
J Sched (2015) 18:545–560
DOI 10.1007/s10951-014-0392-y

Approximation algorithms for the joint replenishment problem
with deadlines

Marcin Bienkowski · Jarosław Byrka · Marek Chrobak · Neil Dobbs ·
Tomasz Nowicki · Maxim Sviridenko · Grzegorz Świrszcz · Neal E. Young

Received: 17 May 2014 / Accepted: 29 July 2014 / Published online: 27 August 2014
© Springer Science+Business Media New York 2014

Abstract The Joint Replenishment Problem (JRP) is a
fundamental optimization problem in supply-chain manage-
ment, concerned with optimizing the flow of goods from a
supplier to retailers. Over time, in response to demands at
the retailers, the supplier ships orders, via a warehouse, to
the retailers. The objective is to schedule these orders to
minimize the sum of ordering costs and retailers’ waiting
costs. We study the approximability of JRP-D, the version of
JRP with deadlines, where instead of waiting costs the retail-
ers impose strict deadlines. We study the integrality gap of
the standard linear-program (LP) relaxation, giving a lower
bound of 1.207, a stronger, computer-assisted lower bound
of 1.245, as well as an upper bound and approximation ratio
of 1.574. The best previous upper bound and approximation
ratio was 1.667; no lower bound was previously published.
For the special case when all demand periods are of equal
length, we give an upper bound of 1.5, a lower bound of 1.2,
and show APX-hardness.

Keywords Joint replenishment problem ·
NP-completeness · APX-hardness · Approximation
algorithms

M. Bienkowski · J. Byrka
Institute of Computer Science, University of Wrocław,
Wrocław, Poland

M. Chrobak (B) · N. E. Young
Department of Computer Science, University of California
at Riverside, Riverside, CA, USA
e-mail: marek@cs.ucr.edu

N. Dobbs · T. Nowicki · G. Świrszcz
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

M. Sviridenko
Department of Computer Science, University of Warwick,
Coventry, UK

1 Introduction

The Joint Replenishment Problem with Deadlines (JRP-D) is
an optimization problem in supply-chain management con-
cerned with scheduling shipments (orders) of a commod-
ity from a supplier, via a shared warehouse, to satisfy prior
demands at m retailers (cf. Fig. 1). The objective is to find
a schedule of orders that satisfies all demands before their
deadlines expire, while minimizing the total ordering cost.

Specifically, an instance of JRP-D is given by a tuple
(C, c,D) where

• C ∈ Q is the warehouse ordering cost;
• c is the vector of retailer ordering costs, where for each

retailer ρ ∈ {1, 2, . . . ,m} its ordering cost is cρ ∈ Q;
• D is a set of n demands, with each demand represented

by a triple (ρ, r, d), where ρ is the retailer that issued the
demand, r ∈ Q is the demand’s release time and d ∈ Q

is its deadline.

For a demand (ρ, r, d), the interval [r, d] is called the demand
period.1 In sections that prove upper bounds we assume
(without loss of generality by time scaling) that r, d ∈ [2n],
where [i] denotes {1, 2, . . . , i}.

A solution (also called a schedule) is a set of orders, each
specified by a pair (t, R), where t is the time of the order and
R is a subset of the retailers. An order (t, R) satisfies those
demands (ρ, r, d) whose retailer is in R and whose demand
period contains t (that is, ρ ∈ R and t ∈ [r, d]). A schedule
is feasible if all demands are satisfied by some order in the
schedule.

1 Note: our use of the term “period” is different from its use in opera-
tions research literature on supply-chain management problems.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-014-0392-y&domain=pdf

546 J Sched (2015) 18:545–560

C

c1 c2

c3

c4

re
ta

ile
rs

sup
plier

warehous
e

Fig. 1 An instance with four retailers, represented by a tree with order-
ing costs as weights assigned to its edges. The cost of an order is the total
weight of the subtree connecting the supplier and the involved retailers

The cost of order (t, R) is the ordering cost of the ware-
house plus the ordering costs of respective retailers, i.e.,
C + ∑

ρ∈R cρ . It is convenient to think of this order as con-
sisting of a warehouse order of cost C, which is then joined
by each retailer ρ ∈ R at cost cρ . The cost of the schedule
is the sum of the costs of its orders. The objective is to find
a feasible schedule of minimum cost.
Previous results The decision variant of JRP-D was shown
to be strongly NP-complete by Becchetti et al. (2009). (They
considered an equivalent problem of packet aggregation with
deadlines on two-level trees.) Nonner and Souza (2009)
then showed that JRP-D is APX-hard, even if each retailer
issues only three demands. Levi et al. (2006) gave a 2-
approximation algorithm based on a primal-dual scheme.
Using randomized rounding, Levi et al. (2008); Levi and
Sviridenko (2006) (building on Levi et al. 2005) improved
the approximation ratio to 1.8; (Nonner and Souza 2009)
reduced it further to 5/3. These results use a natural linear-
program (LP) relaxation, which we use too.

The randomized-rounding approach from Nonner and
Souza (2009) uses a natural rounding scheme whose analysis
can be reduced to a probabilistic game. For any probability
distribution p on [0, 1], the integrality gap of the LP relax-
ation is at most 1/Z(p), where Z(p) is a particular statistic of
p (see Lemma 1). The challenge in this approach is to find a
distribution where 1/Z(p) is small. Nonner and Souza show
that there is a distribution p with 1/Z(p) ≤ 5/3 ≈ 1.67. As
long as the distribution can be sampled from efficiently, the
approach yields a polynomial-time (1/Z(p))-approximation
algorithm.
Our contributions We prove that there is a distribution p
with 1/Z(p) ≤ 1.574. We present this result in two steps:
we show the bound e/(e − 1) ≈ 1.58 with a simple and
elegant analysis, then improve it to 1.574 by refining the
underlying distribution. This shows that the integrality gap is
at most 1.574 and it gives a 1.574-approximation algorithm.
We also prove that the LP integrality gap is at least 1.207
and we provide a computer-assisted proof that this gap is at
least 1.245. As far as we know, no explicit lower bounds have
been previously published.

For the special case when all demand periods have the
same length (as occurs in applications where time-to-delivery

is globally standardized), we give an upper bound of 1.5, a
lower bound of 1.2, and show APX-hardness.
Other related work JRP-D is a special case of the Joint
Replenishment Problem (JRP). In JRP, instead of having a
deadline, each demand is associated with a delay-cost func-
tion that specifies the cost for the delay between the time the
demand is released and the time it is satisfied by an order.
JRP is NP-complete, even if the delay cost is linear (Arkin
et al. 1989; Nonner and Souza 2009). JRP is in turn a special
case of the One-Warehouse Multi-Retailer (OWMR) prob-
lem, where the commodities may be stored at the warehouse
for a given cost per time unit. The 1.8-approximation by
Levi et al. (2006) holds also for OWMR. JRP was also
studied in the online scenario: a 3-competitive algorithm
was given by Buchbinder et al. (2008) (see also Brito et al.
2012).

The JRP model is an abstraction of a number of other
optimization problems that arise in supply-chain manage-
ment. It is often presented as an inventory-management
problem, where all demands need to be satisfied immedi-
ately from the current inventory. In that scenario, orders are
issued to replenish the inventory, ensuring that all future
demands are met. (In contrast, in our model the orders are
issued to satisfy past demands and there is no inventory.)
Depending on the application, orders can represent deliv-
eries (via a shared warehouse), or a manufacturing process
that involves a joint set-up cost and individual set-up costs
for retailers. The objective is to minimize the total cost,
defined as the sum of ordering costs and inventory holding
costs.

Another generalization of JRP involves a tree-like struc-
ture with the supplier in the root and retailers at the leaves,
modeling control packet aggregation in computer networks.
A 2-approximation is known for the variant with deadlines
(Becchetti et al. 2009); the case of linear delay costs has
also been studied (Khanna et al. 2002; Brito et al. 2012).
Recently, Chaves (private communication) has shown that
the generalization of JRP to arbitrary trees, even for arbi-
trary waiting cost functions, can be approximated within a
factor of 2 through a reduction to the multi-stage assembly
problem, see Levi et al. (2006).

2 Upper bound of 1.574

In this section, we derive our approximation algorithms for
JRP-D, showing an approximation ratio of e/(e−1) ≈ 1.58,
which we then improve to 1.574. Both algorithms are based
on randomized LP-rounding.
The LP relaxation For the rest of this section, fix an arbitrary
instance I = (C, c,D) of JRP-D. Let finite set U ⊂ Q

contain the release times and deadlines. Here is the standard
LP relaxation of the problem:

123

J Sched (2015) 18:545–560 547

minimize cost(x) =
∑

t∈U
(C xt +

m∑

ρ=1

cρ xρ
t)

subject to xt , x
ρ
t ≥ 0 for all t ∈ U , ρ ∈ {1, . . . ,m}

xt ≥ xρ
t for all t ∈ U , ρ ∈ {1, . . . ,m}

(1)
∑

t∈U∩[r,d]
xρ
t ≥ 1 for all (ρ, r, d) ∈ D. (2)

The statistic Z(p). Let p be a probability distribution on
[0, 1]. As we are about to show, the approximation ratio of
algorithm Roundp (defined below) and the integrality gap
of the LP are at most 1/Z(p), where Z(p) is defined by
the following so-called tally game (following Nonner and
Souza 2009). To begin the game, fix any threshold z ≥ 0,
then draw a sequence of independent samples s1, s2, . . . , sh
from p, stopping when their sum exceeds z, that is when
s1 + s2 + · · · + sh > z. Call z − (s1 + s2 + · · · + sh−1)

the waste. Note that, since the waste is less than sh , it is
in [0, 1). Let W(p, z) denote the expectation of the waste.
Abusing notation, let E[p] denote the expected value of a
single sample drawn from p. Then Z(p) is defined by

Z(p) = min
{

E[p] , 1 − sup
z≥0

W(p, z)
}
.

