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ABSTRACT

Large surveys using multiobject spectrographs require automated methods for deciding how to efficiently
point observations and how to assign targets to each pointing. The Sloan Digital Sky Survey (SDSS) will
observe around 106 spectra from targets distributed over an area of about 10,000 deg2, using a multiobject
fiber spectrograph that can simultaneously observe 640 objects in a circular field of view (referred to as a
‘‘ tile ’’) 1=49 in radius. No two fibers can be placed closer than 5500 during the same observation; multiple tar-
gets closer than this distance are said to ‘‘ collide.’’ We present here a method of allocating fibers to desired
targets given a set of tile centers that includes the effects of collisions and that is nearly optimally efficient and
uniform. Because of large-scale structure in the galaxy distribution (which form the bulk of the SDSS
targets), a naive covering of the sky with equally spaced tiles does not yield uniform sampling. Thus, we
present a heuristic for perturbing the centers of the tiles from the equally spaced distribution that provides
more uniform completeness. For the SDSS sample, we can attain a sampling rate of greater than 92% for all
targets, and greater than 99% for the set of targets that do not collide with each other, with an efficiency
greater than 90% (defined as the fraction of available fibers assigned to targets). The methods used here may
prove useful to those planning other large surveys.
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1. INTRODUCTION

Large spectroscopic surveys performed using multiobject
spectrographs are becoming commonplace in astronomy.
Although the details and particular constraints of these sur-
veys differ, they all face the common challenge of optimally
matching a list of targets to the fibers or slits within each
field of view of a set of pointings. Such matching would take
large amounts of time to perform by hand, and the result
would be less than optimal and, in any case, unrepeatable
for the purposes of simulating the survey. Thus, it is worth
spending the time to develop an automatic system that can
assign targets to fibers or slits in such a way as to maximize
efficiency. In this paper, we describe the method that the
Sloan Digital Sky Survey (SDSS; York et al. 2000) is using
to address this challenge. The method of solution chosen,
using a network flow algorithm to optimize under the survey
constraints, is widely applicable and should be useful to
those planning observations of future surveys.

The SDSS is producing a deep imaging survey over about
10,000 deg2, using a camera with a large-format CCD array
on a dedicated telescope at Apache Point Observatory in
New Mexico (Gunn et al. 1998). A sample of objects
selected from this imaging survey is being targeted for a
spectroscopic follow-up survey that is being conducted con-

currently. About 900,000 of these spectroscopic targets will
be galaxies (Strauss et al. 2002), about 100,000 will be QSOs
(Richards et al. 2002), and about 100,000 will be selected by
color to be intrinsically very red, luminous galaxies known
as ‘‘ luminous red galaxies ’’ (LRG; Eisenstein et al. 2001).
In this paper, we will refer to all of these objects generically
as ‘‘ tiled targets,’’ or often simply ‘‘ targets.’’

These targets are observed using two multiobject fiber
spectrographs on the same telescope (Uomoto et al. 2001).
Each spectroscopic fiber plug plate, referred to as a ‘‘ tile,’’
has a circular field of view with a radius of 1=49 and can
accommodate 640 fibers, 48 of which are reserved for obser-
vations of blank sky and spectrophotometric standards.
Because of the finite size of the fiber plugs, the minimium
separation of fiber centers is 5500. If, for example, two objects
are within 5500 of each other, both of them can be observed
only if they lie in the overlap between two adjacent tiles.
Simulations and early observations both suggest that 10%
of targets in the SDSS will be unobservable if they do not lie
in overlaps of tiles; about 30% of the sky will be covered by
such overlaps. The goal of the SDSS is to observe 99% of
the maximal set of targets that has no such collisions (about
90% of all targets). In x 4, we give a more complete descrip-
tion of the details of the SDSS.

Around 2000 tiles will be necessary to provide fibers for
all the targets in the survey. Since each tile that must be
observed contributes to the cost of the survey (due both to
the cost of production of the plate and to the cost of observ-
ing time), we desire to minimize the number of tiles neces-
sary to observe all the desired targets. In order to maximize
efficiency (defined as the fraction of available fibers assigned
to tiled targets) when placing these tiles and assigning tar-
gets to each tile, we need to address two problems. First, we
must be able to determine, given a set of tile centers, how to
optimally assign targets to each tile—that is, how to maxi-
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mize the number of targets that have fibers assigned to
them. This problem is nontrivial because the circular tiles
overlap. Second, we must determine the most efficient
placement of the tile centers, which is nontrivial because the
distribution of targets on the sky is nonuniform, because of
the well-known clustering of galaxies on the sky. It turns
out that the first problem can be solved in polynomial time,
even in the presence of fiber collisions (as long as targets are
distributed across the sky in a reasonable way). The second
problem belongs to a class of problems for which only expo-
nentially expensive methods for finding the exact solution
are known (that is, it is ‘‘ NP complete ’’), but we use a
heuristic method developed by Lupton, Maley, & Young
(1998) to find an approximate solution.

This paper discusses the strategy used by the SDSS to
place its tiles using these methods. It is designed to run on a
patch of sky consisting of a set of rectangles in a spherical
coordinate system, known in SDSS parlance as a ‘‘ chunk.’’
Much of the strategy was described by Lupton et al. (1998);
this paper provides more astronomical context and
describes the method for resolving fiber collisions. Section 2
describes the method. Section 3 shows example results from
actual SDSS data and from simulations. Section 4 describes
some technical aspects of the SDSS. Section 5 summarizes
our results. We emphasize that many of the methods
described herein are applicable to other multiobject spectro-
graph surveys.

