
On-Line File Caching

Neal E. Young*

Abstract
Consider the following file caching problem: in response to a
sequence of requests for files, where each file has a specified
size and retrieval cost, maintain a cache of files of total size
at most some specified k so as to minimize the total retrieval
cost. Specifically, when a requested file is not in the cache,
bring it into the cache, pay the retrieval cost, and choose files
to remove from the cache so that the total size of files in the
cache is at most k. This problem generalizes previous paging
and caching problems by allowing objects of arbitrary size
and cost, both important attributes when caching files for
world-wide-web browsers, servers, and proxies.

We give a simple deterministic on-line algorithm that
generalizes many well-known paging and weighted-caching
strategies, including least-recently-used, first-in-first-out,
flush-when-full, and the balance algorithm. On any request
sequence, the total cost incurred by the algorithm is at most
k/(k - h + 1) times the minimum possible using a cache of
size h 5 k.

For any algorithm satisfying the latter bound, we show
it is also the case that for most choices of k, the retrieval cost
is either insignificant or the competitive ratio is constant.
This helps explain why competitive ratios of many on-
line paging algorithms have been typically observed to be
constant in practice.

1 Background and Statement of Results
The fire caching problem is as follows. Given a cache
with a specified size k (a positive integer) and a sequence
of requests to files, where each file has a specified size (a
positive integer k) and a specified retrieval cost (a non-
negative number), maintain files in the cache to satisfy
the requests while minimizing the total retrieval cost.
Specifically, when a requested file is not in the cache,
bring it into the cache, paying the retrieval cost of the
file, and choose files to remove from the cache so that
the total size of files remaining in the cache is at most
k.

Following Sleator and Tarjan [16], we say a file
caching algorithm is c(h, k)-competitive if on any se-
quence the total retrieval cost incurred by the algorithm
using a cache of size k is at most c(h, k) times the mini-
mum possible cost using a cache of size h. An algorithm
is on-line if its response to a request does not depend
on later requests in the sequence.

Uniform sizes, uniform costs. With the re-
striction that all file sizes and costs are the same,
the problem is called paging. Paging has been exten-
sively studied. In a seminal paper, Sleator and Tar-

Xtmouth College, Hanover NH 03755 ney@ldartmouth.edu

jan [16] showed that least-recently-used and a num-
ber of other deterministic on-line paging strategies were
&-competitive. Sleator and Tarjan also showed
that this performance guarantee is the best possible for
any deterministic on-line algorithm.

A simple randomized paging algorithm called the
marking algorithm was shown to be 2 In k-competitive
by Fiat et al. [5]. An opt#imal Ink-competitive ran-
domized paging algorithm was given by McGeoch and
Sleator [15]. In [19], deterministic paging strategies were
shown to be loosely O(ln k)-competitive. This means
roughly that for any sequence, for most values of k, the
fault rate of the algorithm using a cache of size k is either
insignificant or the algorithm is O(ln k)-competitive ver-
sus the optimum algorithm using a cache of size k. Sim-
ilarly, the marking algorithm was shown to be loosely
(2 In In k + 0(1))-competitive.

Uniform sizes, arbitrary costs. The special
case of file caching when all file sizes are the same is
called weighted caching. For weighted caching, Man-
asse, McGeoch and Sleator [14] showed that an algo-
rithm called the balance algorithm is k-competitive.
Subsequently in [19] g a eneralization of that algorithm
called the “greedy-dual” algorithm was shown to be
&-competitive. The greedy-dual algorithm gener-
alizes many well-known paging and weighted-caching
strategies, including least-recently-used, first-in-first-
out, flush-when-full, and the balance algorithm.

Arbitrary sizes, cost = 1 or cost = size.
Motivated by the importance of file size in caching for
world-wide-web applications (see comment below), Irani
considered two special cases of file caching: when the
costs are either all equal (the goal is to minimize the
number of retrievals), and when each cost equals the file
size (the goal is to minimize the total number of bytes
retrieved). For these two cases, Irani [S] gave O(log’ k)-
competitive randomized on-line algorithms.