Note that the distribution p that chooses 1
2 with probability

1 has Z(p) = 1
2 . The challenge is to simultaneously increase

E[p] and reduce the maximum expected waste.
A generic randomized-rounding algorithm The upper
bound of 1.574 relies on a randomized-rounding algorithm,
Roundp. The algorithm is parameterized by an arbitrary
probability distribution p on [0, 1] and gives a (1/Z(p))-
approximation:

Lemma 1 For any distribution p on [0, 1] and fractional
LP solution x, if Z(p) > 0, then with probability 1, Algo-
rithm Roundp(C, c,D, x) returns a feasible schedule. The
expected cost of the schedule is at most cost(x)/Z(p).

The main ideas underlying Roundp and its analysis are
from Nonner and Souza (2009); the presentation here (Sect.
2.1) addresses some technical subtleties. Subsequent sections
(with a minor exception) use Lemma 1 as a black box; they
can be read independently of the proof in Sect. 2.1.

2.1 The details of Roundp and proof of Lemma 1

Fix an arbitrary optimal fractional solution x of the LP relax-
ation for instance I. As previously discussed, without loss
of generality we can assume that the given universe U of
release times and deadlines is [U], where U (≤ 2n) is the
maximum deadline. We focus on producing a “rounded”

6
0

1
r–1 d

t
52 3 41

Fig. 2 The continuous solution x: the universe is U = (0,U]. At each
time t in U , the solution ships at rate xt = x�t	, while each retailer
ρ takes at rate xρ

t = xρ
�t	. During any demand period (r − 1, d], the

retailer’s cumulative take is at least 1

schedule S for I with expected cost at most 1/Z(p) times
cost(x) = ∑U

j=1

(
C x j + ∑

ρ cρ xρ
j

)
.

Extend to continuous time To start, we recast the prob-
lem of rounding x as a continuous-time problem. Extend the
universe U of times from the discrete set U = [U] to the con-
tinuous interval U = (0,U] and relax each demand period
[r, d], replacing it with the half-open period (r − 1, d]. Let
I denote the modified instance. To find a schedule S for the
given instance I, we will find a schedule S for I, then take
S = {(�t	, R) : (t, R) ∈ S}. S clearly has the cost not larger
than that of S and is also feasible (because the release times
and deadline are integers).

For the algorithm, reinterpret the fractional solution x as a
continuous-time solution x over universe U : as t ∈ U ranges
continuously from 0 to U , the continuous-time solution x
ships continuously at the shipping rate xt = x�t	 and has
each retailer ρ join at his take rate xρ

t = xρ
�t	. The example

at the top of Fig. 2 illustrates x over time.
At each time t in U , define the total shipped up to time

t to be σ(t) = ∫ t
0 xt dt = ∫ t

0 x�t	 dt . Define ρ’s take up to
time t to be τρ(t) = ∫ t

0 xρ
t dt = ∫ t

0 xρ
�t	 dt . Over any interval

(t, t ′], define the amount shipped to be σ(t ′)−σ(t). Likewise
define ρ’s take to be τρ(t ′) − τρ(t).

The algorithm Roundp draws samples (s1, s2, . . . , sI)
i.i.d. from the distribution p, stopping when the sum of
the samples first exceeds σ(U) − 1. It creates orders at the
times t = (t1, t2, . . . , tI) such that, for each i ∈ [I], the
continuous-time solution x ships si units in interval (ti−1, ti]
(interpreting t0 as 0). By the choice of the number of samples
I , x ships strictly less than 1 unit in (tI ,U].

After Roundp chooses t, for each retailer ρ indepen-
dently, it has ρ join a minimum-size subset of the orders
that satisfies ρ’s demands. (It computes this optimal sub-
set using the standard earliest-deadline-first algorithm.) This
determines the schedule S for the continuous-time instance
I. To get the schedule S for the original instance I, the algo-
rithm shifts each order time ti to its ceiling �ti	. The algorithm
is shown in Fig. 3.

We remark that, in practice, modifying the algorithm
to round up the times as soon as they are chosen might
yield lower-cost solutions for some instances. That is, take
each ti to be the minimum integer such that the amount

123

548 J Sched (2015) 18:545–560

Fig. 3 Roundp(C, c, D, x)

randomly rounds the
continuous-time fractional
solution x

1: Draw samples (s1, s2, s3, . . . , sI) i.i.d. from p, stopping when the sum of the samples first
exceeds σ(U) − 1. Schedule orders at times in t = (t1, t2, . . . , tI) such that, for each i ∈ [I],
each ti is the minimum such that x ships si units in the interval (ti−1, ti] (interpreting t0
as 0). (By the choice of I, x ships strictly less than 1 unit in interval (tI , U].)

2: for each ρ ∈ [m] do
3: Use the earliest-deadline-first algorithm to choose a minimum-size subset of the orders for ρ

to join to satisfy his demands. More explicitly:
4: while retailer ρ has any not-yet-satisfied demand (ρ, r, d) do
5: Let d∗ be the earliest deadline of such a demand.
6: Have ρ join the order at time T = max{ti ∈ t : ti ≤ d∗}.
7: end while
8: end for
9: Let S denote the resulting schedule for I. Return S =

{
(�t�, R) : (t, R) ∈ S

}
.

shipped over interval (ti−1, ti] is at least si (interpreting t0
as 0). Stop when the amount shipped over (ti ,U] is less
than 1.

Proof (Lemma 1) Correctness and feasibility We claim first
that the number I of order times in line 1 has finite expec-
tation; in other words, with probability 1, I is finite—line 1
finishes. This follows from standard calculation: I is the num-
ber of samples taken before the sum of the samples exceeds
σ(U) − 1. Since E[p] ≥ Z(p) > 0, there exists ε > 0
such that Pr[s ≥ ε] ≥ ε. Thus, the expected number of
samples needed to increase the sum by ε is at most 1/ε.
By linearity of expectation, the expected number of samples
needed to increase the sum by σ(U) is at most σ(U)/ε2.
Thus, E[I] ≤ σ(U)/ε2 < ∞.

In the argument below (for cost estimation) we show that
each iteration of the inner loop on line 4 satisfies some
not yet-satisfied demand (ρ, r, d). Thus, with probability 1,
Roundp terminates. By inspection, it does not terminate until
all demands are satisfied. Thus, with probability 1, Roundp

returns a feasible solution.

Cost of the schedule We use the following basic properties
of x.

1. Over any interval (t, t ′] ⊆ U , each retailer ρ’s take is at
most the amount shipped. This follows directly from LP
constraint (1).

2. For each demand (ρ, r, d), retailer ρ’s take over the
demand period (r −1, d] is at least 1. This holds because
the take equals

∑d
t=r xt , which is at least 1 by LP

constraint (2). Consequently, the amount shipped over
(r − 1, d] is also at least 1.

The given fractional solution x has warehouse cost
C σ(U) and retailer cost

∑
ρ cρ τρ(U). (Recall that σ(U)

is the amount x ships up to time U while τρ(U) is ρ’s take
up to time U .)

The algorithm’s schedule S has warehouse cost C I and
retailer cost

∑
ρ cρ Jρ , where I is the number of orders placed

in line 1 and Jρ is the number of those orders joined by ρ in
lines 3–7.

We show E[I] ≤ σ(U)/Z(p) and E[Jρ] ≤ τρ(U)/Z(p).
By linearity of expectation, these bounds imply that the
schedule’s expected cost is a most 1/Z(p) times the cost
of x, proving the lemma.

First analyze E[I], the expected number of samples until
the sum of the samples exceeds σ(U) − 1. Clearly I is a
stopping time.2 As noted previously, I has finite expectation.
So, by Wald’s Lemma (see Appendix), the expectation of the
sum of the first I samples is not smaller than the expectation
of I times the expectation of each sample: E[∑I

i=1 si] ≥
E[I] E[p]. The sum is at most σ(U), because the sum of
the first I − 1 samples is less than σ(U) − 1 and the last
sample is at most 1. Thus, σ(U) ≥ E[I] E[p]. Rearranging,
E[I] ≤ σ(U)/E[p] ≤ σ(U)/Z(p), as desired.

Next analyze E[Jρ]. Fix a retailer ρ ∈ [m]. Focus on
the inner loop, lines 3–7. For each iteration j ∈ [Jρ], let
d∗
j and Tj denote, respectively, the value of d∗ and T in

iteration j . The order that ρ joins at time Tj indeed satisfies
that iteration’s unmet demand (ρ, r, d∗

j), because ρ’s take
over the period (r−1, d∗

j] is at least 1, so the amount shipped
over the period is at least 1, so, by the choice of t in line
1, the period has to contain some order time ti , and Tj ∈
[ti , d∗

j]. Then, by a standard induction on j , after ρ joins the
order at time Tj , all of ρ’s demands whose demand periods
overlap (0, Tj] are satisfied. Hence ρ’s order times are strictly
increasing: T1 < T2 < · · · < TJρ .

Consider any non-final iteration j of the loop. Defineψ j =
(s1, s2, . . . , sk), the state at the end of iteration j , to be the
first k samples drawn from p, where k = k j is the number
of samples needed to determine Tj in iteration j . Explicitly,
k is determined by the condition

2 That is, for any i ∈ N, the event I = i is determined by the first i
samples.

123

J Sched (2015) 18:545–560 549

Fig. 4 The increase in ρ’s take
in each iteration corresponds to
a play of the tally game

z
w

s2 shs1

σ(d∗
j)

. . .