2. TILE PLACEMENT AND FIBER ALLOCATION

Here we describe our method for placing each tile and
allocating the fibers of each tile to the targets. First, we dis-
cuss the allocation of fibers given a set of tile centers. In the
absence of fiber collisions, this problem can be solved
quickly and optimally, as shown in x 2.1. A method that is
nearly optimal in the presence of fiber collisions is presented
in x 2.2. Second, in x 2.3, we discuss how to efficiently place
the centers of the tiles.

The methods described in this section are easily generaliz-
able to situations in which the usable field of view is noncir-
cular. The method used to handle collisions is applicable to
most fiber-based systems. Slit spectroscopy obviously
involves slightly more complicated constraints; however,
the authors believe that the general approach of a network
algorithm might be appropriate and should be considered
by those planning such observations. Our method for posi-
tioning of the centers of the tiles (or fields of view, in the gen-
eral case) is that which is most likely to require a revised
approach under different conditions (such as targets with
different clustering properties or areal densities than gal-
axies at r < 17.77). This is because our algorithm is not
guaranteed to find a global optimum (which is an NP-hard
problem) but is only based on a heuristic for iteratively
improving an initial solution.

2.1. Target-to-Tile Assignment without Collisions

Given a distribution of targets on the sky and an a priori
set of tile centers, one can find the optimal solution to the
problem of allocating the targets to each tile, such that the
maximum possible number of targets are assigned fibers.
With circular tiles, which necessarily overlap, this is a some-
what nontrivial problem.

Figure 1 shows at the top a very simple example of a dis-
tribution of targets and the positions of two tiles we want to
use to observe these targets. Given that for each tile there is
a finite number of available fibers, how do we decide which
targets get allocated to which tile? As realized by Lupton et
al. (1998), this problem is equivalent to a network flow
problem, which computer scientists have been kind enough
to solve for us already (e.g., Goldberg 1997).
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Fig. 1.—Top: Schematic distribution of targets ( filled circles) and the
placement of two tiles used to observe these targets. Bottom: Network flow
that would be constructed to optimally assign the targets to each tile. Each
filled circle is a ‘‘ node’’; in analogy to the top half, the filled circles represent
targets and unfilled circles represent tiles. Each line is an ‘‘ arc.’’ The arcs
are each labeled by a number, which represents their ‘‘ capacity.’’ Unless
otherwise marked, there is no cost associated with allowing targets to flow
down an arc. One should imagine that each target in the top panel contrib-
utes to the flux of some fluid flowing from the source at left. In this analogy,
each arc is like a pipe that can accommodate some maximum flow, and the
nodes are locations where these pipes join, and where the flow can be redir-
ected.We want to direct the flow of all the targets to the sink at right for the
lowest possible cost. Since the direct route (the ‘‘ overflow arc ’’) from the
source to the sink, which does not flow through any tile nodes and thus cor-
responds to not observing a galaxy, has a substantial cost, the minimum
cost requirement effectively means maximizing the number of targets that
are assigned to tiles.
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The basic idea is shown in the bottom half of Figure 1,
which shows the appropriate network for the situation in
the top half. Using this figure as reference, we here define
some terms which are standard in combinatorial literature
and which will be useful here:

Node.—The nodes are the solid dots in the figure; they
provide either sources/sinks of objects for the flow or sim-
ply serve as junctions for the flow. For example, in this
context, each target and each tile corresponds to a node.
Arc.—The arcs are the lines connecting the nodes. They

show the paths along which objects can flow from node to
node. In Figure 1, it is understood that the flow along the
arc proceeds to the right. For example, the arcs traveling
from target nodes to tile nodes express which tiles each tar-
get may be assigned to.
Capacity.—The minimum and maximum capacity of

each arc is the minimum and maximum number of objects
that can flow along it. For example, because each tile can
accommodate only 592 fibers, the capacities of the arcs
traveling from the tile nodes to the sink node is 592.
Cost.—The cost per object along each arc is exacted for

allowing objects to flow down a particular arc; the total cost
is the summed cost of all the arcs. In this paper, the network
is designed such that the minimum total cost solution is the
desired solution.

Imagine that you have a flow of seven objects that enters the
network at the source node at the left. The goal is for the
entire flow to leave the network at the sink node at the right
for the lowest possible cost. The objects must travel along
the arcs, from node to node. Each arc has a maximum
capacity of objects that it can transport, as labeled. (One
can also specify a minimum number, which will be useful
later). Each arc also has an associated cost, which is exacted
per object that is allowed to flow across that arc. Arcs link
the source node to a set of nodes corresponding to the set of
targets. Each target node is linked by an arc to the node of
each tile it is covered by. Each tile node is linked to the sink
node by an arc whose capacity is equal to the number of
fibers available on that tile. None of these arcs has any asso-
ciated cost. Finally, an ‘‘ overflow ’’ arc links the source
node directly to the sink node, for targets that cannot be
assigned to tiles. The overflow arc has effectively infinite
capacity; however, a cost is assigned to objects flowing on
the overflow arc, guaranteeing that the algorithm fails to
assign targets to tiles only when it absolutely has to. This
network thus expresses all the possible fiber allocations, as
well as the constraints on the numbers of fibers in each tile.
Finding the minimum cost solution (which can be done in
polynomial time using the method of Goldberg 1997) then
maximizes the number of targets that are actually assigned
to tiles.

