
ar
X

iv
:1

40
7.

30
15

v3
 [

cs
.D

S]
 5

 N
ov

 2
01

4

Nearly Linear-Work Algorithms

for Mixed Packing/Covering and

Facility-Location Linear Programs

Neal E. Young ∗

University of California, Riverside, neal.young@ucr.edu

Abstract

We describe the first nearly linear-time approximation algorithms for explicitly given
mixed packing/covering linear programs, and for (non-metric) fractional facility location.
We also describe the first parallel algorithms requiring only near-linear total work and fin-
ishing in polylog time. The algorithms compute (1 + ǫ)-approximate solutions in time (and
work) Õ(N/ǫ2), where N is the number of non-zeros in the constraint matrix. For facility
location, N is the number of eligible client/facility pairs.

∗Research partially supported by NSF grant 1117954.

http://arxiv.org/abs/1407.3015v3

1 Introduction

Mixed packing/covering LP’s are fundamental to combinatorial optimization in computer science
and operations research, with numerous applications, including many that are not pure packing
or covering — solving linear systems, computer tomography, machine scheduling, routing prob-
lems, multicommodity flow with demands, etc. In many approximation algorithms for NP-hard
problems, solving such an LP in order to round the solution is the main bottleneck.

Algorithms with linear worst-case run time (the time it takes just to read the input) have
always been something of a holy grail. Their importance is increasing with the abundance of big
data, and, with the growing reliance on multiprocessors and server farms, linear-work algorithms
that can be highly parallelized are of particularly interest.

Results. We give the first nearly linear-time (1 + ǫ)-approximation algorithms and the first
nearly linear-work parallel algorithms for mixed packing/covering linear programs and for frac-
tional facility location. Let N be the input size, that is, the number of non-zeroes in the linear
program. Let m and n be the numbers of constraints and variables, respectively. Generally
max(m,n) ≤ N ≤ mn.

For mixed packing/covering, Thm. 1 gives a (1 + ǫ)-approximation algorithm taking time
O(N log(m)/ǫ2) and a parallel algorithm doing work O

(
N logm log

(
n log(m)/ǫ

)
/ǫ2

)
in polylog

time, O
(
logN log2 m log

(
n log(m)/ǫ

)
/ǫ4

)
. For fractional facility location, Thm. 2 gives a (1+ǫ)-

approximation algorithm running in time O(N log(m)/ǫ2) and a parallel algorithm doing work
O(N logN log(m)/ǫ2), in polylog time, O(logN log2(m)/ǫ4). For facility location, the input
size N is the number of eligible (client, facility) pairs; there are m clients and n facilities.

Definitions. A mixed packing/covering linear program (LP) is of the form “find x ∈ R
n
+ such

that Cx ≥ c and Px ≤ p”1 where C and P are non-negative. A (1 + ǫ)-approximate solution is
an x such that Cx ≥ c and Px ≤ (1 + ǫ)p. Here are some special cases: a (non-negative) linear
system is of the form “find x ∈ R

n
+ such that Ax = b”; pure packing/covering lp’s are primal and

duallps of the form max{c · x : x ∈ R
n
+, Ax ≤ b} and min{b · y : y ∈ R

m
+ , ATy ≥ c}; covering with

box constraints is of the form min{c ·x : x ∈ R
n
+, Ax ≥ b, x ≤ u}. Above, A must be non-negative.

For facility location (Section 4), a (1+ǫ)-approximate solution is one of cost at most 1+ǫ times
minimum. (The lp is not a mixed packing/covering lp. It has two standard reformulations as a
set-cover lp, but both increase lp size super-linearly, so don’t yield nearly linear-time algorithms
by direct reduction to covering. See appendix Section 5.3 and [15], [17, §6.2].)

Techniques. The algorithms are Lagrangian-relaxation algorithms. Roughly, one starts with
an all-zero (or small) vector x, then repeatedly increments x by an increment vector δ. (The
direction of δ is guided by the gradient of a scalar-valued penalty function φ(x); the size ensures
x+δ is within a trust region around x, so that δ·∇φ(x) = (1+O(ǫ))(φ(x+δ)−φ(x)).) The penalty
function φ combines the constraints into a smooth scalar-valued function of the current solution
x. Ours for mixed packing/covering is roughly φ(x) ≈ log

(∑
i (1 + ǫ)Pix ×

∑
i (1− ǫ)Cix

)
.