Comment: the importance of sizes and costs.
File caching is important for world-wide-web applica-
tions. For instance, in browsers and proxy servers re-
mote files are -cached locally to avoid remote retrieval.
In web servers, disk files are cached in fast memory to
speed response time. As Irani points out (see [8] and ref-
erences therein), file size is an important consideration;
caching policies adapted from memory management ap-

82

Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 82-86 (1998)

83

plications that don’t take size into account do not work
well in practice.

Allowing arbitrary co&s is likely to be important as
well. In many cases, the cost (e.g., latency, total trans-
mission time, or network resources used) will neither be
uniform across files nor proportional solely to the size.
For instance, the cost to retrieve a remote file can de-
pend on the distance the file must travel in the network.
Even accounting for distance, the cost need not be pro-
portional to the size, e.g., because of economies of scale
in routing files through the network. Further, in some
applications it makes sense to assign different kinds of
costs to different kinds of files. For instance, some kinds
of documents are displayed by web browsers as they are
received, so that the effective delay for the user is deter-
mined more by the latency than the total transmission
time. Other documents must be fully transmitted be-
fore becoming useful. Both kinds of files can be present
in a cache. In all these cases, assigning uniform costs or
assigning every file’s cost to be its size size is not ideal.’

This paper: arbitrary sizes, arbitrary costs.
This paper presents a simple deterministic on-line
algorithm called LANDLORD (shown in Figure 1).
LANDLORD handles the problem of file caching with ar-
bitrary costs and integer sizes. The first result is:

THEOREM 1.1. LANDLORD is &-competitive for
file caching.

This performance guarantee is the best possible for any
deterministic on-line algorithm.2 File caching is not a
special case of the k-server problem, although weighted
caching is a special case of both file caching and the
k-server problem.

LANDLORD is a generalization of the greedy-dual
algorithm [19] for weighted caching, which in turn gen-
eralizes least-recently-used and first-in-first-out (paging
strategies), as well as the balance algorithm for weighted
caching. The analysis uses the potential function Q =
(h - 1) &LL creditIf + kCfEopT cost(f) - credit[f].

‘In many applications the actual cost to access a file may vary
with time; that issue is not considered here, nor is the issue of
cache consistency (i.e., if the remote file changes at the source,
how does the local cache get updated? The simplest adaptation
of the model here would be to assume that a changed file is treated
as a new file; this would require that the local cache strategy learn
about the change in some way). Finally, the focus here is on
simple local caching strategies, rather than distributed strategies
in which servers cooperate to cache pages across a network (see
e.g. [lo]).

2Manasse, McGeoch, and Sleator [14] show that no determin-
istic on-line algorithm for the well-known k-server problem on
any metric space of more than k points is better than A- k-h+1
competitive. This implies that, at least for any special case when
all sizes are 1 (i.e. weighted caching), no deterministic on-line al-
gorithm for file caching is better than &-competitive.

The analysis is simpler than that of [19] for the special
case of weighted caching.

In an independent work [3], Cao and Irani showed
that LANDLORD (with step 7 raising credit[g] as much
as possible) is k-competitive. They also gave empirical
evidence that the algorithm performs well in practice.

This paper: (6, S)-loosely c-competitiveness.
In practice it has been observed that on “typical”
request sequences, paging algorithms such as least-
recently-used, using a cache of size k, incur a cost within
a small constant factor (independent of 6) times the
minimum possible using a cache of size k [19]. This is in
contrast to the theoretically optimal competitive ratio
of k. A number of refinements of competitive analysis
have been proposed to try to understand the relevant
factors. Borodin, Irani, Raghavan, and Schieber [2],
in order to model locality of reference, proposed the
access-graph model which restricts the request sequences
to paths in a given graph (related papers include
[4, 9, 61). Karlin, Ph’ll’p 1 r s, and Raghavan [ll] proposed
a variant in which the graph is a Markov chain (i.e.
the edges of the graph are assigned probabilities, and
the request sequence corresponds to a random walk)
(see also [13]). Koutsoupias and Papadimitriou [12]
proposed the comparative ratio (for comparing classes of
on-line algorithms) and the diffuse adversary model (in
which the adversary chooses a probability distribution,
rather than a sequence, from some restricted class of
distributions).