However, there are a couple of properties of the network
flow solutions that must be treated with caution. First, note
that in this example there are only three types of target
nodes: those only in tile 1, those only in tile 2, and those in
both.7 When the network flow algorithm we use here

chooses its solution, it does not guarantee that it chooses
targets within each of these types randomly. Thus, if the
order of the target nodes as sent to the network flow algo-
rithm are correlated with any target property (for example,
position on the sky), the distribution of that property in tar-
gets assigned to tiles will differ from the distribution in all of
the targets. Take, for example, the situation that the targets
are sorted by right ascension. If the algorithm is unable to
assign fibers to some of the targets, it is likely that the unas-
signed targets will be nodes that are close to each other in
Figure 1. Therefore, they will also be clumped in right ascen-
sion. This is unacceptable if we desire a reasonable window
function. Thus, we randomize the order in which nodes are
assigned to targets by this algorithm; this prevents any cor-
relation between target properties and whether a target gets
a fiber.

Second, the particular method we use, provided by Gold-
berg (1997), has the interesting property that when a certain
number of targets cannot be allocated fibers, the algorithm
preferentially chooses to exclude targets that are covered by
more than one tile. This property has no effect on the overall
efficiency of the solution, but because the method for fitting
for tile positions presented in x 2.3 will tend to put overlaps
of tiles in preferentially overdense regions, it may introduce
subtle correlations between the sampling rate and the den-
sity field. This behavior is important if the level of complete-
ness is low in parts of the tiling region; however, the
uniformity of our completeness is high enough that this
effect is not important.

2.2. Target-to-Tile Assignment with Collisions

As described above, there is a limit of 5500 to how close
two fibers can be on the same tile. If there were no overlaps
between tiles, these collisions would make it impossible to
observe �10% of the SDSS targets. Because the tiles are cir-
cular, some fraction of the sky will be covered with overlaps
of tiles, allowing some of these targets to be recovered. In
the presence of these collisions, the best assignment of tar-
gets to the tiles must account for the presence of collisions,
and strive to resolve as many as possible of these collisions
that are in overlaps of tiles. We approach this problem in
two steps, for reasons described below. First, we apply the
network flow algorithm of x 2.1 to the set of ‘‘ decollided ’’
targets—the largest possible subset of the targets that do
not collide with each other. Second, we use the remaining
fibers and a second network flow solution to optimally
resolve collisions in overlap regions.

2.2.1. Network Flow for Decollided Objects

The effect of fiber collisions is one issue that any analysis
of the SDSS data is going to face. The fact that most (70%)
of the sky in the survey will be only covered by a single tile
means that a certain number of objects will be missed for
this reason. Thus, the best that one can hope for in terms of
sampling is that all unobserved targets have a close neighbor
that was observed; the redshift of the observed target would
thus give us some prior information on the redshift of the
unobserved target. Furthermore, exactly where and how
many targets one can recover in tile overlaps depends
strongly on the locations of the tiles and thus on the target
density field. To evaluate the effect of this dependence on
large-scale structure statistics, one would have to run the
algorithm described here on a large number of mock cata-

7 The astute reader will notice that there is therefore a more (computa-
tionally) efficient way of setting up the network than shown in Figure 1, and
indeed Lupton et al. (1998) describe doing so. We implement the more
costly method in this situation because it is simpler and we can afford it
computationally.
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logs. For these two reasons, we must take care that we iden-
tify a set of targets that we could observe no matter where
the tiles are and obtain as complete a sample as possible of
these targets.

To identify this sample, we define the maximal subset of
the targets that are all greater than 5500 from each other,
which we refer to as the ‘‘ decollided ’’ set. To clarify what
we mean by this maximal set, consider Figure 2. Each circle
represents a target; the circle diameter is 5500, meaning that
overlapping circles are targets that collide. The set of solid
circles is the ‘‘ decollided ’’ set. Thus, in the triple collision at
the top, it is best to keep the outside two rather than the
middle one. To find this decollided set of targets, we run a
friends-of-friends grouping algorithm on the targets with a
5500 linking length. The resulting groups are almost always
of sufficiently low multiplicity that we can simply check all
possibilities to find the best possible selection of targets that
eliminates fiber collisions. We pick at random one of the set
of equivalent ‘‘ best ’’ selections; for example, if two objects
collide, this algorithm simply picks one at random to be
‘‘ decollided.’’

This determination is complicated slightly by the fact that
some targets are assigned higher priority than others. For
example, as explained in x 4.1, QSOs are given higher prior-
ity than galaxies by the SDSS target selection algorithms.
What we mean here by ‘‘ priority ’’ is that a higher priority
target is guaranteed never to be eliminated from the sample
because of a collision with a lower priority object. Thus, our
true criterion for determining whether one set of assign-
ments of fibers to targets in a group is more favorable than
another is that a greater number of the highest priority
objects are assigned fibers. In the case of a tie in the highest
priority objects, the next highest priority objects are consid-
ered and so on.

Once we have identified our set of decollided objects, we
use the network flow solution to find the best possible
assignment of fibers to that set of objects.

2.2.2. Network Flow for Collisions

After allocating fibers to the set of decollided targets,
there will usually be unallocated fibers, which we want to
use to resolve fiber collisions in the overlaps. We can again
express the problem of how best to perform the collision res-
olution as a network, although the problem is a bit more
complicated in this case. In the case of binaries and triples,
we design a network flow problem such that the network
flow solution chooses the tile assignments optimally. In the
case of higher multiplicity groups, our simple method for
binaries and triples does not work, and we instead resolve
the fiber collisions in a random fashion; however, fewer than
1% of targets are in such groups, and the difference between
the optimal choice of assignments and the random choices
made for these groups is only a small fraction of that.

The design of the second network flow is similar to the
first, with source and sink nodes (connected by the overflow
arc) and a layer of tile nodes. However, instead of a layer of
target nodes, we have a layer of nodes corresponding to
each group (as defined by the aforementioned friends-of-
friends algorithm) that has at least one member in an over-
lap of tiles. We thus ignore groups covered only by one tile,
since we have already done as well as possible for those tar-
gets. Note we include single-member groups in this process,
which allows targets in overlaps that were previously guar-
anteed a fiber on one plate to be shuffled to another plate, if
it proves desirable to do so.