For mixed packing/covering, [28] gives an algorithm with time Õ(md/ǫ2) and a parallel algo-
rithm with work Õ(md/ǫ2), where d ≤ m is the maximum number of constraints that any variable
appears in. (Note md is not generally close to linear.) [28] uses ideas from works on pure pack-
ing/covering: round-robin consideration of variables [9, 10], non-uniform increments [11, 12], and
incrementing multiple variables at once [21]. For the special case of pure packing/covering, [18]
is the first to achieve nearly linear time, Õ((n +m)/ǫ2 +N). That algorithm randomly couples
primal and dual algorithms (an idea from [14]), and uses a random sampling trick to reduce the

1[28, Lemma 8], reduces the more general min{λ : ∃x ∈ R
n
+ : Cx ≥ x;Px ≤ λp} to a small number of these.

intermediate calculations. The algorithms in this paper incorporate and adapt all the above ideas
except coupling, improving (for the first time since 2001) the bounds from [28].

Other related work. Lagrangian-relaxation algorithms have a large literature [2, 5, 25].
Generally, they maintain sparsity easily (similar to iterative solvers) and are numerically stable.

By allowing 1/ǫ2 dependence on ǫ, the algorithms here achieve near-optimal dependence on
the other parameters. Recent sequential algorithms building on Nesterov ([22]) reduce the depen-
dence to 1/ǫ: for mixed packing/covering, [6, Thm. 12] achieves Õ

(
n2.5K1.5

p max(Kp,Kc)
0.5 / ǫ

)

time, where Kp and Kc are, respectively, the maximum number of non-zeros in any packing or

covering constraint; [8, Thm’s 3,4,6] achieves time Õ
(
m1.5n1.5/ǫ

)
for facility location, and similar

results for pure packing and set cover. So far, the reduced dependence on ǫ always comes at
the expense of polynomial (super-linear) dependence on other parameters, so is asymptotically
slower unless 1/ǫ is growing polynomially with N .

For the special case of pure packing/covering, a recent parallel algorithm [1] achieves near-
linear work O(N log2(N)/ǫ3), and time O(log2(N)/ǫ3), breaking the 1/ǫ4 time barrier for polylog-
time parallel algorithms. The algorithm does not apply to mixed packing/covering.

Solving linear systems (“find x such that Ax = b”) is a fundamental algorithmic problem.
The algorithms here find an approximate solution in nearly linear time (or in parallel doing near-
linear-work) for the special case when A and the solution x are non-negative (e.g., for computer
tomography [4, 28]). Another important special case is when A is a graph Laplacian [13, 16, 23,
24]. (Note that graph Laplacians are not non-negative, so the form of approximation differs.)
Those solvers are a basic building block in many settings, one celebrated recent example being
the nearly linear-time approximation algorithm for maximum flow ([7] and surveys [20, 26]).

Online mixed packing/covering was recently shown to have polylog-competitive algorithms [3].

Future work. For pure packing/covering, [18, 19] achieves time O((n +m) log(N)/ǫ2 + N),
shifting the 1/ǫ2 factor to a lower-order term for dense instances. Is this possible for mixed
packing/covering or facility location? So far the primal/dual coupling used in [18, 19] eludes
efficient extension to mixed packing/covering.

2 Mixed Packing and Covering

Theorem 1. For mixed/packing covering, there are (1 + ǫ)-approximation algorithms running
(i) in time O(N log(m)/ǫ2),
(ii) in parallel time O(logN log2 m log(n log(m)/ǫ)/ǫ4), doing work O(N log(n log(m)/ǫ) log(m)/ǫ2).