In this paper we introduce a refinement of the
aforementioned loosely competitive ratio [19] (another
previously proposed alternative model). The model
is motivated by two observations: In practice, if the
retrieval cost is low enough in an absolute sense, the
competitive ratio is of no concern. For instance, in
paging, if the fault rate drops below

time to execute a machine instruction
time to retrieve a page from disk ’

then the total time to handle page faults ceases to be a
bottleneck in the computation. Similar considerations
hold for file caching. To formalize this, we introduce
a parameter E > 0, and say that “low enough” for
a request sequence T means “no more than E times
the sum of the retrieval costs” (the sum being taken
over all requests). This is tantamount to assuming
that handling a file of cost cost(f) requires overhead
of ~cost(f) whether it is retrieved or not.

The second observation is that in practice, we do
not expect the choice of cache size k to be the pessimal
one for most of our input sequences. Thus, we are more
interested in what happens at a typical value of k. To
formalize this, we introduce a parameter 6 > 0, and

84

Algorithm LANDLORD

Maintain a real value credit[f with each file f in the cache.
When a file g is requested:
1. if g is not in the cache then
2. until there is room for g in the cache:
3. For each file f in the cache, decrease credit[fJ by A . size[f,
4. where A = minfEcahe credit [f/size[fl.
5. Evict from the cache any file f such that credit[f = 0.
6. Bring g into the cache and set credit[g] + cost(g).
7. else Reset credit[g] to any value between its current value and cost(g).

Figure 1: The on-line file caching algorithm LANDLORD. Credit is given to each file when it is requested. “Rent”
is charged to each file in the cache in proportion to its size. Files are evicted as they run out of credit. Step
7 is not necessary for the worst-case analysis, but it is likely to be important in practice: raising the credit as
much as possible in step 7 generalizes the least-recently-used paging strategy; not raising at all generalizes the
first-in-first-out paging strategy.

say that a caching strategy is “good enough” if it is
good for at least (1 - 6) n of the choices for L in any
range { 1,2, . . . , n}. These two observations give us the
following formalism:

DEFINITION 1 .l. A file caching algorithm A is (6, a)-
loosely c-competitive if, for any request sequence r and
any integer 12 > 0, at least (1 - Qz of the values
k E { 1,2, . . . , n} satisfy

cost(A, k, r) 5 max
{

c. cost(OPT, k, r), 6. c cost(f)
>

.
f-.

(1.1)

Here cost(A) k, r) denotes the cost incurred by algorithm
A using a cache of size k on sequence r. OPT denotes
the optimal algorithm, so that cost(OPT, k, r) is the
minimum possible cost to handle the sequence T using
a cache of size k. The sum on the right ranges over all
requests in T, so that if a file is requested more than
once, its cost is counted for each request.

Since the standard competitive ratio grows with k,
it is not clear apriori that any on-line algorithm could be
(E, 6)-loosely c-competitive for any c that depends only
on 6 and 6. Our second result is the following.

THEOREM 1.2. Every &-competitive algorithm is
(E, @-loosely c-competitive for any 0 < E, 6 < 1 and

1 1
c&e- In- . 1 1 5 c

The interpretation is that for most choices of k, the
retrieval cost is either insignificant or the competitive
ratio is constant.

This result supports the intuition that it is mean-
ingful to compare an algorithm against a “handicapped”
optimal algorithm (most competitive analyses consider
the case h = k). A strong performance guarantee, even
against a handicapped optimal algorithm, may be as (or
more) meaningful than a weak performance guarantee
against a non-handicapped adversary.

Our proof is similar in spirit to the proof in [19] for
the special case of paging. (The proof here is simpler,
more general, and gives a stronger result.)

Of course the following corollary is immediate:

COROLLARY 1 .l. LANDLORD is (e, S)-loosely c-
competitive for c & eQ [ln +I.

This helps explain why the competitive ratios of the
many on-line algorithms that LANDLORD generalizes are
typically observed to be constant.

Theorem 1.2 and Corollary 1.1 are tight in the
following sense:

CLAIM 1.1. For any E and 6 with 0 -C 6, S < 1, there
is a constant c = R($ In 4) such that LANDLORD is not
(e,6)-loosely c-competitive.

The proof will be given in the full paper. For complete-
ness, we also consider randomized algorithms:

CLAIM 1.2. Every 0 In m -competitive algorithm is
(“1

(E, 6)Joosely c-competitive for any 0 < E, 6 < 1 and

1
ct0 l+lng+lnlnl (.