First, we need to set the properties of each arc connecting
the source node to each group node. For each group, we find
the maximum number of targets that could be observed,
cmax, taking advantage of the overlapping tiles, but regard-
less of the number of available fibers in each tile. We find
cmax by simply trying all possible target-to-tile configura-
tions for that group and picking the best solution (again
accounting for the relative priorities of the objects). A con-
straint on the best solution is that some subset of the targets
in each group will have been allocated fibers as decollided
targets in the first network flow. Any ‘‘ best ’’ solution must
guarantee that these targets will be assigned fibers again in
the second network flow. In addition, these required targets
clearly set a minimum number of targets to observe in each
group, cmin. Each source-to-group arc will have its maxi-
mum andminimum capacity set according to these bounds.

Second, we need to set the properties of each arc connect-
ing a group node to a tile node. In the case that cmax�3, we
determine the maximum number of targets that can be
assigned to each tile, cmax,i, given all the equivalent ‘‘ best ’’
sets of target-to-tile assignments. The minima cmin,i are set
to the minimum number of arcs in each tile, given all legal
target-to-tile assignments. The group-to-tile arcs are then
assigned these maximum and minimum capacities. Under
these conditions, in almost every case, any solution the net-
work flow finds will be achievable, in the sense that it can be
implemented without the occurrence of fiber collisions. See
below for a discussion of the exceptions.

In the case that cmax > 3, the same prescription does not
provide the assurance that the network flow will return a
viable set of tile assignments, and instead we pick a particu-
lar ‘‘ best ’’ set of target-to-tile assignments for each such
group in order to guarantee feasibility. In this case, the code
chooses at random a particular realization of the ‘‘ best ’’
resolution of the fiber collisions (one must also be careful, in
the cmax > 3 case, to guarantee fibers to all of the decollided

Fig. 2.—Dramatization of the definition of the ‘‘ decollided ’’ set of gal-
axies. Each circle (solid and dashed ) is centered on the location of a target
and has a diameter equal to the fiber collision limit. Thus, intersecting
circles represent targets that ‘‘ collide.’’ The filled circles represent the larg-
est subset of galaxies that can be chosen that do not ‘‘ collide ’’ with each
other.We refer to these galaxies as a ‘‘ decollided ’’ set of galaxies. Note that
there is usually no unique decollided set, because (for example) in a binary
collision we are always free to choose either galaxy to be decollided.
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fibers that were picked in the first network flow solution; this
task is complicated but tractable).

For the sake of concreteness, consider Figure 3, which
shows a possible tile-target configuration and the net-
works that would be constructed to solve it. Again, the
filled circles indicate the ‘‘ decollided ’’ set of targets,
which has 11 members, and for which the decollided net-
work flow is run (unmarked arcs have a capacity of
unity). Assuming all the decollided targets are obtained,
we set up the network flow for the groups in the overlap
as shown at the bottom. Each source-to-group arc is
marked by its maximum capacity cmax followed by its
minimum capacity cmin in parentheses. As explained
above, these minima are set by the fact that some of the
targets are guaranteed spots because they were previously
assigned tiles in the decollided solution. The group-to-tile
capacities are set to the maximum possible on any given
tile. Again, setting things up this way allows the network
flow solution to optimally allocate the overlap fibers (at
least for triples and binaries) while still guaranteeing that
a solution is possible and that fibers are assigned to all
the decollided targets that had been previously selected.

As mentioned above, there are cases for which these rules
return unfeasible answers. Under the conditions of the
SDSS, these cases are extraordinarily rare; we mention them
because the same may not be true for every application.
There are essentially two classes of failures. First, occasion-
ally it happens that because part of a group is in an overlap
and part is not, the ‘‘ best ’’ solution requires that more fibers
be assigned to a tile than were assigned in the decollided sol-
ution. If, in conjunction with this occurrence, the tile in
question is in a particularly dense region, it may already
require all its fibers to cover the decollided targets. Thus,
applying the rules above creates a second network flow with
no possible solution. In such cases, the code reverts to a
‘‘ fail safe ’’ mode, which only allows solutions to the group-
to-tile problem that put the same number of decollided tar-
gets onto each tile as were assigned in the first network flow.

Second, and again very rarely, it occasionally happens
that while the second network flow successfully returns a
choice of fiber assignments, this choice makes it impossible
to assign fibers to all the decollided targets that were guar-
anteed fibers in the first network flow, not because of a lack
of fibers, but because of geometrical considerations. Again,
the problem is associated with groups that straddle tile
boundaries. In this case, the problem occurs when some tar-
gets in a group are in an overlap of three or more tiles and
others are in an overlap of a lesser number of tiles. In the
code, we simply warn the user that some decollided targets
have been lost. On the basis of simulations, we expect 10–20
of the million SDSS targets to be lost because of this effect.

2.3. Tile Placement

Once one understands how to assign fibers given a set
of tile centers, one can address the problem of how best
to place those tile centers. One can show that to solve
this problem optimally is NP-hard (e.g., Megiddo &
Supowit 1984), but Lupton et al. (1998) have developed a
heuristic method that works well for the sorts of distribu-
tions of targets we deal with here. This method first dis-
tributes tiles uniformly across the sky and then uses a
cost minimization scheme to perturb the tiles to a more
efficient solution.