σ(Tj−1)

sksk−1

σ(Tj)

. . .

tk−1 ≤ d∗
j < tk, (3)

which implies Tj = tk−1. (The sample sk is included in
ψ j because, for Tj to be the maximum order time less than
or equal to d∗

j , the order time following Tj must exceed
d∗
j .) When we look at the related warehouse shipments,

tk−1 ≤ d∗
j < tk implies σ(tk−1) ≤ σ(d∗

j) ≤ σ(tk). The
last inequality is in fact strict, because the algorithm chooses
tk minimally. Since x ships each si over the interval (ti−1, ti],
the last relation implies that

k−1∑

i=1

si ≤ σ(d∗
j) <

k∑

i=1

si . (4)

Define ρ’s take during iteration j , denoted X j , to be ρ’s
take over the interval (Tj−1, Tj] (interpreting T0 as 0). To

finish the proof, consider the sum
∑Jρ−1

j=1 X j , that is, ρ’s
take up to the start of the last iteration.

The sum’s upper index Jρ −1 is a stopping time. (Indeed,
ψ j determines which of ρ’s demands remain unsatisfied at
the start of iteration j + 1. Iteration j + 1 will be the final
iteration Jρ iff those unsatisfied demands can be satisfied by
a single order. Thus, ψ j determines whether Jρ − 1 = j .)
Clearly Jρ − 1 has finite expectation. (Indeed, Jρ is at most
the number of demands.)

We claim that expectation of each term X j in the sum,
given the state at the start of iteration j , is at least Z(p):

E[X j | ψ j−1] ≥ Z(p). (5)

Before we prove Claim (5), observe that it implies the
desired bound on Jρ , as follows. The upper index Jρ − 1 of

the sum
∑Jρ−1

j=1 X j is a stopping time with finite expectation,
and the conditional expectation of each term is at least Z(p),
so, by Wald’s Lemma (see Appendix), the expectation of the
sum is at least E[Jρ − 1]Z(p). On the other hand, the value
of the sum never exceeds τρ(U) − 1. (Indeed, at the start
of the last iteration j = Jρ , some demand (ρ, r, d) remains
unsatisfied, and that demand, which has total take at least 1,
does not overlap (0, Tj−1], so ρ’s take up to time Tj−1 can
be at most 1 less than the total take.) Thus, E[Jρ −1]Z(p) ≤
τρ(U) − 1. Since Z(p) ≤ 1, this implies the desired bound
E[Jρ] ≤ τρ(U)/Z(p).

To finish, we prove Claim (5). Fix any state ψ j−1 and
let k = k j−1 = |ψ j−1|. Consider iteration j . Note that
ψ j−1 determines both Tj−1 and d∗

j . Call the samples in

ψ j , but not in ψ j−1 newly exposed. Crucially, ψ j−1 does
not condition the newly exposed samples. Let random vari-
able h = k j − k j−1 be the number of newly exposed sam-
ples. By Condition (4), h is the index such that

∑k+h−1
i=1 si ≤

σ(d∗
j) <

∑k+h
i=1 si .

Define z = σ(d∗
j) − ∑k

i=1 si . Then z ≥ 0 with proba-
bility 1 and z is determined by ψ j−1. Using s′

1, s
′
2, . . . , s

′
h

to denote the newly exposed samples (i.e., s′
� = sk+�), the

condition on h above is equivalent to

s′
1 + s′

2 + · · · + s′
h−1 ≤ z < s′

1 + s′
2 + · · · + s′

h−1 + s′
h .

That is, the iteration exposes new samples just until their sum
exceeds z. Upon consideration, this process corresponds to
a play of the tally game with threshold z, in the definition of
the statistic Z(p). (See Fig. 4.) Recall from the definition of
Z(p) that the waste is w = z − (s′

1 + s′
2 + · · · + s′

h−1).

By inspection, using that
∑k+h−1

i=1 si = σ(Tj), the waste
w in this setting equals σ(d∗

j)−σ(Tj), so ρ’s take X j during
the iteration, that is, τρ(Tj) − τρ(Tj−1), equals

[τρ(d∗
j) − τρ(Tj−1)] − [τρ(d∗

j) − τρ(Tj)]
≥ 1 − [τρ(d∗

j) − τρ(Tj)]
≥ 1 − [σ(d∗

j) − σ(Tj)] = 1 − w.

The first inequality holds because, as observed previ-
ously, ρ’s take over interval (Tj−1, d∗

j] is at least 1. The next
inequality holds because ρ’s take over (Tj , d∗

j] is at most the
amount shipped.

Recall that, by definition of Z(p), the expectation of
(1 − w) is at least Z(p). Thus, the inequality above implies
Claim (5)—that the conditional expectation of each X j is at
least Z(p). ��

The next utility lemma says that, in analyzing the expected
waste in the tally game, it is enough to consider thresholds z
in [0, 1).

Lemma 2 For any distribution p on [0, 1], supz≥0 W(p, z)
= supz∈[0,1) W(p, z).

Proof Play the tally game with any threshold z ≥ 1. Consider
the first prefix sum s1 +s2 +· · ·+sh of the samples, such that
the “slack” z− (s1 + s2 +· · ·+ sh) is less than 1. Let random
variable z′ be this slack. Note that z′ ∈ [0, 1). For any value
u ∈ [0, 1), the expected waste conditioned on the event “z′ =
u” is W(p, u), which is at most supy∈[0,1) W(p, y). Thus, for
any threshold z ≥ 1, W(p, z) is at most supy∈[0,1) W(p, y).

��

123

550 J Sched (2015) 18:545–560

2.2 Upper bound of e/(e − 1) ≈ 1.582

Consider the specific probability distribution p on [0, 1] with
probability density function p(y) = 1/y for y ∈ [1/e, 1] and
p(y) = 0 elsewhere.

Lemma 3 For this distribution p, Z(p) ≥ (e−1)/e = 1−
1/e.

Proof By Lemma 2, Z(p) is the minimum of E[p] and 1 −
supz∈[0,1) W(p, z).

By direct calculation, E[p] = ∫ 1
1/e y p(y) dy = ∫ 1

1/e 1
dy = 1 − 1/e. Now consider playing the tally game with
threshold z. If z ∈ [0, 1/e], then (since the waste is at most z)
trivially W(p, z) ≤ z ≤ 1/e. So, consider any z ∈ [1/e, 1].
Let s1 be just the first sample. The waste is z if s1 > z and
otherwise is at most z − s1. Thus, the expected waste is

W(p, z) ≤ Pr[s1 > z] · z + Pr[s1 ≤ z]
·E[z − s1 | s1 ≤ z]

= z − Pr[s1 ≤ z] · E[s1 | s1 ≤ z]
= z −

∫ z

1/e
y p(y) dy = z −

∫ z

1/e
dy

= z − (z − 1/e) = 1/e.

Since both E[p] and 1 − supz∈[0,1) W(p, z) are at least
1 − 1/e, the lemma follows. ��

From Lemma 3 and Lemma 1, the approximation ratio of
our algorithm Roundp, with distribution p defined above, is
at most 1/Z(p) = e

e−1 ≈ 1.582.

2.3 Upper bound of 1.574

On close inspection of the proof of Lemma 3, it is not hard
to see that the estimate for the waste in that proof is likely
not tight. The reason is that the proof estimates the waste
based on just the first sample, while, for the distribution being
analyzed, there is non-zero probability that two samples are
generated before reaching the threshold, further reducing the
waste. To improve the upper bound, we adjust the probability
distribution (and the analysis) accordingly.

Define a probability distribution p on [0, 1], having a point
mass at 1, as follows. Fix θ = 0.36455 (slightly less than
1/e). Over the half-open interval [0, 1), the probability den-
sity function is

p(y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for y ∈ [0, θ)

1/y for y ∈ [θ, 2θ)

1−ln((y−θ)/θ)
y for y ∈ [2θ, 1).

Define the probability of choosing 1 to be 1−∫ 1
0 p(y) dy ≈

0.0821824. Note that p(y) ≥ 0 for y ∈ [2θ, 1) since

ln((1 − θ)/θ) ≈ 0.55567, so p is indeed a probability dis-
tribution on [0, 1].

Lemma 4 The statisticZ(p) for this p is at least 0.63533 >

1/1.574.

Proof Recall that Z(p) = min{E[p], 1 − supz∈[0,1)

W(p, z)}. By calculation, the probability measure μ induced
by p has μ[1] ≈ 0.0821824 and

μ[0, v) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for v ∈ [0, θ)

ln(v/θ) for v ∈ [θ, 2θ)

ln(v/θ)−∫ v

2θ
ln((y−θ)/θ)

y dy for v ∈ [2θ, 1).

The following calculation shows E[p] > 0.63533:

E[p] = μ[1] +
∫ 1

θ

yp(y)dy

= μ[1] +
∫ 1

θ

dy −
∫ 1

2θ

ln ((y − θ)/θ)dy

= μ[1] + (1 − θ) − ((y − θ) ln ((y − θ)/θ) − y)
∣
∣
∣
1

2θ

= μ[1] + 2 − 3θ − (1 − θ) ln ((1 − θ)/θ)

> 0.0821 + 2 − 3 · 0.36455 − (1 − 0.36455) · 0.5557

> 0.63533.

To finish, we show supz≥0 W(p, z) = θ ≤ 1 − 0.63533.
By Lemma 2, assume that z ∈ [0, 1). In the tally game

defining W(p, z), let s1 be the first random sample drawn
from p. If s1 > z, then the waste equals z. Otherwise, the
process continues recursively with z replaced by z′ = z− s1.
This gives the recurrence

W(p, z) = z μ[z, 1] +
∫ z

0
W(p, z − y)p(y) dy

= z μ[z, 1] +
∫ z

θ

W(p, z − y) p(y) dy.

Break the analysis into three cases, depending on the value
of z.
Case 1: z ∈ [0, θ). In this case μ[z, 1] = 1, so W(p, z) =
z ≤ θ .
Case 2: z ∈ [θ, 2θ). For y ∈ [θ, z], we have z − y ∈ [0, θ],
so, by Case 1, W(p, z − y) = z − y. Using the recurrence,

W(p, z) = zμ[z, 1] +
∫ z

θ

(z − y)p(y) dy

= z

(

1 −
∫ z

θ

p(y)dy

)

+
∫ z

θ

(z − y)p(y)dy

= z − z + θ = θ.

