
Title: Online paging and caching
Name: Neal E. Young1

Affil./Addr. University of California, Riverside
Keywords: paging; caching; least recently used; k-server problem; on-

line algorithms; competitive analysis; competitive ratio
SumOriWork: 1985–2013; multiple authors

Online paging and caching
Neal E. Young1

University of California, Riverside

Years aud Authors of Summarized Original Work

1985–2013; multiple authors

Keywords

paging; caching; least recently used; k-server problem; online algorithms; competitive anal-
ysis; competitive ratio

SYNONYMS: paging, caching, weighted caching, weighted paging, file caching

Problem Definition

A file-caching problem instance specifies a cache size k (a positive integer) and a sequence
of requests to files, each with a size (a positive integer) and a retrieval cost (a non-negative
number). The goal is to maintain the cache to satisfy the requests while minimizing the
retrieval cost. Specifically, for each request, if the file is not in the cache, one must retrieve it
into the cache (paying the retrieval cost) and remove other files to bring the total size of files
in the cache to k or less. Weighted caching, or weighted paging is the special case when each
file size is 1. Paging is the special case when each file size and each retrieval cost is 1 (then
the retrieval cost is the number of cache misses, and the fault rate is the average retrieval
cost per request).

An algorithm is online if its response to each request is independent of later requests.
In practice this is generally necessary. Standard worst-case analysis is not meaningful for
online algorithms — any algorithm will have some input sequence that forces a retrieval for
every request. Yet worst-case analysis can be done meaningfully as follows. An algorithm is
c(h, k)-competitive if on any sequence σ the total (expected) retrieval cost incurred by the
algorithm using a cache of size k is at most c(h, k) times the minimum cost to handle σ with
a cache of size h (plus a constant independent of σ). Then the algorithm has competitive
ratio c(h, k). The study of competitive ratios is called competitive analysis. (In the larger

2

context of approximation algorithms for combinatorial optimization, this ratio is commonly
called the approximation ratio.)

Algorithms. Here are definitions of a number of caching algorithms; first is Landlord.
Landlord gives each file “credit” (equal to its cost) when the file is requested and not in
cache. When necessary, Landlord reduces all cached file’s credits proportionally to file size,
then evicts files as they run out of credit.

File-caching algorithm Landlord

Maintain real value credit[f] with each file f (credit[f] = 0 if f is not in the cache).

When a file g is requested:

1. if g is not in the cache:

2. until the cache has room for g:

3. for each cached file f : decrease credit[f] by ∆ · size[f],

4. where ∆ = minf∈cache credit[f]/size[f].

5. Evict from the cache any subset of the zero-credit files f .

6. Retrieve g into the cache; set credit[g]← cost(g).

7. else Reset credit[g] anywhere between its current value and cost(g).

For weighted caching, file sizes equal 1. Greedy Dual is Landlord for this special
case. Balance is the further special case obtained by leaving credit unchanged in line 7.

For paging, files sizes and costs equal 1. Flush-when-full is obtained by evicting
all zero-credit files in line 5; First-in-first-out is obtained by leaving credits unchanged
in line 7 and evicting the file that entered the cache earliest in line 5; Least-recently-
used is obtained by raising credits to 1 in line 7 and evicting the least-recently requested file
in line 5. The Marking algorithm is obtained by raising credits to 1 in line 7 and evicting
a random zero-credit file in line 5. (Landlord generalizes to arbitrary covering problems
with submodular costs as described in [10].)

Key Results

This entry focuses on competitive analysis of paging and caching strategies as defined above.
Competitive analysis has been applied to many problems other than paging and caching,
and much is known about other methods of analysis (mainly empirical or average-case) of
paging and caching strategies, but these are outside scope of this entry.

Paging. In a seminal paper, Sleator and Tarjan showed that Least-recently-used,
First-in-first-out, and Flush-when-full are k

k−h+1
-competitive [13]. Sleator and Tar-

jan also showed that this competitive ratio is the best possible for any deterministic online al-
gorithm. Fiat et al. showed that the Marking algorithm is 2Hk-competitive and that no ran-
domized online algorithm is better than Hk-competitive [6]. Here Hk = 1+1/2+ · · ·+1/k ≈
.58 + ln k. McGeoch and Sleator gave an optimal Hk-competitive randomized online paging
algorithm [12].

Weighted caching. For weighted caching, Chrobak et al. showed that the deterministic
online Balance algorithm is k-competitive [4]. Young showed that Greedy Dual is k

k−h+1
-

competitive, and that Greedy Dual is a primal-dual algorithm — it generates a solution
to the linear-programming dual which proves the near-optimality of the primal solution [14].
Bansal et al., resolving a long-standing open problem, used the primal-dual framework to
give an O(log k)competitive randomized algorithm for weighted caching [2].