Tile 1 Tile 2

Source

Targets
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Sink
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Overflow Arc (cost = 1000)

Groups
Tiles

SinkSource

2 (1)
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1

1

1 (1) 1

1
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Overflow Arc (cost = 1000)

Decollided Network Flow

Collision Network Flow

Fig. 3.—Top: Schematic distribution of targets and tiles, as in Fig. 1; in
the manner of Fig. 2, the decollided galaxies are filled circles and the others
are dashed circles. Middle: Decollided network flow (x 2.2.1) used to find
the optimal solution for decollided objects; this network flow has the same
form as that in Fig. 1 (here unmarked arcs have a capacity of unity).
Bottom: Network flow used to resolve collisions in overlaps of tiles. In this
case, the set of target nodes has been replaced by nodes corresponding to
each group with one or more members in an overlap of tiles. For the case
shown here, there are three such groups. The arcs to and from each group
haveminimum andmaximum capacities set as described in the text. If omit-
ted, the maximum capacity is unity. The minimum capacity for each arc is
put in parentheses after the maximum; if omitted, the minimum capacity is
zero.
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2.3.1. Initial Conditions

We need to choose some initial, nearly uniform covering
of the region to be tiled, before perturbing it to improve the
efficiency.We use two techniques. First, for sufficiently large
chunks of sky, we draw the uniform tiling from an approxi-
mately uniform covering of the sphere provided by Hardin,
Sloane, & Smith (2001).8 These coverings are provided for
discrete numbers of tiles; the choice appropriate for the
SDSS target density (about 120 per square degree) is 7682
tiles over the whole sky. We throw away tiles whose centers
are not in the chunk of sky of interest to us.

Second, for smaller chunks of sky (which a small chunk
of the uniform spherical covering is less likely to cover in a
reasonable way), we simply lay down a rectangle of tiles. To
set the centers of the tiles along the long direction of the rec-
tangle, we count the number of targets along the stripe cov-
ered by that tile. The first tile is put at the mean of the
positions of target 0 and target Nt, where Nt is the number
of fibers per tile (592 for the SDSS). The second tile is put at
the mean between targetNt and 2Nt and so on. The counting
of targets along adjacent stripes is offset by about half a tile
diameter in order to provide more complete covering.

2.3.2. Perturbing the Tiles

The method is essentially iterative. One starts with a uni-
form covering of tiles over the region in question, as
described in the previous subsection. Then, one allocates
targets to the tiles; however, instead of limiting a target to
the tiles within a tile radius, one allows a target to be
assigned to further tiles, but with a certain cost that
increases with distance (remember that the network flow
accommodates the assignment of costs to arcs). For group-
to-tile nodes in the second network flow solution, one
defines the cost according to the position of the group cen-
ter. One uses exactly the same fiber allocation procedure as
above.

In practice, we do not allow fibers to be assigned to any
tile, but only those within 2.5 times the tile radius. We assign
a cost of the following form:

c ¼
0 ; r < Rtile ;

A ðr=RtileÞ� � 1½ � ; r > Rtile ;

�
ð1Þ

where r is the distance of the fiber from the center of the tile,
Rtile is the radius of the tile, and � is the logarithmic slope of
the cost function. A is a scale factor, set so that at
r = 2.5Rtile the cost is equal to the cost of not assigning the
fiber at all.

What this does is to give each tile some information about
the distribution of targets outside of it. Then, once one has
assigned a set of targets to each tile, one changes each tile
position to that which minimizes the cost of its set of targets.
To perform this minimization, we use Powell’s direction set
method, as described by Press et al. (1992). Then, with the
new positions, one reruns the fiber allocation, perturbs the
tiles again, and so on. As Lupton et al. (1998) point out, this
method is guaranteed to converge to a minimum (although
not necessarily a global minimum), because the total cost
must decrease at each step.

The parameter � sets the slope of the cost function; the
most advantageous value of � depends in detail on the

density and distribution of the targets. We generally set
0.5 < � < 2. High values in this range encourage tiles to
take large excursions from their initial positions, since the
slope of the cost function becomes higher at larger radii.
Under these conditions, tiles are influenced by distant tar-
gets that they may never cover; however, this behavior can
be desirable for large chunks of sky for which the best solu-
tion may require large numbers of tiles to shift in unison.
Low values in this range are more conservative in the sense
that tiles are encouraged to travel less far from their initial
positions, since the slope of the cost function decreases with
radius. This behavior is usually desirable for small chunks
of sky, for which many tiles are sitting near an edge and
large changes of position will usually uncover sky. Perhaps
a more general approach is to allow � to be variable in some
way throughout the minimization.

Depending on the overall survey goals, one can choose to
which set of targets these costs apply. For the SDSS, we are
most interested in maximizing the fraction of decollided tar-
gets that are observed. For this reason, we assign cost only
to the decollided targets, effectively ignoring the other
objects when fitting for tile positions. In fact, during the iter-
ation, we do not even perform the second network flow.

It is possible to assign fibers to a slightly larger fraction
(by about 1%) of all targets if all targets are included in the
cost minimization. However, for the SDSS this improve-
ment would come at the cost of large numbers of gaps
opening up between tiles, because the number of tiles neces-
sary to observe all the targets is uncomfortably close to the
number of tiles necessary to simply cover the available sky.
This effect highlights an important facet of the tiling prob-
lem: inefficiency arises because tiles that are in underdense
regions cannot always be moved toward dense regions with-
out leaving parts of the sky completely uncovered. A much
higher target (and thus tile) density would mitigate this
difficulty.

In practice, we also need to determine the appropriate
number of tiles to use. Thus, using a standard binary search,
we repeatedly run the cost-minimization to find the mini-
mum number of tiles necessary to satisfy the SDSS require-
ments, namely that we assign fibers to greater than 99% of
the decollided targets.

3. TESTING THE METHOD

In order to test how well this algorithm works, we apply it
to both simulated and real data. First, we test the algorithm
on a large solid angle sample drawn from anN-body simula-
tion. Second, we show results based on actual tiling solu-
tions for a small chunk of sky in the SDSS commissioning
data.