123

J Sched (2015) 18:545–560 551

Case 3: z ∈ [2θ, 1). For y ∈ [θ, z], we have z − y ∈ [0, 2θ],
so, by Cases 1 and 2 and the recurrence,

W(p, z) = zμ[z, 1]+
∫ z−θ

θ

θp(y)dy+
∫ z

z−θ

(z−y)p(y)dy

= z − z
∫ z−θ

θ

p(y)dy +
∫ z−θ

θ

θp(y)dy

−
∫ z

z−θ

yp(y)dy

= z − (z − θ) ln
z − θ

θ
−

∫ z

z−θ

yp(y)dy

= z − (z − θ) ln
z − θ

θ
−

∫ z

z−θ

dy

+
∫ z

2θ

ln ((y − θ)/θ)dy

= (z − θ)

(

1 − ln
z−θ

θ

)

+
∫ z

2θ

ln ((y − θ)/θ)dy

= (z − θ)

(

1 − ln
z − θ

θ

)

+(y−θ)

·(ln ((y − θ)/θ) − 1)

∣
∣
∣
z

2θ

= (z − θ)

(

1−ln
z − θ

θ
+ln

z − θ

θ
−1

)

+ θ = θ.

Thus, in all cases, W(p, z) ≤ θ , completing the proof.
��

Theorem 1 JRP-D has a randomized polynomial-time
1.574-approximation algorithm, and the integrality gap of
the LP relaxation is at most 1.574.

Proof By Lemma 4, for any fractional solution x, Algo-
rithm Roundp (using the probability distribution p from that
lemma) returns a feasible schedule of expected cost at most
1.574 times cost(x).

To see that the schedule can be computed in polynomial
time, note first that the LP relaxation can be solved in poly-
nomial time. The optimal solution x is minimal, so each xt
is at most 1, which implies that σ(U) = ∑

t xt is at most the
number of demands, n. In Algorithm Roundp, each sam-
ple from the distribution p from Lemma 4 can be drawn in
polynomial time. Each sample is 	(1), and the sum of the
samples is at most σ(U) ≤ n, so the number of samples is
O(n). In the inner loop of the algorithm (starting at line 3),
for each retailer ρ, the subset of orders joined can be com-
puted in time O(n), by amortization, so the total time for this
step is O(mn), where m is the number of retailers. ��

3 Upper bound of 1.5 for equal-length periods

In this section, we present a 1.5-approximation algorithm for
the case where all the demand periods are of equal length. In

this section, release times and deadlines are arbitrary rational
numbers, and all demand periods have length 1.

Denote the input instance by I. Let the width of the
instance be the difference between the maximum deadline
and the minimum release time. The building block of our
approach is an algorithm that creates an optimal solution
to an instance of width at most 3. Later, we divide I into
overlapping sub-instances of width 3, solve each of them
optimally, and show that aggregating their solutions gives a
1.5-approximation.

Lemma 5 A solution to any instance J of width at most 3
consisting of unit-length demand periods can be computed
in polynomial time.

Proof Shift all demands in time, so that J is entirely con-
tained in interval [0, 3]. Recall that C is the warehouse order-
ing cost and cρ is the ordering cost of retailer ρ ∈ [m]. With-
out loss of generality, assume that m ≥ 1 and each retailer
has at least one demand.

Let dmin be the first deadline of a demand from J and rmax

the last release time. If rmax ≤ dmin, then placing one order at
any time from [rmax, dmin] is sufficient. Its cost is then equal
to C + ∑

ρ cρ , which is clearly equal to the optimum value
in this case.

Now focus on the case dmin < rmax. Any feasible solution
has to place an order at or before dmin and at or after rmax. Fur-
thermore, by shifting these orders, assume that the first and
last orders occur exactly at times dmin and rmax, respectively
(Fig. 5).

The problem is thus to choose a set T of warehouse
ordering times that contains dmin, rmax, and possibly other
times from the interval (dmin, rmax), and then to decide, for
each retailer ρ, which warehouse orders it joins. Note that
rmax − dmin ≤ 1, and, therefore, each demand period con-
tains dmin, rmax, or both. Hence, all demands of a retailer ρ

can be satisfied by joining the warehouse orders at times dmin

and rmax at additional cost of 2cρ . It is possible to reduce the
retailer ordering cost to cρ if (and only if) there is a warehouse
order that occurs within Dρ , where Dρ is the intersection of
all demand periods of retailer ρ. (To this end, Dρ has to be
non-empty.)

Hence, the optimal cost for J can be expressed as the sum
of four parts:

(i) the unavoidable ordering cost cρ for each retailer ρ,
(ii) the additional ordering cost cρ for each retailer ρ with

empty Dρ ,
(iii) the total warehouse ordering cost C · |T |, and
(iv) the additional ordering cost cρ for each retailer ρ whose

Dρ is non-empty and does not contain any ordering time
from T .

123

552 J Sched (2015) 18:545–560

Fig. 5 An example of an
instance and a schedule. Dashed
vertical lines represent
warehouse orders, with thick
segments indicating which
retailers join these orders. For
example, retailer 1 joins the
order at time dmin, retailer 2
joins the order at time rmax, and
retailer 3 joins the order at time
t1

retailer 1

dmin

retailer 2

retailer 3

retailer 4

retailer 5

retailer 6

t1 t2 rmax

As the first two parts of the cost are independent of T ,
focus on minimizing the sum of parts (iii) and (iv), which
we call the adjusted cost. Let AC(t) be the minimum pos-
sible adjusted cost associated with the interval [dmin, t]
under the assumption that there is an order at time t . For-
mally, AC(t) is the minimum, over all choices of sets T ⊆
[dmin, t] that contain dmin and t , of C · |T | + ∑

ρ∈Q(T) cρ ,
where Q(T) is the set of retailers ρ for which Dρ �= ∅
and Dρ ⊆ [0, t] − T . (Note that the second term con-
sists of expenditures that actually occur outside the interval
[dmin, t].)

As there are no Dρ’s strictly to the left of dmin,AC(dmin) =
C. Furthermore, AC(t) for any t ∈ (dmin, rmax] can be
expressed recursively using the value of AC(u), where u ∈
[dmin, t) is the warehouse-order time immediately preceding
t in the set T that realizes AC(t):

AC(t) = C + min
u∈[dmin,t)

(
AC(u) +

∑

ρ:∅�=Dρ⊂(u,t)

cρ

)
.

The second term inside the minimum represents the cost
of retailers whose sets Dρ do not contain an order. The min-
imum in the definition of AC(t) is determined by a u that is
the deadline of some demand. Restricting attention to t’s and
u’s that are deadlines of the demands, compute the relevant
values of function AC(·) by dynamic programming in poly-
nomial time. Finally, the total adjusted cost is AC(rmax). The
actual orders can be recovered by a standard extension of the
dynamic program. ��

We now show how to construct an approximate solution
for the original instance I consisting of unit-length demand
periods. For i ∈ N, let Ii be the sub-instance containing
all demands entirely contained in [i, i + 3). By Lemma
5, an optimal solution for Ii , denoted A(Ii), can be com-
puted in polynomial time. Let S0 be the solution created by
aggregating A(I0), A(I2), A(I4), . . . and S1 by aggregating
A(I1), A(I3), A(I5), Among solutions S0 and S1, out-
put the one with the smaller cost.

Theorem 2 The above algorithm produces a feasible sched-
ule of cost at most 1.5 times optimum.

Proof Each unit-length demand of instance I is entirely con-
tained in some I2k for some k ∈ N. Hence, it is satisfied in
A(I2k), and thus also in S0, which yields the feasibility of
S0. An analogous argument shows the feasibility of S1.

To estimate the approximation ratio, fix an optimal solu-
tionOpt for instance I and let opti be the cost ofOpt’s orders
in the interval [i, i + 1). Note that Opt’s orders in [i, i + 3)

satisfy all demands contained entirely in [i, i + 3). Since
A(Ii) is an optimal solution for these demands, we have
cost(A(Ii)) ≤ opti+opti+1+opti+2 and, by taking the sum,
cost(S0) + cost(S1) ≤ ∑

i cost(A(Ii)) ≤ 3 · cost(Opt).
Therefore, at least one of the two solutions (S0 or S1) has
cost not larger than 1.5 · cost(Opt). ��

4 Lower bounds of 1.207 and 1.245

In this section, we prove the following lower bound on the
integrality gap of the LP relaxation from Sect. 1:

Theorem 3 The integrality gap of the LP relaxation is at
least 1

2 (1 + √
2) ≥ 1.207.

We then sketch a computer-assisted proof of a stronger
lower bound: 1.245.

Fix an arbitrarily large integer U . Define universe U =
{i/U : i ∈ N} ∩ [0,U] to contain the non-negative integer
multiples of 1/U in the interval [0,U]. (The restriction to
multiples of 1/U is a technicality; throughout, for intuition,
one can consider instead U = [0,U].) Consider an instance
with warehouse-order cost C = 1 and two retailers, where
retailer 1 has order cost c1 = 0 and retailer 2 has order cost
c2 = √

2 + ε, where c2 is a multiple of 1/U and 0 ≤ ε <

1/U . Retailer 1 has a demand for every time interval of length
1; retailer 2 has a demand for every time interval of length c2:

123

J Sched (2015) 18:545–560 553

D = {(1, t, t + 1) : t, t + 1 ∈ U}
∪{(2, t, t + c2) : t, t + c2 ∈ U}.
Intuitively, in any solution, retailer 1 must join at least one

order in every subinterval of length 1, so the warehouse-order
cost is at least 1 per time unit. Retailer 2 must join at least one
order in any subinterval of length c2, so his order cost (not
including the warehouse-order cost) is at least c2 for every c2

time units, i.e., 1 per time unit. Thus, even if the two retailers
could coordinate orders perfectly, the total cost would be at
least 2 per time unit.

