unless otherwise specified, the terms holes, queries and separated
are all with respect to T ∗. We use the following properties of T ∗:
(P1) T ∗ costs at most 115. Indeed, one way to solve (I15, 2) is to take the two weight-7 keys

as holes, then use tree T7b in Fig. 7, of cost 115. As T ∗ is optimal, it costs at most 115.
(P2) The root of T ∗ does a less-than comparison. Indeed, by [1, Theorem 5], since T ∗ is

optimal for its queries, if T ∗ does an equality-test at the root, then the total queryweight
in T ∗ is at most four times the maximum query weight. But the total query weight in
T ∗ is at least 7 · 5 = 35, while the maximum query weight is at most 7.

(P3) In T ∗ there are seven positive-weight queries, and the set of weight-5 queries is sep-
arated (by weight-0 queries). To show this, we show that no weight-0 key is a hole.
Suppose otherwise for contradiction. Let k′ be a weight-0 hole. We can assume with-
out loss of generality that k′ is not used in any node of T ∗ as an inequality key, for
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Fig. 7 Spuler’s algorithm fails on the S-subproblem (I15, 2). The algorithm computes a tree of cost 116, such
as T7a above, but there are trees, such as T7b , of cost 115. The two trees’ left subtrees are T5a and T5c

otherwise we can modify T ∗ to not use it, without changing its cost, by replacing it
with the weight-5 key k′′ = k′ + 1 (which could be a hole or a query). Since k′ is a
T ∗-hole, by definition, k′ also cannot be used as an equality key. So we can assume that
k′ does not appear as a comparison key in T ∗. Let k ∈ {k′ ± 1} be a weight-5 query in
T ∗. (Query k exists in T ∗—otherwise {k′ − 1, k′, k′ + 1} would all be holes.) Replace
k throughout T ∗ by k′. As k′ and k are adjacent keys and k′ does not occur in T ∗, the
resulting tree T̄ still solves (I15, 2), and T̄ costs less than T ∗ (as T̄ uses the weight-0
key k′ instead of the weight-5 key k). This contradicts the optimality of T ∗.

By (P3), T ∗ has seven positive-weight queries. Using condition (P2) and left-right sym-
metry of subproblem (I15, 2), we can assume that the left subtree of T ∗ has at least four of the
seven. (Note that “flipping” the tree, namely replacing each key k by 16 − k and swapping
the yes and no-subtrees, would map each inequality comparison 〈v < k〉 to 〈v ≤ 16 − k〉,
while our model uses only strict inequalities. However, this latter comparison is equivalent to
〈v < 17 − k〉.) Let T ′ be the left subtree. Denote the S-subproblem that T ′ solves by (I�, h′).
To prove the lemma, assume for contradiction that T ′ is optimal for its S-subproblem, and
proceed by cases:

Case 1: T ′ has four positive-weight queries. That is, T ′ solves an S-subproblem (I�, h′)
where �+ − h′ = 4. By Lemma 9, T ′ has cost 49 and weight 22. The right subtree T ′′ of T ∗
has the three remaining positive-weight queries, the leftmost two of which are separated in
T ′′ by a zero-weight query (using (P3)). By Lemma 8(ii), T ′′ has cost at least 5 · e3 = 30
and weight at least 15. The cost of T ∗ is its weight plus the costs of T ′ and T ′′. By the above
observations, this is at least (22 + 15) + 49 + 30 = 116, contradicting (P1).

Case 2: T ′ has five positive-weight queries.That is, T ′ solves an S-subproblem (I�, h′)where
�+ − h′ = 5. By Lemma 10, T ′ has cost 69 and weight 27. The right subtree T ′′ of T ∗ has
the two other positive-weight queries, which have total depth at least 1 + 1 = 2 in T ′′,
and each has weight at least 5. So T ′′ has cost, and weight, at least 5 · 2 = 10. The cost
of T ∗ is its weight plus the costs of T ′ and T ′′. By the above observations, this is at least
(27 + 10) + 69 + 10 = 116, contradicting (P1).
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Case 3: T ′ has six or seven positive-weight queries. Let set S consist of just the first six of
these queries. Since T ′ is the left subtree of T ∗ (which has seven positive-weight queries) S
does not contain the last key, 15. So (using (P3)) all queries in S, except possibly {1, 2}, are
separated by weight-zero queries in T ′. By Lemma 8(ii), T ′ has cost at least 5 · e6 = 90.
The cost of T ∗ is its weight (at least 7 · 5 = 35), plus the cost of its left and right subtrees (at
least 90, counting T ′ alone). So T ∗ costs at least 35 + 90 = 125, contradicting (P1).

This proves the lemma and Theorem 4. 
�
Finally we prove Theorem 3.

Proof (Theorem 3) Consider any execution of Spuler’s algorithm on the S-subproblem (I , h)

fromTheorem 4, breaking ties arbitrarily. Let T be the tree it computes for that S-subproblem.
By Theorem 4, either T is not optimal for (I , h), or some subtree T ′ of T is not optimal for
its S-subproblem (I ′, h′). So Spuler’s algorithm must compute a non-optimal solution to at
least one S-subproblem. 
�

In fact, for this instance (I , h), Spuler’s algorithm (as implemented via the Python code in
Appendix B) computes a non-optimal tree of cost 116, such as T7a in Fig. 7. By inspection,
tree T7b in that figure costs 115, so T7a is not optimal.