E >

We also leave the proof of this result to the main paper.
(This proof is similar to the proof of Theorem 1.2.)

Since it is shown in [17, 181 that the marking algorithm
(a randomized on-line algorithm) is (1 + 2 In A)-
competitive for paging, it follows that

CLAIM 1.3. The marking algorithm is (E, S)-loosely c-
competitive for paging for

c-0 l+ln~+lnlnl (.
e >

We estimate the constant in the big-0 to be about 2e.

2 Proofs of Theorems 1.1 and 1.2.
THEOREM 1.1. LANDLORD is &-competitive forfile
caching.

Proof. Define potential function

Q&(/r--1). c credit [f] + k. c cost(f) - credit [f].
fELL fEoPT

Here LL denotes the cache of LANDLORD; OPT denotes
the cache of OPT. For f $! LL, by convention credit[f] 2
0. Before the first request of a sequence, when both
caches are empty, Cp is zero. After all requests have
been processed (and in fact at all times), Cp 2 0. Below
we show that at each request:

when OPT retrieves a file of cost c, Q increases by
at most kc;

when LANDLORD retrieves a file of cost c, 0 de-
creases by at least (k - h + 1)~;

at all other times @ does not increase.

These facts imply that the cost incurred by LANDLORD
is bounded by k/(k - h + 1) times the cost incurred by
OPT.

The actions affecting Cp following each request can
be broken down into a sequence of steps, with each step
being one of the following. We analyze the effect of each
step on a.

b OPT evicts a file f.
Since credit[f] 5 cost(f), Q cannot increase.

b OPT retrieves a file g.

In this step OPT pays the retrieval cost cost(g).
Since credit[g] 2 0, @ can increase by at most
k . cost(g).

l LANDLORD decreases credit[f] for all f E LL.
Since the decrease of a given credit[f] is Asize(
the net decrease in Cp is A times

(h - 1) size(LL) - k size(oPT fl LL),

85

where size(X) denotes xf eX size(f).

When this step occurs, we can assume that the
requested file g has already been retrieved by OPT
but is not in LL. Thus, size(OPTnLL) 5 h-size(g).

Further, there is not room for g in LL, so that
size(LL) 2 k - size(g) + 1 (recall that sizes are
assumed to be integers). Thus the decrease in the
potential function is at least A times

(h - l)(k - size(g) + 1) - k(h - size(g)).

Since size(g) >_ 1 and k >_ h, the expression above
is at least (h - l)(k - 1+ 1) - k(h - 1) = 0.

LANDLORD evicts a file f.

LANDLORD only evicts f when credit[f] = 0. Thus,
Cp is unchanged.

LANDLORD retrieves the requested file g and
sets credit[g] to cost(g).

In this step LANDLORD pays the retrieval cost
cost(g).

Since g was not previously in the cache (and
credit[g] was zero), and because we can assume
that g E OPT, Cp decreases by -(h - l)cost(g) +
k cost(g) = (k - h + l)cost(g).

LANDLORD resets credit[g] between its current
value and cost(g).

Again, we can assume g E OPT. If credit[g] changes,
it can only increase. In this case, since (h - 1) < k,
@ decreases. 0

THEOREM 1.2. Every &-competitive algorithm is
(6, &)-loosely c-competitive for any 0 < e, 6 < 1 and
c 1 e$[ln $1.

Proof. Let A be any & -competitive algorithm. Let
r be any request sequence and n > 0 any integer. Fix
any6,6>0. Letc=e$pn3].

Our goal is to show that at most 6n of the values
IcE{1,2,...,n}satisfy

cost(A, k, r) > max
t

c(k)cost(CPT, 1, r), t.xcost(f)
I

.
fEr

(2.2)
Call the values of k satisfying condition (2.2) “bad”
values, and suppose for contradiction that there are
more than 6n of them. Then there are at least

(2.3) B h 1 +

86

bad values 1 < k1 < k2 < .. . < kB < n such that for
eachi=2,3,,.,B,

-

(2.4) ki - ki-1 + 1 > en/c > eki/c.