3.1. Simulation Tests

For this exercise, we use the simulations of Cole et al.
(1998), which are collisionless N-body simulations of the
growth of structure in aCOBE-normalized cold darkmatter
model with�m = 0.3,�� = 0.7, and �8 = 1.05. In this simu-
lation, dark matter particles are chosen randomly to repre-
sent galaxies and are assigned luminosities based on an
assumed luminosity function. The location of an observer is
chosen, a flux limit is assumed, and the galaxies in the simu-
lation are ‘‘ observed.’’ The resulting distribution of galaxies
has about the same redshift distribution as do galaxies in8 See http://www.research.att.com/~njas/icosahedral.codes/.
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the actual SDSS survey, with a median z � 0.1. This proce-
dure results in a surface density (about 90 per square degree)
and an angular clustering of galaxies on the sky approxi-
mately the same as the SDSS. In order to simulate the qua-
sar and LRG samples, we distribute an extra 20 targets per
square degree randomly on the sky; although in three
dimensions both populations are highly clustered, their
large distance and sparse sampling make the approximation
that they are randomly distributed in angle not bad for our
purposes. We extract a section of the simulation about 3075
deg2 in solid angle (a rectangle in spherical coordinates
spanning the latitude range �30� < h < 35� and the longi-
tude range �30� < � < 20�) and consisting of 336,392
objects. The distribution of galaxies in this range is given in
Figure 4. This angular region is probably larger than any
that will be available during the course of the SDSS.

As initial conditions for this large ‘‘ chunk,’’ we extract a
portion of a nearly uniform covering of the sphere given by
Hardin et al. (2001). We exclude any tiles whose centers are
outside the official boundaries of the chunk. This procedure
will leave missing targets near the edges; these targets can be
recovered when the adjacent region of sky is tiled. In any
case, any gaps that are left when the survey is completed can
be accounted for in the window function, to the extent that
those gaps are uncorrelated with the underlying density of
galaxies. For our first test, we do not perturb the positions
of the tiles at all and assign the fibers to the uniformly dis-
tributed tiles. The results are shown in Figure 5; here we
show the tiles as circles and the missing decollided galaxies
as squares. Decollided galaxies that were assigned fibers and
all collided galaxies are omitted from the plot. The statistics
associated with this solution are given in the first column of
Table 1. It is clear that although the overall completeness is
high (�98.3% of decollided objects are assigned) the small
amount of incompleteness is concentrated in a few, dense
regions of sky. The patch of incompleteness near the bottom

center is about 85%–90% complete in the decollided objects
on average; the most incomplete sections of that are only
10%–30% complete. Clearly it is unsatisfactory to have such
a high rate of incompleteness concentrated in unusually
dense regions of sky, even if the overall completeness of the
survey is high. Such a strong correlation of the sampling
fraction with the galaxy density field poses difficulty esti-
mating large-scale structure statistics.

Let us therefore perturb the tiles in an effort to increase
the completeness and its uniformity. The result of applying
the method described in x 2.3 is shown in Figure 6; the
resulting tiling statistics are given in the second column of
Table 1. (Note that one extra tile was added in the process;
this has a negligible effect on the statistics in Table 1). Now
there are only a handful of objects missing in the interior of
the sample. All of the missing objects are concentrated at
the edges. Thus, while the overall completeness is increased

Fig. 4.—Distribution of targets on the sky, using galaxies drawn from a
simulation by Cole et al. (1998), plus 20 targets per square degree added
randomly to represent LRG and QSO targets. We have subsampled the
targets by a factor of 5 for this plot.

Fig. 5.—Results of distributing tiles uniformly across the targeted
region. The boundaries of the tiles are shown. Missing decollided galaxies
are shown as squares. While overall the completeness is high, note that in
the densest regions, many decollided objects are missing, with the complete-
ness becoming as low as 10% in the most incomplete regions.

TABLE 1

Tiling Results

Parameter

Simulation

(Uniform)

Simulation

(Perturbed)

SDSS Chunk 7

(Perturbed)

Nplates ............. 575 576 12

ftiled
a ............... 0.918 0.924 0.933

fdec
b ................ 0.919 0.919 0.902

ftiled,dec
c........... 0.983 0.990 0.999

foverlap
d ........... 0.593 0.607 0.837

Efficiencye ...... 0.907 0.912 0.870

a Fraction of targets that received fibers.
b Fraction of targets classified as decollided.
c Fraction of decollided targets that received fibers.
d Fraction of collided targets in overlaps of tiles that received

fibers.
e Fraction of fibers assigned to targets.
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a bit (to �99.0% of decollided objects), the real improve-
ment is in the uniformity of the sample.

To show how the resolution of collisions works, we show
as points in Figure 7 the collided galaxies (those that are not
in the decollided set). We have zoomed into a section of the
interior to make it easier to distinguish the points. These
points represent the set of objects that would be eliminated
because of fiber collisions if there was no overlap between
tiles. Open squares are placed over those that did not receive
fibers. It is clear that in the underdense regions most of the
collisions in overlaps of tiles are actually resolved. In the
overdense regions, however, almost all of the fibers are used
to observe decollided targets, and few are left over to resolve
collisions.

Overall, in these simulations,�92.5% of the available tar-
gets were assigned fibers; most of the missing ones are due
to fiber collisions that were not able to be resolved. The effi-
ciency of the tiling solution, quantified as the percentage of
fibers which are used on tiled objects, is�91.2%.