The rest of this section proves Thm. 1. The starting point is Alg. 1 (above), which is essentially
a convenient reformulation of the generic “algorithm with phases” in [28, Fig. 2]. For part (i),
we’ll describe how to implement it to run faster by only estimating the intermediate quantities of
interest and updating the estimates periodically. We’ll need the following properties (essentially
from [28]):

Lemma 1. Given any feasible mixed packing/covering instance (P,C), Alg. 1
(i) returns a (1 +O(ǫ))-approximate solution (i.e., x such that Cx ≥ 1 and Px ≤ 1 +O(ǫ)),
(ii) scales λ0 (lines 12–13) at most O(U) times, where U = O(log(m)/ǫ2 +maxi Pix

0/ǫ), and
(iii) increments x (lines 5–11) at most O(mU) times.

See the appendix for a proof, which follows the proofs of Lemmas 1–5 of [28]. After initial-
ization, Alg. 1 simply repeats one of two operations: (a) incrementing the current solution x by

2

Algorithm 1 Generic approximation algorithm for mixed packing/covering lps

1 function Packing-Covering(matrices C, P ; initial solution x = x0 ∈ R
n
+, ǫ ∈ (0, 1/10))

2 Define: U = (maxi Pix
0 + lnm)/ǫ2

pi(x) = (1 + ǫ)Pix ci(x) = (1− ǫ)Cix if Ci x ≤ U , else ci(x) = 0

|p(x)| = |p(x)|1 |c(x)| = |c(x)|1 =
∑

i ci(x)

λ(x, j) = P T

j p(x)/CT

j c(x) λ∗(x) = minj∈[n] λ(x, j).

3 Initialize λ0 ← |p(x)|/|c(x)|.
4 Repeatedly do either of the following two operations whose precondition is met:
5 operation (a): increment x ⊲ precondition: λ∗(x) ≤ (1 + 4ǫ)λ0

6 Choose δ ∈ R
n
+ such that

7 (i) ∀j ∈ [n], if δj > 0 then λ(x, j) ≤ (1 + 4ǫ)λ0, and
8 (ii) max{maxi Pi δ,maxi:Cix≤U Ci δ} is in [1/2, 1]
9 (the maximum increase in any Pix or active Cix is between 1/2 and 1).

10 Let x← x+ δ.
11 If miniCix ≥ U then return x/U .

12 operation (b): scale λ0 ⊲ precondition: λ∗(x) ≥ (1 + ǫ)λ0

13 Let λ0 ← (1 + ǫ)λ0.

some vector δ, or (b) scaling λ0 by 1 + ǫ. In each iteration, it can do either operation whose
precondition is met, and when incrementing x there are many valid ways to choose δ.

2.1 Proof of part (i), sequential algorithm

Alg. 2, which we use to prove part (i) of Thm. 1, repeats these two operations in a particular way.
To reduce the run time to nearly linear, instead of computing Px, Cx, p(x) and c(x) exactly as
it proceeds, Alg. 2 maintains estimates: P̂ , Ĉ, p̂, and ĉ. To prove correctness, we show that the
estimates suffice to ensure a correct implementation of Alg. 1, which is correct by Lemma 1 (i).

Lemma 2. Given any feasible packing/covering instance (P,C), provided the updates in lines 12–
13 maintain Invariant (1):
(i) Each operation (a) or (b) done by Alg. 2 is a valid operation (a) or (b) of Alg. 1, so
(ii) Alg. 2 returns a (1 +O(ǫ))-approximate solution.

The proof is in the appendix. The proof follows [28], but adds the idea from [18, 19] of
maintaining estimates by sampling. (Here we maintain the estimates differently, though, using
deterministic, periodic sampling as detailed in the next proof.)

Lemma 3. Alg. 2 can do the updates in lines 11–12 so as to maintain Invariant (1) and take
total time O(N log(m)/ǫ2).

Proof. The algorithm maintains the following global data:

• the current solution x, and vectors P̂ , Ĉ, p̂ and ĉ satisfying Invariant (1);

• for each j, column maxima: maxi Pij and max{Cij : Cix ≤ U}.

Initializing these items takes O(N) (linear) time, with the exception of the column maxima.
To initialize and maintain the maxima, the algorithm presorts the entries within each column of

3

Algorithm 2 Sequential implementation of Alg. 1 for mixed packing/covering lps

1 function Sequential-Packing-Covering(P,C, ǫ)
2 Initialize xj ← 0 for j ∈ [n], λ0 ← |p(x)|/|c(x)| = mp/mc, and U = ln(m)/ǫ2.