We show next that, because the orders cannot be coor-
dinated perfectly, the cost of any solution is at least about
1 + c2 ≈ 1 + √

2 > 2 per time unit.
Throughout this section, o(1) denotes a term that tends to

zero as U tends to infinity.

Lemma 6 For the above instance, the optimal cost is at least
(1 + √

2 − o(1))U.

Proof Fix any schedule for the instance. Partition the time
interval [0,U] into half-open subintervals, separated by the
times of orders that retailer 2 joins. Consider any such subin-
terval (t, t ′]. That is, retailer 2 joins an order at time t (or
t = 0), and, during the subinterval (t, t ′] retailer 2 joins an
order at time t ′ and no other time. We argue that the cost per
time unit during (t, t ′] is at least 1 + √

2 − o(1).
First consider the case that the schedule has an order

during (t, t ′). The order at time t ′ costs 1 + c2; the addi-
tional order during (t, t ′) costs at least 1. The interval length
t ′ − t is at most c2 + 1/U (otherwise it would contain
a demand of retailer 2, which, by the choice of t and t ′,
would be unsatisfied). Thus, the cost per unit time is at least
(1 + 1 + c2)/(c2 + 1/U) = 1 + √

2 − o(1).
In the remaining case there is no order during (t, t ′). The

interval length t ′−t is at most 1+1/U (otherwise the interval
would contain an unsatisfied demand of retailer 1). The order
at time t ′ costs 1 + c2. Thus, the cost per time unit is at least
(1 + c2)/(1 + 1/U) = 1 + √

2 − o(1).
The last subinterval (t, t ′] has to end at time U − c2 or

later, so, in each subinterval of [0,U−c2] = [0, (1−o(1))U]
the algorithm pays at least 1 + √

2 − o(1) per time unit. ��
Next we observe that there is a fractional LP solution x

that costs 2 per time unit: for each t ∈ U , let xt = x1
t = 1/U

and x2
t = 1/(c2U).

Recall that U contains the integer multiples of 1/U in
[0,U]. By calculation, the LP solution is feasible. (For each
demand of retailer 1, the demand period intersects U in U +
1 times, and so is satisfied. Likewise, for each demand of
retailer 2, the demand period intersects U in c2U + 1 times,
and so is satisfied.)

Since |U | = U 2 + 1, the cost of fractional solution x is
2(U 2 + 1)/U = (2 + o(1))U . By Lemma 6, any integer

solution has cost (1 +√
2 − o(1))U . Since the term o(1) can

be made arbitrarily small by choosingU large, the integrality
gap of the LP is at least (1 + √

2)/2, proving Theorem 3.

Increasing the lower bound by a computer-based proof
We now sketch how to increase the lower bound slightly
to 1.245. We reduce the problem to that of maximizing the
minimum mean cycle in a finite configuration graph, which
we solve with the help of linear programming.

Let the universe be U = [U], where U is an arbitrar-
ily large integer (tending to infinity). Fix a vector δ ∈ Nm+.
(Later we choose m = 5 and δ = (6, 7, 8, 9, 11).) Focus on
instances where, for each retailer ρ ∈ [m], the retailer has
uniform demands—one for every subinterval of length δρ .
That is, the demand set D is D = {

(ρ, t, t + δρ − 1) : ρ ∈
[m]; {t, t + δρ − 1} ⊆ U}

.

Define the “uniform” fractional solution x by xρ
t = 1/δρ

for all ρ ∈ [m] and xt = maxρ 1/δρ for all t ∈ U . This
solution is feasible for the LP and has cost (C/ minρ δρ +∑

ρ cρ/δρ) ·U .
To bound the integer schedules we use a configuration

graph. Given any feasible schedule, for each order in the
schedule, define the configuration at the order time, t , to
be a vector σ ∈ Nm+ where σρ is the time elapsed since ρ

last joined an order, up to and including time t . (If retailer
ρ has not yet joined any order by time t , take σρ = t .)
Feasibility of the schedule ensures that each configuration
σ satisfies σρ < δρ for all ρ ∈ [m], because otherwise one
of retailer ρ’s demands would not be met. Thus, there are at
most

∏
ρ δρ distinct configurations. These are the nodes of

the configuration graph.
The edges of the graph model possible transitions from

one order to the next. Let σ denote the configuration at
some order time t . Let σ ′ denote the next configuration,
at the next order time t ′ > t . Let R be the set of retail-
ers in the order at time t ′. Then σ ′

ρ = 0 if ρ ∈ R and
σ ′

ρ = σρ + t ′ − t otherwise. To ensure feasibility, for all
ρ ∈ [m], it must be that σρ + t ′ − t ≤ δρ (even for ρ ∈ R).
Without loss of generality, assume that t ′ is maximal subject
to this constraint (otherwise, delay the second order with-
out increasing the schedule cost). That is, t ′ = t + �(σ),
where �(σ) = min{δρ − σρ : ρ ∈ [m]}. For each σ and σ ′
that relate as described above, the configuration graph has a
directed edge from σ to σ ′. The cost of the edge is the cost of
the corresponding order, cost(σ, σ ′) = C + ∑

ρ∈R cρ . Let
G = (V, E) be the subgraph induced by nodes reachable
from the start configuration (0, . . . , 0). Explicitly construct
the graph G, labeling each edge (σ, σ ′) with its elapsed time
�(σ), order set R(σ, σ ′), and cost function cost(σ, σ ′).

In the limit (as U → ∞), every schedule will incur cost
at least λ per time unit as long as, for every cycle C in this
graph, the sum of the costs of the edges in C is at least λ

times the sum of the times elapsed on the edges in C . The

123

554 J Sched (2015) 18:545–560

Fig. 6 A linear program to
choose the costs to maximize
the integrality gap λ, given the
configuration graph G and
demand durations δρ

Given G = (V,E) and δ, choose c, C, cost(), and Φ to maximize λ subject to
C ≥ 0
cρ ≥ 0 ∀ρ ∈ {1, . . . , m}

C/ minρ δρ +
∑

ρ cρ/δρ ≤)6(1

cost(σ, σ′) = C +
∑

ρ∈R(σ,σ′) cρ ∀(σ, σ′) ∈ E (7)

Φσ + cost(σ, σ′) − Φσ′ ≥ Δ(σ) λ ∀(σ, σ′) ∈ E. (8)

Fig. 7 The demand periods in
D

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

retailer 0

retailer 1

retailer 2

integrality gap is then at least λ divided by the cost (per time
unit) of the uniform fractional solution defined above. Note
that λ is essentially the minimum mean cycle cost in G.

Given any fixed m and vector δ of period durations, the
configuration graph is determined. We will choose the costs
(the warehouse-order cost C and each retailer cost cρ) to
maximize the resulting value of λ, subject to the constraint
that the cost of the uniform fractional solution is at most 1.
The linear program (LP) in Fig. 6 does this. The LP is based
on the standard LP dual for minimum mean cycle, but the
edge costs are not determined—they are chosen subject to
appropriate side constraints. Constraint (6) of the LP is that
the uniform fractional solution costs at most 1 per time unit.

We implemented this construction and, for various manu-
ally selected duration vectors δ with small m, we solved the
linear program to find the maximum λ. For efficiency, we
used the following observations to prune the configuration
graph. We ordered δ so that δ1 = minρ δρ . Without loss of
generality we constrained c1 to be 0 (otherwise replace C
by C + c1 and c1 by 0; by inspection this gives an equiva-
lent LP). Then, since c1 = 0, without loss of generality, we
assumed that retailer 1 is in every order R(σ, σ ′). We pruned
the graph further using similar elementary heuristics.

The best ratio we found was for δ = (6, 7, 8, 9, 11). The
pruned graphG had about two thousand vertices. C was about
2.49, c1 was 0, every other cρ was about 1.245, and λ was
just above 1.245.

5 Lower bound of 1.2 for equal-length periods

In this section, we show an integrality gap for the linear pro-
gram for JRP-D for instances with equal-length demand peri-

ods. The gap is for an instance with three retailers. Numbering
them for convenience starting from 0, their order costs are
c0 = c1 = c2 = 1

3 . The warehouse-order cost is C = 1.
In the demand set D, all intervals (demand periods) have

length 2. Choose some large constant U that is a multiple of
3. As illustrated in Fig. 7, for ρ = 0, 1, 2, retailer ρ’s demand
periods are

[3i + ρ, 3i + 2 + ρ] and (3i − 3
2 + ρ, 3i + 1

2 + ρ),

for i = 0, . . . ,U/3.

To simplify the presentation, allow the demand periods to
be either closed or open intervals. (This is only for conve-
nience: to “close” any open interval, replace it by a closed
interval slightly shifted to the right, with the shifts increas-
ing over time. Specifically, replace each interval (a, a + 2)

by the interval [a + a/U 2, a + a/U 2 + 2]. This preserves
the intersection pattern of all intervals; in particular any two
intervals (a, a+2) and (a+2, a+4) will remain disjoint after
this change. Therefore, this change does not affect the val-
ues of the optimal fractional and integral solutions described
below.)

This instance admits a fractional solution x whose cost
is 5

6U + O(1): For each integer time t , place a 1
2 -order that

is joined by two retailers: the retailer t mod 3 whose closed
interval starts at t , and the retailer (t+1) mod 3 whose closed
interval ends at t (let s = (t − 1) mod 3; then xst = 0, while
xt = xρ

t = 1
2 for ρ �= s). The cost of the 1

2 -order at each
time t is 1

2 (2 · 1
3 + 1) = 5

6 .
Now consider any integer solution x̂. Without loss of gen-

erality, assume that x̂ places orders only at integer times.
(Any order placed at a fractional time τ can be shifted either
left or right to the first integer without changing the set of
demands served.)

123

J Sched (2015) 18:545–560 555

If a retailer ρ has an order at time t , then its next order must
be at t+1, t+2 or t+3, because for any t the interval (t, t+4)

contains a demand period of retailer ρ. Thus, each retailer ρ

has to join some order in each triple {t + 1, t + 2, t + 3}. So,
the retailer-cost per time unit for ρ is at least cρ/3 = 1

9 , and
the total retailer-cost per time unit is at least 3

9 = 1
3 .