3.2. Tests with SDSSData

We here show tiling results using this method from SDSS
commissioning data. In this phase of the survey, there was
not enough imaging data yet to define a chunk as large as in
the simulations of the previous subsection, so we had to set-
tle for a much smaller chunk of sky. This chunk (known as
‘‘ chunk 7 ’’) of sky is 5� wide and about 12� long and con-
tains 6629 objects. It is the first chunk of SDSS data on
which this version of the code was used.

The initial conditions were set up simply as a rectangular
distribution of tiles. The tile positions were perturbed in
order to maximize the number of decollided galaxies
assigned to fibers. However, in this case, the tiles move very

little—the uniform initial conditions turn out to be close to
a minimum in our cost function. The statistics of the solu-
tion are listed again in Table 1; note that the efficiency is a
bit low, mainly because this chunk is small. The positions of
the targets and tiles are given in Figure 8.

An obvious criticism of the tiling of this chunk is that we
should only tile the center of the chunk, such that our tiles
never cover sky that has not yet been imaged. Then, we
would wait until later to observe edges of the chunk. In
terms of the total number of tiles drilled, such an approach
would be more efficient. However, doing this would leave
the telescope idle when it could be taking spectra, so it is
worth drilling a few more tiles than necessary in order to
optimally use the available time. In any case, the fibers left
unassigned to any main survey targets are assigned to other
targets, mainly stars, FIRST (Becker, White, & Helfand
1995) sources, and ROSAT (Voges et al. 1999) sources, so
the unassigned fibers are by no means wasted.

4. TECHNICAL DETAILS FOR SDSS DATA

There are a few technical details that may be useful to
mention in the context of SDSS data, since understand-
ing these issues is crucial to understanding the window
function when calculating large-scale structure statistics
with the survey. First, we will describe which targets
within the SDSS are ‘‘ tiled ’’ in the manner described
here, and how such targets are prioritized. Second, we
will discuss the method used by SDSS to deal with the
fact that the imaging and spectroscopy are performed
within the same 5 yr time period. Third, we will describe

Fig. 6.—Same as Fig. 5, now with the results of perturbing the positions
of the tiles using the cost minimization heuristic described in x 2.3.2. While
the tiles move very little from their uniform initial distribution, the com-
pleteness has improved and has become far more uniform. Only a few
objects are missing in the interior of the sample. This improvement occurs
because in the densest regions tiles are pushed together and thus overlap
more.

Fig. 7.—Here we have zoomed in on a section of Fig. 6. In this figure, the
points are the collided object (i.e., those objects that are not in the
decollided set). Open squares are placed over those collided objects that do
not receive fibers; that is, they show objects in fiber collisions that did not
get resolved. Obviously all objects bumped by collisions are missed in
regions covered by a single tile. When extra fibers are available, as happens
near the top of the figure, almost all of the fiber collisions in the overlaps of
tiles are resolved. Of course, when all the fibers are used on decollided
objects in the first network flow, as happens near the bottom of the figure,
none are left to resolve collisions in overlaps.
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the tiling outputs that the SDSS tracks as the survey pro-
gresses. Throughout, we refer to the code that imple-
ments the algorithm described above as tiling.

The information described in this section (along with the
spectroscopic results) is necessary but not quite sufficient to
calculate large-scale structure statistics for the survey. First,
at later stages in the processing, fibers can be lost because of
collisions with guide fibers, as well as with the center of the
tile, where a post prevents any fiber from being placed
within 10000 (in later versions, we will adjust the algorithm
described here to attempt to avoid placing tile centers so
close to targets). Second, some fields within each chunk are
excluded for reasons such as bad seeing. Finally, bright stars
make it impossible to observe galaxies in a certain fraction
of the sky, in a way that varies with Galactic latitude. These
masks need to be determined to study clustering on the
largest scales in the survey.

4.1. Targets that are ‘‘Tiled ’’

Only some of the spectroscopic target types identified by
the target selection algorithms in the SDSS are ‘‘ tiled.’’
These types (and their designations in the primary and sec-
ondary target bit masks, as described in Stoughton et al.
2002) are listed in Table 2. They consist of most types of
QSOs, main sample galaxies, LRGs, hot standard stars, and
brown dwarfs. These are the types of targets for which tiling
is run and for which we are attempting to create a well-
defined sample. Once the code has guaranteed fibers to all
possible ‘‘ tiled targets,’’ remaining fibers are assigned to
other target types by a separate code.

All of these target types are treated equivalently, except
that they assigned different ‘‘ priorities,’’ designated by an
integer. As described above, the tiling code uses them to
help decide fiber collisions. The sense is that a higher prior-
ity object will never lose a fiber in favor of a lower priority
object. The priorities are assigned in a somewhat compli-
cated way for reasons immaterial to tiling, but the essence is
the following: the highest priority objects are brown dwarfs
and hot standards, next come QSOs, and the lowest priority
objects are galaxies and LRGs. QSOs have higher priority
than galaxies because galaxies are higher density and have
stronger angular clustering. Thus, allowing galaxies to
bump QSOs would allow variations in galaxy density to
imprint themselves into variations in the density of QSOs
assigned to fibers, which we would like to avoid. For similar
reasons, brown dwarfs and hot standard stars (which have
extremely low densities on the sky) are given highest
priority.

Each tile, as stated above, is 1=49 in radius and has the
capacity to handle 592 tiled targets. No two such targets
may be closer than 5500 on the same tile.

4.2. Definition of a Tiling Chunk

The modus operandi of the SDSS makes it impossible to
tile the entire 10,000 deg2 simultaneously, because we want
to be able to take spectroscopy during nonpristine nights,
based on the imaging that has been performed up to that
point. In practice, periodically a ‘‘ chunk ’’ of data is pro-
cessed, calibrated, has targets selected, and is passed to the
tiling code. During the first year of the SDSS, about one
chunk per month has been created; as more and more imag-
ing is taken and more tiles are created, we hope to decrease

Fig. 8.—Distribution of targets in chunk 7 of the SDSS, displayed in
‘‘ survey coordinates.’’ The positions of the tiles are shown as well (they are
nearly in the uniform positions in which they were placed initially). The
open squares show the five decollided objects that were not assigned fibers.