3 Maintain vectors P̂ , Ĉ, p̂, and ĉ, to satisfy invariant

For all i :
P̂i ∈ (Pi x− 1, Pi x] p̂i = (1 + ǫ)P̂i ,

Ĉi ∈ (Ci x− 1, Ci x] ĉi = (1− ǫ)Ĉi if Ĉi ≤ U, else ĉi = 0.
(1)

4

5 repeat
6 for each j ∈ [n] do ⊲ do a run for xj
7 Compute values of P T

j p̂ and CT

j ĉ from p̂ and ĉ. Define λ̂j = P T

j p̂ /CT

j ĉ.

8 while λ̂j ≤ (1 + ǫ)2λ0/(1 − ǫ) do
9 operation (a): increment xj ⊲ assertion: λ∗(x) ≤ (1 + 4ǫ)λ0

10 Let xj ← xj + z, choosing z so max{maxi Pij z,maxi:Cix≤U Cij z} = 1/2.
11 As described in text, to maintain Invariant (1):
12 For selected i with Pij 6= 0, update P̂i and p̂i. Update P T

j p̂ accordingly.

13 For selected i with Cij 6= 0, update Ĉi and ĉi. Update CT

j ĉ accordingly.

14 If mini Ĉi ≥ U then return x/U ⊲ finished

15 operation (b): scale λ0 ⊲ assertion: λ∗(x) ≥ (1 + ǫ)λ0

16 Let λ0 ← (1 + ǫ)λ0.

P and C, in total time O(N logm), then, every time some covering constraint Cix ≥ U becomes
satisfied, updates the maxima of the columns j with Cij 6= 0. (The total time for these updates
is linear, as each can be charged to a non-zero Cij.)

To maintain Invariant (1), the algorithm will actually guarantee something stronger: outside
the while loop, each estimate P̂i and Ĉi will be exactly accurate (that is, P̂i = Pix and Ĉi = Cix
for all i). Inside the while loop, during a run of increments for a particular xj , for each i, only

the contributions of Pijxj to Pix (for the current j) will be underestimated in P̂i. Likewise, only

the contributions of Cijxj to Cix will be underestimated in Ĉi. In line 12, the algorithm will

update those P̂i and Ĉi for which the under-estimation is in danger of exceeding 1, as follows.

Maintaining the estimates using periodic sampling. Define the top of any number y > 0
to be the smallest power of 2 greater than or equal to y. In a preprocessing step, within each
column CT

j and P T

j separately, partition the non-zero entries Cij and Pij into equivalence classes
according to their tops, and order the groups by decreasing top. (Use the presorted entries within
each column to do this in O(N) total time.)

Call a consecutive sequence of increments to xj (done within a single iteration of the for loop
for j) a run for xj . During a run for xj, say that a group G in P T

j with top 2t is eligible for
update if the increase δG in xj since the last update of group G during the run (or, if none, the
start of the run) is at least 1/2t+1.

Implement line 12 as follows. Starting with the group G in P T

j with largest top, Check the

group to see if it’s eligible for update (δG ≥ 1/2t+1). If it is, then, for each i in the group G,
increase P̂i to Pix in constant time by adding PijδG to P̂i. Update each scalar dependent of P̂i

(p̂i, P
T

j p̂, λ̂j). Then, continue with the next group in P T

j (the one with next smaller top). Stop
processing the groups in P T

j with the first group that is not eligible for update. — don’t process
any subsequent groups with smaller tops, regardless of eligibility.

Implement line 13 for Ĉ and its dependents likewise. (When updating some Ĉi, check whether

4

Ĉi ≥ U , and if so, delete row i from C and associated data structures.2 When the last row of C
is deleted, stop and return x/U (line 14).)

Finally, at the end of the run for xj , to maintain the invariant that all estimates are exact
outside of the while loop, do the following. For each group G in P T

j , for each i in G, update

P̂i to the exact value of Pix by increasing P̂i by PijδG (for δG defined above), and update p̂i
accordingly. Likewise, update Ĉi (and its dependent ĉi) for every i with Cij 6= 0 to its exact
value.