Similarly, if there is a warehouse order at time t , then
the next order must be at time t + 1 or t + 2, because the
interval (t, t + 3) contains a demand period of some retailer.
So there must be some order in each pair {t + 1, t + 2}. So
the warehouse-order cost per time unit is at least C/2 = 1

2 .
In total, the total cost per time unit is at least 1

3 + 1
2 = 5

6
(matching the cost of the fractional solution), even if the
retailer orders could be coordinated perfectly with the ware-
house orders. In the rest of this section, we show that, because
perfect coordination is not possible, the actual cost is higher.

Recall that (without loss of generality) in x̂ orders occur
only at integer times. For each ρ, call the endpoints of ρ’s
closed intervals ρ’s endpoint times (these are times t with (t−
ρ) mod 3 ∈ {0, 2}). Call the midpoints of ρ’s closed intervals
ρ’s inner times (these are times t with (t − ρ) mod 3 = 1).
Assume (without loss of generality by the feasibility and
optimality of x̂) that x̂ satisfies the following conditions:

(c1) For any ρ and any pair of consecutive endpoint times
{t, t +1} of ρ, ρ joins an order at time t or t +1 (because
ρ has an open interval containing only integers {t, t+1}).

(c2) If t is an inner time of retailer ρ and ρ joins an order at
t , then

(c2.1) there is no order at time t − 1 or t + 1, and
(c2.2) all retailers have orders at time t .

(For (c2.1): if there is an order at time t − 1 or t + 1, then
retailer ρ can be moved to that order from the order at time
t . For (c2.2): for each retailer ρ′ �= ρ both time t and either
t − 1 or t + 1 are endpoint times, but per (c2.1) there is no
order at t − 1 or at t + 1, so, by (c1), ρ′ must have an order
at t .)

The idea of the analysis is similar to the argument in Sect. 4
for the lower bound of 1.245 for general instances: repre-
sent the possible schedules by walks in a finite configuration
graph.

Fix any feasible schedule. At any integer time t , the config-
uration of the schedule at time t is the 4-digit string sσ0σ1σ2,
where s = t mod 3 and, for each retailer ρ = 0, 1, 2, the
elapsed time since the retailer last joined an order is σρ . Since
the schedule is feasible, each σρ is in {0, 1, 2}, so there are
at most 34 possible configurations.

Suppose a schedule is in configuration sσ0σ1σ2 at time t ,
then transitions to s′δ0δ1δ2 at time t + 1. Necessarily s′ =
(s + 1) mod 3. Let R be the set of retailers (possibly empty)

t t+1

=

tt-1

0002 1000 0000

2

Fig. 8 Graphical representation of a transition. Configuration 0002 is
on the left. At time t + 1 all retailers issue an order. After removing
spurious orders (keeping track of only the last one), the new configura-
tion is 1000, which is equivalent (by symmetry) to 0000. The transition
costs 1 + 1

3 · 3 = 2

that join the order (if any) at time t+1. For each retailer ρ, (i)
if ρ /∈ R then δρ = σρ + 1, while (ii) if ρ ∈ R then δρ = 0.
Say a pair sσ0σ1σ2 → s′δ0δ1δ2 is a possible transition if the
pair relates this way for some R. The cost of the transition
equals the cost of the order: 0 if R = ∅, or 1+ 1

3 |R| otherwise.
(Here, unlike in Section 4, the elapsed time per transition is
always 1, and R can be empty.)

Represent each possible configuration graphically by a
rectangle with a row for each retailer ρ = 0, 1, 2. Each row
has two cells, representing times t − 1 and t , respectively: a
circle in the first cell means σρ = 1, a circle in the second
cell means σρ = 0, no circle means σρ = 2. A dot in the cell
means that time is an endpoint time for the retailer; no dot
means the time is an inner time. The dot pattern of any one
row determines, and is determined by, s. Figure 8 shows an
example of a single transition.

Any two configurations are equivalent if one can be
obtained from the other by permuting the rows of the graph-
ical representation (i.e., the retailers). Each graphical repre-
sentation has one row with a dot in both columns, one row
with a dot in the second column only, and one row with a dot
in the first column only. Define the canonical representative
of an equivalence class to be the configuration in which these
three rows are, respectively, first, second, and third. In all such
configurations, s is zero, so there are at most 33 equivalence
classes.

Now restrict the configurations further to those that are
realizable in x̂, in that they do not violate conditions (c1)–
(c2): by Condition (c1), if a row has two dots, then one of
the dots must be circled; by Condition (c2), if a column has a
dot-less circle, then all cells in the column have circles. Note
that the equivalence relation respects these conditions: in a
given equivalence class, either all configurations meet both
conditions, or none do.

Finally, define graph G to have a node for each realiz-
able equivalence class. For each possible transition σ → σ ′
between remaining configurations σ and σ ′, add a directed
edge in G from the equivalence class of σ to that of σ ′. Give
the edge cost equal to the cost of the transition. By a rou-
tine but tedious calculation, G is the 10-node graph shown in

123

556 J Sched (2015) 18:545–560

Fig. 9 The complete transition
diagram

0002

0000

0122

0022

0102

0121

0111

0101

0

4/3

0

0

4/3

4/3
2

5/3

5/3

4/3

5/3

00214/3

0001

5/3

4/3

4/3

5/3

5/3

5/3

4/3

5/3

2

4/3

5/3

2

2/3

2/3

1

1

1

1/3

0

0

0

0

Fig. 9. Each node is represented by its canonical representa-
tive.

Next we argue that every cycle in this graph has average
edge cost at least 1. Define the following potential function

(σ) on configurations:

σ 0000 0001 0002 0021 0022 0101 0102 0111 0121 0122

(σ) 1 1 2
3

2
3

1
3 1 0 0 0 0

It is routine (if tedious) to verify that for each edge σ →
σ ′, its cost cost(σ, σ ′) satisfies

cost(σ, σ ′) ≥
(σ ′) −
(σ) + 1. (9)

For any path of lengthU in G (summing inequality (9) along
all edges on this path) the cost of the path is U − O(1).

The equivalence classes of the configurations of the sched-
ule x̂ (one for each time t ∈ [U]) form a path of length U in
G. The cost of x̂ equals the cost of the path, which must be at
least U − O(1). Recalling that there is a fractional solution
of cost 5

6U + O(1), this shows that the integrality gap is at
least 6

5 = 1.2:

Theorem 4 For instances with all demand periods equal,
the integrality gap of the LP at least 1.2.

(The bound in the above proof is tight: the following cycles
have average edge cost 1: 0000 → 0111 → 0000, 0101 →
0122 → 0002 → 0101, and 0121 → 0022 → 0001 →
0121.)

6 APX-hardness for equal-length demand periods

Let JRP-DE4 be the restriction of JRP-D where each retailer
has at most four demands and all demand periods are of
the same length. In this section, we show that JRP-DE4 is
APX-hard by giving a PTAS-reduction from Vertex Cover
in cubic graphs, that is graphs with every vertex of degree
three. Vertex Cover is known to be APX-complete for such
graphs (Alimonti and Kann 2000).

Roughly speaking, given any cubic graph G = (V, E)

with n vertices andm (= 3n/2) edges, the reduction produces
an instance JG of JRP-DE4, such that G has a vertex cover
of size K iff JG has a schedule of cost 10.5n+ K + 6. Since
any vertex cover has size at least m/3 = n/2, this is a PTAS-
reduction. Such reduction and a PTAS for JG would give a
PTAS for Vertex Cover in degree-three graphs.
Construction of instance JG . Fix a given undirected cubic
graph G with vertex set V = {0, . . . , n − 1} and edges
e0, . . . , em−1. JG consists of 1 + m + n gadgets: one sup-
port gadget SG, an edge gadget EG j for each edge e j , and
a vertex gadget VGi for each vertex i . All retailer and order

123

J Sched (2015) 18:545–560 557

Fig. 10 The construction of
instance JG . The figure shows
the support gadget SG, an edge
gadget EG j , and a vertex gadget
VGi for a vertex i with edges e j ,
eb, and ec. Shaded regions
represent retailers. Horizontal
line segments represent demand
periods

vertex c,i

support

edge ej

vertex j,i

vertex b,i

0 2m 4m 6m 8mij,i

EGj

VGi

SG

-4m

costs equal 1 (C = cρ = 1) and all demand periods have
length 4m. All release times and deadlines are integers in the
interval [−4m, 12m + 1]; without loss of generality, restrict
attention to schedules with integer order times. The gadgets
are as follows.
The support gadget SG SG has its own retailer, the support-
gadget retailer, having three demands with periods [−4m −
1,−1], [2m, 6m], and [8m + 1, 12m + 1]. These periods
are separated by two gaps of length 2m. Call the times
{−1, 4m, 8m+1} support gadget times; orders at these times
suffice to satisfy the three demands.

Edge gadgets EG j Each edge e j in G has its own edge
retailer, having two demands with, respectively, periods [2 j+
1 − 4m, 2 j + 1] and [2 j, 2 j + 4m]. These demands can be
satisfied with a single order at time 2 j or 2 j + 1. Think of
these two times as being associated with this edge e j , each
associated with one endpoint of e j (as explained below). All
such times are in the first gap, [0, 2m − 1].

Let e j = {i, i ′}, that is i, i ′ are the endpoints of edge e j .
Intuitively, to satisfy e j ’s retailer cheaply, there can be an
order at time 2 j or at 2 j + 1; this models that e j can be
covered by either of its two endpoints. We associate one of
the two times 2 j or 2 j + 1 (it does not matter which one)
with i and call it α j,i , while the other one is associated with
i ′ and, naturally, called α j,i ′ .