Discussion. As mentioned earlier, this counter-example is just for a subproblem. This sub-
problem has h = 2 holes, so it does not represent a complete instance of 2wcst for which
Spuler’s algorithm would give an incorrect final result. However, this counter-example does
demonstrate that Spuler’s algorithm solves some subproblems incorrectly, so that the recur-
rence relation underlying its dynamic program is incorrect. At a minimum, this suggests
that any proof of correctness for Spuler’s algorithm would require a more delicate approach.
Anderson et al. [1] establish some conditions on the weights of equality-test keys in optimal
trees. It may be possible to leverage the bounds from [1] to show that bad subproblems—those
that are not solved correctly by the algorithm—never appear as subproblems of an optimal
complete tree. For example, per Anderson et al’s Theorem 5 for any equality-test node in any
optimal tree, the weight of the node’s key must be at least one quarter of the total weight of
the keys that reach the node. Hence, if a subproblem (I ′, h′) is solved by some subtree T ′
of an optimal tree T ∗, then each hole key in T ′ must have weight at least one third of the
total weight of the queries in T ′. This implies that the subproblem (I15, 2) in the proof of
Theorem 3 cannot actually occur in any optimal tree for (I15, 0).

While the question of correctness of Spuler’s algorithm is somewhat intriguing, it should
be noted that showing its correctness will not improve known complexity bounds for 2wcst,
as there are faster 2wcst algorithms that are known to be correct [1,3].

3.1 Proof of Lemma 8

Here is the promised proof of Lemma 8.

Proof (Lemma 8) Recall that T is a tree for some S-subproblem and Q is a subset of the
queries in T , with m = |Q|.
Part (i). Assume that Q is separated. Our goal is to show that the total depth in T of queries
in Q is at least dm , as defined before Lemma 8. It is convenient to recast the problem as
follows. Change the weight of each query in Q to 1. Change the weight of each query not in
Q to 0. We will refer to the resulting cost of a tree as modified cost. Now we need to show
that the modified cost of T is at least dm . The proof is by induction on m.
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The base cases (when m = 1, 2) are easily verified, so consider the inductive step, for
some given m ≥ 3. We assume that T and Q are chosen to minimize the modified cost of T ,
subject to |Q| = m. Call this the minimality assumption.

Suppose T does an inequality test at the root. Let T1 and T2 be the left and right subtrees of
T , and for a ∈ {1, 2} let Qa ⊆ Q contain the queries in Q that fall in Ta . Let i = |Q1|, so that
|Q2| = m − i . For a ∈ {1, 2}, query set Qa is Ta-separated. By the minimality assumption,
0 /∈ {i, m − i}. The modified cost of T is its weight (m), plus the modified costs of T1 and
T2. By the inductive assumption, this is at least m + di + dm−i ≥ dm , as desired.

Suppose T does an equality test at the root. The minimality assumption implies that the
equality-test key has nonzero (modified) weight. (This follows via the argument given for
Property (P2) in the proof of Lemma 11, using Anderson et al’s Theorem 5 or Corollary 3.)
So the equality-test key is in Q. Let T1 be the no-subtree of T and let Q1 ⊆ Q contain the
queries in Q that fall in T1; so we have |Q1| = m − 1. Set Q1 is T1-separated, so by the
inductive assumption, T1 has modified cost at least dm−1. So the modified cost of T is at least
m + dm−1 = m + d1 + dm−1 ≥ dm , as desired.

Part (ii). The proof of Part (ii) follows the same inductive argument as above. The base cases
for m = 1, 2 are trivial. The verification of the base case for m = 3 is by straightforward
case analysis. In the inductive step, the only significant difference is in the case when T does
an inequality test at the root. Since Q is now only nearly separated, Q1 will be T1-separated
while Q2 will be nearly T2-separated (or vice versa), giving us that the modified cost of T is
at least m + di + em−i ≥ em . 
�

Note: Wewould like to use this opportunity to acknowledge yet another error in the literature
on binary split trees, this one in our own paper [3]. In that paper we introduced a perturbation
method that can be used to extend algorithms for binary search trees with keys of distinct
weights to instances where key-weights need not be distinct, and we claimed that this method
can be used to speed up the computation of optimal binary split trees to achieve running time
O(n4). (Recall that in binary split trees from [7,9,12], the equality-test key in each node must
be a most likely key among keys reaching the node.) As it turns out, this claim is not valid.
In essence, the perturbation approach from [3] does not apply to binary split trees because
such perturbations affect the choice of the equality-test key and thus also the validity of some
trees. See [4,5] for an erratum, full proofs of the remaining results, and pointers to follow-up
work.
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paper.
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Appendix A

Python code for Huang andWong’s gbsplit algorithm

See Fig. 8.

Fig. 8 Python code for Huang and Wong’s gbsplit algorithm
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Appendix B

Python code for Spuler’s 2wcst algorithm

See Fig. 9.

Fig. 9 Python code for Spuler’s 2wcst algorithm
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