3

File caching. When each cost equals 1 (the goal is to minimize the number of retrievals),
or when each file’s cost equals the file’s size (the goal is to minimize the total number of
bytes retrieved), Irani gave O(log2 k)-competitive randomized online algorithms [7].

For general file caching, Irani and Cao showed that a restriction of Landlord is
k-competitive [3]. Independently, Young showed that Landlord is k

k−h+1
-competitive [15].

Other theoretical models. Practical performance can be better than the worst case
studied in competitive analysis. Refinements of the model have been proposed to increase
realism. Borodin et al. [1], to model locality of reference, proposed the access-graph model
(see also [8; 9]). Koutsoupias and Papadimitriou proposed the comparative ratio (for com-
paring classes of online algorithms directly) and the diffuse-adversary model (where the
adversary chooses requests probabilistically subject to restrictions) [11]. Young showed that
any k

k−h+1
-competitive algorithm is also loosely O(1)-competitive: for any fixed ε, δ > 0, on

any sequence, for all but a δ-fraction of cache sizes k, the algorithm either is O(1)-competitive
or pays at most ε times the sum of the retrieval costs [15].

Analyses of deterministic algorithms. Here is a competitive analysis of Greedy
Dual for weighted caching.

Theorem 1. Greedy Dual is k
k−h+1

-competitive for weighted caching.

Proof. Here is an amortized analysis (in the spirit of Sleator and Tarjan, Chrobak et al., and
Young; see [14] for a different primal-dual analysis). Define potential

Φ = (h− 1) ·
∑

f∈gd
credit[f] + k ·

∑
f∈opt

(
cost(f)− credit[f]

)
,

where gd and opt denote the current caches of Greedy Dual and Opt(the optimal off-line
algorithm that manages the cache to minimize the total retrieval cost), respectively. After
each request, Greedy Dual and Opt take (some subset of) the following steps in order.

Opt evicts a file f : Since credit[f] ≤ cost(f), Φ cannot increase.

Opt retrieves requested file g: Opt pays cost(g); Φ increases by at most k cost(g).

Greedy Dual decreases credit[f] for all f ∈ gd: The cache is full and the
requested file is in opt but not yet in gd. So |gd| = k and |opt ∩ gd| ≤ h − 1. Thus, the
total decrease in Φ is ∆[(h− 1)|gd| − k |opt ∩ gd|] ≥ ∆[(h− 1)k − k(h− 1)] = 0.

Greedy Dual evicts a file f : Since credit[f] = 0, Φ is unchanged.

Greedy Dual retrieves requested file g and sets credit[g] to cost(g): Greedy
Dual pays c = cost(g). Since g was not in gd but is in opt, credit[g] = 0 and Φ decreases
by −(h− 1)c+ k c = (k − h+ 1)c.

Greedy Dual resets credit[g] between its current value and cost(g): Since
g ∈ opt and credit[g] only increases, Φ decreases.

So, with each request: (1) when Opt retrieves a file of cost c, Φ increases by at most
kc; (2) at no other time does Φ increase; and (3) when Greedy Dual retrieves a file of cost
c, Φ decreases by at least (k−h+ 1)c. Since initially Φ = 0 and finally Φ ≥ 0, it follows that
Greedy Dual’s total cost times k − h+ 1 is at most Opt’s cost times k.

4

Extension to file caching. Although the proof above easily extends to Landlord,
it is more informative to analyze Landlord via a general reduction from file caching to
weighted caching:

Corollary 1. Landlord is k
k−h+1

-competitive for file caching.

Proof. Let W be any deterministic c-competitive weighted-caching algorithm. Define file-
caching algorithm FW as follows. Given request sequence σ, FW simulates W on weighted-
caching sequence σ′ as follows. For each file f , break f into size(f) “pieces” {fi} each of size

1 and cost cost(f)/size(f). When f is requested, give a batch (f1, f2, . . . , fs)
N+1 of requests

for pieces to W . Take N large enough so W has all pieces {fi} cached after the first sN
requests of the batch.

Assume that W respects equivalence: after each batch, for every file f , all or none of
f ’s pieces are in W ’s cache. After each batch, make FW update its cache correspondingly to
{f : fi ∈ cache(W)}. FW ’s retrieval cost for σ is at most W ’s retrieval cost for σ′, which is
at most cOpt(σ′), which is at most cOpt(σ). Thus, FW is c-competitive for file caching.