Vertex gadgets VGi For each vertex i , define its “vertex”
time βi = 8m − i . (All such times are in the second gap,
[6m+1, 8m].) Do the following for each of vertex i’s edges.
Let e j denote the edge. Add a new vertex retailer ρ j,i , having
four demands with respective periods

[α j,i − 4m, α j,i], [α j,i , α j,i + 4m], [βi − 4m, βi],
and [βi , βi + 4m].
Denote the periods of these four demands as Q0

j,i , Q
1
j,i ,

Q2
j,i and Q3

j,i , in the above order. Note that Q0
j,i ∩ Q1

j,i =
{
α j,i

}
, Q1

j,i∩Q2
j,i = [βi−4m, α j,i+4m] �= ∅, Q2

j,i∩Q3
j,i =

{βi }, but otherwise the four demand periods are pairwise-
disjoint.

The important property is that retailer ρ j,i ’s four demands
can be satisfied with two orders iff the two orders are at times
α j,i and βi . Also, if orders do happen to be placed at these two
times, then (because α j,i is one of the two times belonging
to e j) the order at time α j,i can satisfy both demands of
edge e j ’s retailer with no additional warehouse cost for that
retailer.

Figure 10 illustrates the reduction.

Lemma 7 If G has a vertex cover U of size K , then JG has
a schedule of cost at most 10.5n + K + 6.

Proof Let U be a vertex cover of size K .
To construct the schedule for JG , start with orders at the

support-gadget times {−1, 4m, 8m + 1}, each of which is
joined by the support-gadget retailer. This costs 6.

Next, consider each vertex i . If i /∈ U , then have i’s
vertex retailers (that is, retailers ρ j,i for e j � i) join the
support-gadget orders at times {−1, 4m, 8m+1}. This option
increases the schedule cost by 3 · 3 = 9.

Otherwise (for i ∈ U), create an order at time βi . For each
of three i’s retailers ρ j,i create an order at time α j,i , and have
the retailer join that order and the one at time βi . The order
at time βi is shared between i’s three retailers, so that order
costs 1+3 = 4. Each of the three orders created at times α j,i

costs 2. The total cost for the four orders is 3 · 2 + 4 = 10.
Next, consider each edge e j . As U is a vertex cover, some

vertex i ∈ U covers e j , that is i ∈ U∩e j . By the construction
of the i’s gadget, since i ∈ U , there is already an order at
e j ’s time α j,i . Have edge e j ’s retailer join this order. Both
demands of this retailer will be satisfied, since they both
contain α j,i . The cost increases by 1 per edge.

Adding up the above costs, the total cost is 6+9(n−K)+
10K + m = 10.5n + K + 6. ��

Recovering a vertex cover from an order schedule We
now show the converse: given any order schedule of cost
10.5n + K + 6 for JG , we can compute a vertex cover of
G of size K . Recall that α j,i denotes the time (either 2 j or
2 j + 1) that edge e j shares with endpoint i .

123

558 J Sched (2015) 18:545–560

Say that an order schedule S meeting the following desir-
able conditions is in normal form:

(nf1) In S, the support-gadget retailer joins orders at the
support-gadget times {−1, 4m, 8m + 1}.

(nf2) In S, for each edge e j = {i, i ′}, the edge’s retailer
joins an order at time α j,i or α j,i ′ .

(nf3) For each vertex i , exactly one of the following two
conditions holds:

(a) each of i’s retailers ρ j,i joins orders at times βi and
α j,i ;

(b) each of i’s retailers ρ j,i joins the support-gadget
orders at times {−1, 4m, 8m+1}, and S has no order
at time βi nor at any time α j,i .

(nf4) For each edge e j = {
i, i ′

}
, at least one of its endpoints

i, i ′ satisfies Condition (nf3) (a)
(nf5) S has no orders other than the ones described above.

Given any feasible order schedule, we can put it in normal
form without increasing the cost:

Lemma 8 Given any order schedule S forJG, one can com-
pute in polynomial time a normal-form schedule S′ whose
cost is at most the cost of S.

Proof Modify S to satisfy Conditions (nf1) through (nf5) in
turn, maintaining feasibility without increasing the cost, as
follows.
(nf1) Combine all orders in times (−∞,−1] into a single
order at time −1. By inspection, the earliest deadline of any
demand is the deadline of the first support-gadget demand,
which is −1. So this modification is safe—it maintains fea-
sibility without increasing the cost—and the support-gadget
retailer joins the order at time −1.

Likewise, combine all orders in times [8m + 1,∞) into
a single order at time 8m + 1. The last release time of any
demand is the release time of the last support-gadget demand,
which is 8m + 1. So this modification is also safe and the
support-gadget retailer joins the order at time 8m + 1.

Finally, combine all orders in times [2m, 6m] into a single
order at time 4m. The support-gadget has demand period
[2m, 6m], so the support-gadget retailer must join at least one
order at some time in [2m, 6m]. Thus this modification does
not increase the cost. There are no deadlines in [2m, 4m) and
no release times in (4m, 6m], so the modification maintains
feasibility.

The resulting schedule satisfies Condition (nf1).
(nf2) Consider any edge e j = {i, i ′}. If the edge’s retailer
does not join an order at one of the times α j,i or α j,i ′ associ-
ated with e j then, by inspection of his demands, the retailer
must join at least two orders. Remove him from these two
orders, reducing the cost by two, and have him join a (possi-
bly) new order at, time, say α j,i , satisfying both his demands

and increasing the cost by two or less. The resulting schedule
satisfies Conditions (nf1) and (nf2).
(nf3) Consider any vertex i . Assume first that S has an order
at time βi . If any of vertex i’s retailers, say ρ j,i , does not
join the order at time βi , then move him from some order at
any later time (there must be one in his last demand period
Q3

j,i = [βi , βi + 4m]) to the existing order at time βi . Then,
if retailer ρ j,i does not join an order at time α j,i (or there is
no such order), he must participate in at least two orders at
times other than βi ; remove him from these two orders and
have him join a (possibly new) order at time α j,i . Finally,
remove the retailer from all orders other than those at times
βi and α j,i . These operations are safe, and now vertex i meets
Condition (nf3).

In the other case S has no order at time βi . Then
each of vertex i’s retailers must join at least three orders.
Remove each such retailer from all those orders and add
him instead to the existing orders at the support-gadget times
{−1, 4m, 8m + 1}. Note that support-gadget times are dif-
ferent than all times α j,i . This is safe, does not increase the
cost, and now vertex i meets Condition (nf3).

As these operations affect only vertex retailers, Conditions
(nf1) and (nf2) still hold too.
(nf4) Consider any edge e j = {

i, i ′
}
. By Condition (nf2),

there is an order at time α j,i or α j,i ′ . By symmetry, we can
assume that there is an order at time α j,i . If vertex i satis-
fies Condition (nf3) (a), we are done. Otherwise, i satisfies
Condition (nf3) (b). Remove each of i’s three retailers from
orders at times −1, 4m, 8m+1, reducing i’s cost by 9. Then:
create an order at time βi and have them join this order (at
cost 4), have retailer ρ j,i join the order at time α j,i (at cost 1),
and have the other two retailers ρ j ′,i and ρ j ′′,i join (possibly
new) orders at times α j ′,i and α j ′′,i (at cost at most 2 each).
The total cost of these new orders is at most 9, thus this mod-
ification does not increase the overall cost, and afterwards e j
satisfies Condition (nf4).
(nf5) Remove all retailers from orders not described above,
then delete empty orders. As the orders described above sat-
isfy all the demands, this is safe. Now Condition (nf5) holds
as well. ��
Lemma 9 Given an order schedule S forJG of cost 10.5n+
K + 6, one can compute in polynomial time a vertex cover
of G of size K .

Proof By Lemma 8, without loss of generality we can
assume that that S is in normal form.

By Condition (nf1), the cost for the support-gadget orders
(at times {−1, 4m, 8m + 1}, but not yet counting the retailer
cost for any vertices) is 3 · 2 = 6.

By Condition (nf3), the cost associated with vertices is as
follows. Fix any vertex i . If S has an order at time βi then that
order is joined by each of vertex i’s retailers, at cost 1+3 = 4;
also, each of i’s retailers joins its own order (at a time α j,i

123

J Sched (2015) 18:545–560 559

where e j � i), which costs 2. Thus the cost associated with
vertex i is 4 + 2 · 3 = 10. Otherwise (that is, when S has
no order at time βi), each of i’s three retailers joins the three
support-gadget orders, so the cost associated with i is 3 ·3 =
9. Putting it together, and letting � be the number of vertices
i that have an order at time βi , the total cost associated with
all vertices can be written as 10� + 9(n − �) = 9n + �.

By Condition (nf2), the cost associated with edges is as fol-
lows. For each edge e j = {i, i ′}, Condition (nf4) guarantees
that one of i or i ′ satisfies Condition (nf3)(a). By symmetry,
assume that it is i . Since ρ j,i already has an order at α j,i ,
we can have retailer e j join this order at cost 1. In total, the
additional cost associated with the edge gadgets ism = 1.5n.

In sum, the schedule costs 6+ (9n+�)+1.5n = 10.5n+
� + 6. Hence, � = K .

Now defineU to contain the � vertices i for which S makes
an order at time βi . For each edge e j = {i, i ′}, by Condition
(nf4), there is an order at one of e j ’s associated times, say
α j,i . By Condition (nf3), there is also an order at time βi ,
so, by definition, U contains vertex i . Thus, U is a vertex
cover. ��

Here is the proof of APX-hardness. Recall that JRP-DE4

is JRP-D restricted to instances with equal-length demand
periods and at most four demands.

Theorem 5 JRP-DE4 is APX-hard.

Proof Vertex Cover in cubic graphs is APX-hard (Alimonti
and Kann, 2000, §3). We give a PTAS-reduction from that
problem to JRP-DE4.