Since A is &-competitive, choosing k = ki and
h = ki-1 shows that

cost(A, ki, r) 5 k. _ ,“;
2 i 1

+ 1 cost(OPT, kidl, r)

L +St(OPT, ki-l, r). (2.5)

Since cost(A, ki-1, r) 2 ccost(OPT, ki-1, r) (by condi-
tion (2.2)), bound (2.5) implies

(2.6) cost(A, ki, r) 5 dcost(A, ki-1, r).

From condition (2.2) and induction on bound (2.6) it
follows that

e c cost(f) < cost(A, kB, r)
fEr

Thus, B - 1 < In l/c. But this contradicts the choice of
B in definition (2.3). 0

Acknowledgements

Thanks to Dan Gessel for useful discussions and to Pei
Cao for pointing out to the author the importance of
file size in web caching.

References

PI

Dl

[31

[41

Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, El Paso, Texas, 4-6
May 1997.
Allan Borodin, Sandy Irani, Prabhakar Raghavan, and
Baruch Schieber. Competitive paging with locality of
reference. Journal of Computer and System Sciences,
50(2):244-258, April 1995.
Pei Cao and Sandy Irani. Cost-aware WWW proxy
caching algorithms. In USENIX Symposium on Inter-
net Technologies and Systems, December 1997.
Amos Fiat and Anna R. Karlin. Randomized and mul-
tipointer paging with locality of reference. In Proceed-
ings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, pages 626-634, Las Vegas,
Nevada, 29 May-l June 1995.

[51

PI

PI

PI

PI

WI

PI

P21

P31

P41

P51

WI

VI

WI

PI

Amos Fiat, Richard M. Karp, Michael Luby, Lyle A.
McGeoch, Daniel D. Sleator, and Neal E. Young.
Competitive paging algorithms. Journal of Algorithms,
12(4):685-699, December 1991.
Amos Fiat and Ziv Rosen. Experimental studies
of access graph based heuristics: Beating the LRU
standard? In Proceedings of the Eighth Annual ACM-
SIAM Symposium on Di.screte Algorithms, pages 63-
72, New Orleans, Louisiana, 5-7 January 1997.
IEEE. 35th Annual Symposium on Foundations of
Computer Science, Sant,a Fe, New Mexico, 20-22
November 1994.
Sandy Irani. Page replacement with multi-size pages
and applications to Web caching. In ACM [l], pages
701-710.
Sandy Irani, Anna R. KarIin, and Steven Phillips.
Strongly competitive algorithms for paging with lo-
cality of reference. SIAM Journal on Computing,
25(3):477-497, June 1996.
David Karger, Eric Lehman, Tom Leighton, Matthew
Levine, Daniel Lewin, and Rina Panigrahy. Consistent
hashing and random trees: Distributed caching proto-
cols for relieving hot spots on the World Wide Web. In
ACM [l], pages 654-663.
Anna R. Karlin, Steven J. Phillips, and Prabhakar
Raghavan. Markov paging (extended abstract). In
33rd Annual Symposium on Foundations of Computer
Science, pages 208-217, Pittsburgh, Pennsylvania, 24-
27 October 1992. IEEE.
EIias Koutsoupias and Christos H. Papadimitriou. Be-
yond competitive analysis. In 35th Annual Symposium
on Foundations of Computer Science [7], pages 394-
400.
Carsten Lund, Steven Phillips, and Nick Reingold. IP
over connection-oriented networks and distributional
paging. In 35th Annual Symposium on Foundations of
Computer Science [7], pages 424-434.
M. S. Manasse, L. A. hlcGeoch, and D. D. Sleator.
Competitive algorithms for server problems. Journal
of Algorithms, 11:208-230, 1990.
Lyle A. McGeoch and Daniel D. Sleator. A strongly
competitive randomized paging algorithm. Algorith-
mica, 6:816-825, 1991.
Daniel D. Sleator and Robert E. Tarjan. Amortized
efficiency of list update and paging rules. Comm.
ACM, 28(2):202-208, February 1985.
Neal E. Young. Competitive paging and dual-guided
algorithms for weighted caching and matching. (The-
sis) Tech. Rep. CS-TR-348-91, Computer Science De-
partment, Princeton University, October 1991.
Neal E. Young. On-line caching as cache size varies.
In Proc. of the Second Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 241-250, 1991.
Neal E. Young. The k-server dual and loose competi-
tiveness for paging. Algorithmica, 11(6):525-541, June
1994.