Now, observe that Greedy Dual can be made to respect equivalence. When
Greedy Dual processes a batch of requests (f1, f2, . . . , fs)

N+1 resulting in retrievals, for
the last s requests, make Greedy Dual set credit[fi] = cost(fi) = cost(f)/s in line 7.
In general, restrict Greedy Dual to raise credits of equivalent pieces fi equally in line 7.
After each batch the credits on equivalent pieces fi will be the same. When Greedy Dual
evicts a piece fi, make Greedy Dual evict all other equivalent pieces fj (all will have zero
credit).

With these restrictions, Greedy Dual respects equivalence. Finally, taking W to be
Greedy Dual above, FW is Landlord.

Analysis of the randomized Marking algorithm. Here is a competitive analysis of
the Marking algorithm.

Theorem 2. The Marking algorithm is 2Hk-competitive for paging.

Proof. Given a paging request sequence σ, partition σ into contiguous phases as follows.
Each phase starts with the request after the end of the previous phase and continues as long
as possible subject to the constraint that it should contain requests to at most k distinct
pages. (Each phase starts when the algorithm runs out of zero-credit files and reduces all
credits to zero.)

Say a request in the phase is new if the item requested was not requested in the
previous phase. Let mi denote the number of new requests in the ith phase. During phases
i − 1 and i, k + mi distinct files are requested. opt has at most k of these in cache at the
start of the i − 1st phase, so it will retrieve at least mi of them before the end of the ith
phase. So opt’s total cost is at least max{

∑
im2i,

∑
im2i+1} ≥

∑
imi/2.

Say a non-new request is redundant if it is to a file with credit 1 and non-redundant
otherwise. Each new request costs the Marking algorithm 1. The jth non-redundant request
costs the Marking algorithm at most mi/(k−j+1) in expectation because, of the k−j+1
files that if requested would be non-redundant, at most mi are not in the cache (and each
is equally likely to be in the cache). Thus, in expectation Marking pays at most mi +∑k−mi

j=1 mi/(k − j + 1) ≤ miHk for the phase, and at most Hk

∑
imi total.

Applications
Variants of Greedy Dual and Landlord have been incorporated into file-caching software
such as Squid [5].

5

Open Problems

None to report.

Experimental Results

For a study of competitive ratios on practical inputs, see for example [14; 3; 5].

Cross-References

Algorithm DC-Tree for k-Servers on Tree
Online List Update
Performance Measures in Online Algorithms
Price of Anarchy
Work-Function Algorithm for K-servers

Recommended Reading

1. Borodin A, Irani S, Raghavan P, Schieber B (1991) Competitive paging with locality of reference. In:
Proc. 23rd Symp. Theory of Computing (STOC), ACM, pp 249–259

2. Buchbinder N, Naor J (2005) Online primal-dual algorithms for covering and packing problems. Lecture
Notes in Computer Science 3669:689–701

3. Cao P, Irani S (1997) Cost-aware WWW proxy caching algorithms. In: USENIX Symposium on Internet
Technologies and Systems, USENIX Association Berkeley, CA, USA

4. Chrobak M, Karloff H, Payne T, Vishwanathan S (1991) New results on server problems. SIAM J Discrete
Math 4(2):172–181

5. Dilley J, Arlitt M, Perret S (1999) Enhancement and validation of Squid’s cache replacement policy. Tech.
Rep. HPL-1999-69, Hewlett-Packard Laboratories, also in 4th International Web Caching Workshop

6. Fiat A, Karp RM, Luby M, McGeoch LA, Sleator DD, Young NE (1991) Competitive paging algorithms.
J Algorithms 12:685–699

7. Irani S (2002) Page replacement with multi-size pages and applications to web caching. Algorithmica
33(3):384–409

8. Irani S, Karlin A, Phillips S (1992) Strongly competitive algorithms for paging with locality of reference.
In: Proc. 3rd Symp. on Discrete Algorithms (SODA), ACM/SIAM, pp 228–236

9. Karlin AR, Phillips SJ, Raghavan P (2000) Markov paging. SIAM Journal on Computing 30(3):906–922
10. Koufogiannakis C, Young NE (2013) Greedy ∆-approximation algorithm for covering with arbitrary

constraints and submodular cost. Algorithmica 66(1):113–152
11. Koutsoupias E, Papadimitriou C (2000) Beyond competitive analysis. SIAM J Comput 30(1):300–317
12. McGeoch L, Sleator D (1991) A strongly competitive randomized paging algorithm. Algorithmica

6(6):816–825
13. Sleator D, Tarjan RE (1985) Amortized efficiency of list update and paging rules. Commun ACM 28:202–

208
14. Young NE (1994) The k-server dual and loose competitiveness for paging. Algorithmica 11:525–541,

preliminary version appeared in SODA’91 titled “On-Line Caching as Cache Size Varies”
15. Young NE (2002) On-line file caching. Algorithmica 33(3):371–383

	Online paging and caching