Given any cubic graph G with n ≥ 6 vertices, and any ε >

0, compute the instance JG from Lemma 7. By inspection of
the proof, in JG all demand periods have equal length and
(because G has degree three) each retailer has at most four
demands, so JG is an instance of JRP-DE4.

Now suppose we are given any (1 + ε/24)-approximate
solution S to JG . From S, compute a vertex cover U for G
using the computation from Lemma 9. The computations of
JG from G, and ofU from S, can be done in time polynomial
in n. To finish, we show that the vertex cover U has size at
most (1 + ε)K ∗, where K ∗ is the size of the optimal vertex
cover in G.

By Lemma 7, JG has an order schedule of cost at most
10.5n + K ∗ + 6. Since G is cubic, K ∗ ≥ m/3 = n/2, so
10.5n + 6 ≤ 11.5n ≤ 23K ∗. Thus S has cost at most

(1 + ε/24)(10.5n + K ∗ + 6)

= 10.5n + K ∗ + 6 + (ε/24)(10.5n + K ∗ + 6)

≤ 10.5n + K ∗ + 6 + (ε/24)(23K ∗ + K ∗)
= 10.5n + (1 + ε)K ∗ + 6.

Since all costs are integer, the cost of S is in fact at most
10.5n + K + 6, where K = �(1 + ε)K ∗�. Using this bound

and Lemma 9, the vertex cover U has size at most K ≤
(1 + ε)K ∗. ��

Since JRP-DE4 ∈ APX (it has a constant-factor approxi-
mation algorithm), the theorem implies that JRP-DE4 is APX-
complete.

Of course, APX-hardness implies that, unless P = NP,
there is no PTAS for JRP-DE4: that is, for some δ > 0, there
is no polynomial-time (1 + δ)-approximation algorithm for
JRP-DE4.

7 Final comments

The integrality gap for the standard JRP-D LP relaxation is
between 1.245 and 1.574. We conjecture that neither bound
is tight. Although we do not have a formal proof, we believe
that our refined distribution for the tally game given here
is optimal: it was optimized under the assumption that it
never generates more than two samples, and allowing more
than two samples, according to our calculations, can only
increase the value of Z(p). Thus improving the upper bound
will likely require a different approach.

There is a simple algorithm for JRP-D that provides a
(1, 2)-approximation, meaning that its warehouse-order cost
is not larger than that in the optimum, while its retailer order
cost is at most twice that in the optimum (Nonner and Souza
2009). One can combine that algorithm and the one here by
choosing each algorithm with a certain probability. This sim-
ple approach does not improve the approximation ratio, but
it may be possible to do so if, instead of using the algorithm
presented here, one appropriately adjusts the probability dis-
tribution.

The computational complexity of general JRP-D, as a
function of the maximum number p of demand periods of
each retailer, is essentially resolved: for p ≥ 3 the problem
is APX-hard (Nonner and Souza 2009), while for p ≤ 2,
it can be solved in polynomial time (for p = 1 it can be
solved with a greedy algorithm; for p = 2 one can apply a
dynamic programming algorithm similar to that used in the
proof of Lemma 5). For the case of equal-length demand
periods, we showed that the problem remains APX-hard
for p ≥ 4. It would be nice to settle the case p = 3,
which remains open. We conjecture that this case is also
NP-complete.

Finally, we note that any LP-based algorithm for JRP-D
can be used as a building block for general JRP (with arbitrary
waiting costs) (Bienkowski et al. 2014). The construction
combines One-Sided Retailer Push and Two-Sided Retailer
Push algorithms (Levi et al. 2008) with an appropriately
crafted and scaled instance of JRP-D. By plugging our 1.574-
approximation to solve the JRP-D instance, the algorithm of

123

560 J Sched (2015) 18:545–560

Bienkowski et al. (2014) yields a 1.791-approximation for
JRP.

Acknowledgments We would like to thank Łukasz Jeż, Dorian
Nogneng, Jiří Sgall, and Grzegorz Stachowiak for stimulating dis-
cussions and useful comments. We are also grateful to anonymous
reviewers of earlier versions of this manuscript for pointing out sev-
eral mistakes and suggestions for improving the presentation. A pre-
liminary version of this work appeared in the Proceedings of the
40th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’13). Research supported by NSF Grants CCF-
1217314, CCF-1117954, OISE-1157129; EPSRC grants EP/J021814/1
and EP/D063191/1; FP7 Marie Curie Career Integration Grant; Royal
Society Wolfson Research Merit Award; and Polish National Science
Centre Grant DEC-2013/09/B/ST6/01538.

Appendix: Wald’s lemma

Here is the variant of Wald’s Lemma (also known as Wald’s
identity, and a consequence of standard “optional stopping”
theorems) that we use in Sect. 2. The proof is standard; we
present it for completeness.

Lemma 10 (Wald’s Lemma) Consider a random experi-
ment that, starting from a fixed start state S0, produces a
random sequence of states S1, S2, S3, . . . Let random index
T ∈ {0, 1, 2, . . .} be a stopping time for the sequence (that is,
for each positive integer t , the event “T ≤ t” is determined
by state St). Let function φ : {St } → R map the states to R.
Suppose that, for some fixed constants ξ and F,

(i) (∀t < T) E[φ(St+1) | St] ≥ φ(St) + ξ ,
(ii) either (∀t < T) φ(St+1) − φ(St) ≥ F in all outcomes,

or (∀t < T) φ(St+1)−φ(St) ≤ F in all outcomes, and
(iii) T has finite expectation.

Then, E[φ(ST)] ≥ φ(S0) + ξ E[T].
Proof For each t ≥ 0, define random variable δt =
φ(St+1)−φ(St). By assumption (i), E[δt | St] ≥ ξ for t < T .
Since the event “T > t” is determined by St , this implies that
E[δt | T > t] ≥ ξ . Then the inequality in the lemma can be
derived as follows:

E[φ(ST) − φ(S0)] = E[∑t<T δt]
= ∑

τ≥0 Pr[T = τ] · E[∑t<τ δt | T = τ]
= ∑

τ≥0
∑

t<τ Pr[T = τ] · E[δt | T = τ]
= ∑

t≥0
∑

τ>t Pr[T = τ] · E[δt | T = τ]
= ∑

t≥0 Pr[T > t] · E[δt | T > t]
≥ ∑

t≥0 Pr[T > t] · ξ

= ξ E[T],

Exchanging the order of summation in the third step above
does not change the value of the sum, because (by assump-
tions (ii) and (iii)) either the sum of all negative terms is
at least

∑
τ≥0

∑
t<τ Pr[T = τ]F = F

∑
τ≥0 τ Pr[T =

τ] = F E[T], which is finite, or (likewise) the sum of all
positive terms is finite.

Each application in Sect. 2 has ξ ≥ Z(p) > 0 and
φ(ST) − φ(S0) ≤ U for some fixed U . In this case Wald’s
Lemma implies E[T] ≤ U/ξ ≤ U/Z(p).

References

Alimonti, P., & Kann, V. (2000). Some APX-completeness results for
cubic graphs. Theoretical Computer Science, 237(1–2), 123–134.

Arkin, E., Joneja, D., & Roundy, R. (1989). Computational complex-
ity of uncapacitated multi-echelon production planning problems.
Operations Research Letters, 8(2), 61–66.

Becchetti, L., Marchetti-Spaccamela, A., Vitaletti, A., Korteweg, P.,
Skutella, M., & Stougie, L. (2009). Latency-constrained aggrega-
tion in sensor networks. ACM Transactions on Algorithms, 6(1),
13:1–13:20.

Bienkowski, M., Byrka, J., Chrobak, M., Jeż, Ł., & Sgall, J. (2014). Bet-
ter approximation bounds for the joint replenishment problem. In:
Proceedings of the of the 25th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 42–54.

Brito, C., Koutsoupias, E., & Vaya, S. (2012). Competitive analysis of
organization networks or multicast acknowledgement: How much
to wait? Algorithmica, 64(4), 584–605.

Buchbinder, N., Kimbrel, T., Levi, R., Makarychev, K., & Sviridenko,
M. (2008). Online make-to-order joint replenishment model: Pri-
mal dual competitive algorithms. In:Proceedings of the 19thACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 952–961.

Khanna, S., Naor, J., & Raz, D. (2002). Control message aggregation in
group communication protocols. In: Proceedings of the 29th Inter-
national Colloquium on Automata, Languages and Programming
(ICALP), pp. 135–146.

Levi, R., Roundy, R., & Shmoys, D.B. (2005). A constant approxima-
tion algorithm for the one-warehouse multi-retailer problem. In:
Proceedings of the Sixteenth Annual ACM-SIAM symposium on
Discrete Algorithms (SODA), pp. 365–374.

Levi, R., Roundy, R., & Shmoys, D. B. (2006). Primal-dual algorithms
for deterministic inventory problems. Mathematics of Operations
Research, 31(2), 267–284.

Levi, R., Roundy, R., Shmoys, D. B., & Sviridenko, M. (2008). A con-
stant approximation algorithm for the one-warehouse multiretailer
problem. Management Science, 54(4), 763–776.

Levi, R., & Sviridenko, M. (2006). Improved approximation algorithm
for the one-warehouse multi-retailer problem. In: Proceedings of
the 9th International Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX), pp. 188–199.

Nonner, T., & Souza, A. (2009). Approximating the joint replenishment
problem with deadlines. Discrete Mathematics, Algorithms and
Applications, 1(2), 153–174.

123

	Approximation algorithms for the joint replenishment problem with deadlines
	Abstract
	1 Introduction
	2 Upper bound of 1.574
	2.1 The details of Roundp and proof of Lemma 1
	2.2 Upper bound of e/(e-1) = 1.582
	2.3 Upper bound of 1.574

	3 Upper bound of 1.5 for equal-length periods
	4 Lower bounds of 1.207 and 1.245
	5 Lower bound of 1.2 for equal-length periods
	6 APX-hardness for equal-length demand periods
	7 Final comments
	Acknowledgments
	Appendix: Wald's lemma
	References