TABLE 2

Target Selection Flags For Tiled Targets

Name Hexadecimal Bit Description

Primary Targets:

TARGET_QSO_HIZ ................................... 0x1 High-redshift QSO

TARGET_QSO_CAP ................................... 0x2 QSO at highGalactic latitude

TARGET_QSO_SKIRT ............................... 0x4 QSO at lowGalactic latitude

TARGET_QSO_FIRST_CAP ....................... 0x8 ‘‘ Stellar ’’ FIRST source at highGalactic latitude

TARGET_QSO_FIRST_SKIRT ................... 0x10 ‘‘ Stellar ’’ FIRST source at lowGalactic latitude

TARGET_GALAXY_RED ............................. 0x20 LRG

TARGET_GALAXY..................................... 0x40 Main sample galaxy

TARGET_GALAXY_BIG ............................. 0x80 Low surface brightness galaxy

TARGET_GALAXY_BRIGHT_CORE.............. 0x100 Low surface brightness galaxy with bright fiber magnitude

TARGET_STAR_BROWN_DWARF.................. 0x8000 Brown dwarf

Secondary Targets:

TARGET_HOT_STD ................................... 0x200 Hot subdwarf standard star
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the frequency with that we need to make chunks and to
increase their size.

The first chunk which is ‘‘ supported ’’ by the SDSS is
denoted chunk 4. The first chunk for which the version of
tiling described here was run is chunk 7. Chunks earlier than
chunk 7 used a different (less efficient) method of handling
fiber collisions. The earlier version also had a bug that artifi-
cially created gaps in the distribution of the fibers. The loca-
tions of the known gaps are given in Stoughton et al. (2002)
for chunk 4, since it is part of the SDSS Early Data Release.

A chunk is defined as a set of rectangles on the sky
(defined in survey coordinates; Stoughton et al. 2002) on the
sky. All of these rectangles are designed to cover only sky
that has been imaged and processed. Most of each chunk
consists of targets that have not been included in any
previous chunk. However, if an earlier chunk was adjacent,
targets may have been missed near its edges because they
were not covered by tiles, so the areas near the edges of adja-
cent chunks are also included. Thus, in general, chunks
overlap.

4.3. Tiling Outputs

Once a chunk is tiled, the position of each tile is stored.
The tiles are assigned a global index for the survey known as
a tileId. For each target, the tileId to which it is assigned
is stored (or �1 if no fiber is assigned). In addition, the 5500

group to which it belonged (indexed from zero for each
chunk independently) is also stored as collisionGroup.
Finally, a mask parameter is created, whose three lowest bits
are (respectively): ASSIGNED, DECOLLIDED, and COVERED.
ASSIGNED means that a fiber was actually assigned to the
target. DECOLLIDED means that the target was designated a
decollided target. COVERED means that the target was in an
area observable by some tile. Unfortunately, these param-
eters are not included in the SDSS Early Data Release.

5. SUMMARY

This paper describes a method for positioning tiles and
assigning fibers to targets that is being used for the SDSS.
The method assigns fibers in a near-optimal manner, which
is possible to do in polynomial time given the sorts of target
distributions found in the SDSS. We note that if the typical
nearest-neighbor distance of targets is of order the fiber col-
lision length, the groups found in the friends-of-friends
algorithm become very large, and the solution is only
possible in exponential time. The positioning of tiles is an
NP-complete problem (Megiddo & Supowit 1984); we use
the heuristic devised by Lupton et al. (1998) to find an
approximate solution. Importantly, we define a set of decol-
lided targets for which we can achieve nearly complete sam-
pling; this fact will make the survey easier to mimic when
analyzing simulations. We have tested this method both on
simulations and on SDSS commissioning data. Finally, we
have described some of the technical details of the SDSS
itself.

Variations of this method may be useful for future sur-
veys consisting of overlapping spectroscopic fields of view

and with complicated observing constraints. We recom-
mend automated procedures in general for their speed
(when necessary) but in addition for their repeatability—
since simulated observations will be able to reproduce any
bias such procedures introduce. In addition, we encourage
planners to consider network algorithms, in particular, as a
potential method, since they are good at optimization under
multiple and complicated constants and are well understood
by computer scientists.

The main lesson learned in developing this method is that
inefficiencies arise primarily because of the need to com-
pletely cover the given area. To take themost perverse possi-
ble case, if 592 objects were spread across the entire sky, 592
tiles would be necessary. One would rather have those 592
targets within the area of a single tile, which could assign
fibers to all of them. Thus, to minimize the number of tiles
drilled, one needs a high enough target density that the
number of tiles necessary to observe the targets easily covers
the survey area. This allows the tiles more freedom to move
to where they are most needed without uncovering areas of
sky in underdense regions; it also provides more overlaps
and thus more ability to resolve fiber collisions. Since the
resulting tiling would be nearly 100% efficient even for small
chunks, there would be no loss of efficiency due to the piece-
meal nature of the chunks. Because of its scientific goals,
spectroscopic instrumentation, and its budget, the SDSS is
not in this optimal regime. A large increase in target density
(factor of 2) would be desirable from the point of view solely
of tiling efficiency; however, the survey goals and technical
considerations make such a change impossible. Naturally,
we feel that the loss of efficiency is not devastating, because
the unused fibers are used to observe other interesting tar-
gets, but we mention it here as an issue that the executors of
future surveys may wish to consider.
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