Correctness of periodic sampling. To show Invariant (1) holds during a run, we prove
that, if a given group G with top 2t is not updated after a given increment of xj, then δG ≤ 1/2t.

(Invariant (1) follows, because, for i ∈ G, the increase PijδG in Pix since the last update of P̂i is

less than 2t/2t = 1; similarly, the increase CijδG in Cix since the last update of Ĉi is less than
1.)

Suppose for contradiction that the claim fails. Consider the first increment of xj for which
it fails, and the group G with largest top 2t for which δG > 1/2t after that increment. Group
G cannot be the group with maximum top in its column, because the algorithm considered that
group after the increment. Let G′ be the group with next larger top 2t

′

> 2t. G′ was not updated
after the increment, because if it had been G would have been considered and updated. Let xj
denote the current value of xj , and let x′j < xj denote the value at the most recent update of G′.

When group G′ was last updated, group G was considered but not updated (for, if G had
been updated then, we would now have δG = δG′ ≤ 1/2t

′

< 1/2t). Thus, letting x′′j be the value

of xj at the most recent update of G, we have x′j −x′′j < 1/2t+1. Since group G′ was not updated

after the current increment, we have (by the choice of G) that xj − x′j = δG′ ≤ 1/2t
′

≤ 1/2t+1.

Summing gives xj − x′′j < 2/2t+1 = 1/2t, violating the supposition δG > 1/2t.

Time. At the start of each run for a given xj , the time in line 7 is proportional to the number of
non-zeroes in the jth columns of P and C, as is the time it spends at the end of the run updating
all P̂i (for Pij 6= 0) and Ĉi (for Cij 6= 0). Thus, the cumulative time spent on these actions during
any single iteration of the repeat loop is O(N). By Lemma 1 (ii), Alg. 2 does O(U) iterations
of its repeat loop, so the total time for the actions outside of increments is O(NU), as desired.

Each increment to some xj takes time proportional to the number of updates made to P̂i’s and

Ĉi’s. An update to P̂i in group G with top 2t increases P̂i by PijδG ≥ Pij/2
t+1 > 2t−1/2t+1 = 1/4.

Throughout, P̂i does not exceed (1 + O(ǫ))U , so P̂i is updated O(U) times during increments.
Likewise (using that Ĉi is updated only while Ĉi ≤ U), each Ĉi is updated O(U) times during
increments. There are m P̂i’s and Ĉi’s, so there are O(mU) = O(NU) such updates.

2.2 Proof of part (ii), parallel algorithm

Next we prove part (ii) of Thm. 1, using Alg. 3. By careful inspection, Alg. 3 just repeats the two
operations of Alg. 1 (increment x or scale λ0), so is correct by Lemma 1 (i). To finish, we detail
how to implement the steps so a careful accounting yields the desired time and work bounds.

Call each iteration of the repeat loop a phase. Each phase scales λ0, so by Lemma 1 (ii),
there are O(U) phases. By inspection, maxi Pix

0 ≤ 1, so U = O(log(m)/ǫ2). Within any given
phase, for the first increment, compute all quantities directly in O(logN) time and O(N) total

2The condition “Ĉi ≥ U” differs from Cix ≥ U in Alg. 1. We note without proof that this doesn’t affect
correctness.

5

Algorithm 3 Parallel implementation of Alg. 1 for mixed packing /covering lps

1 function Parallel-Packing-Covering(P,C, ǫ)
2 Initialize xj ← n−1/maxi Pij for j ∈ [n], λ0 ← |p(x)|/|c(x)| = mp/mc.
3 Define U , Pix, Cix, pi(x), ci(x), λ(x, j), etc. per Alg. 1.
4 repeat
5 while λ∗(x) ≤ (1 + ǫ)λ0 do
6 operation (a): increment x ⊲ assertion: λ∗(x) ≤ (1 + 4ǫ)λ0

7 Define J = {j ∈ [n] : λ(x, j) ≤ (1 + ǫ)λ0}, and, for j ∈ J ,
Ipj = {i : Pij 6= 0} and Icj = {i : Cij 6= 0 and Cix ≤ U}.

8 For j ∈ J , let δj = z xj (and, implicitly, δj = 0 for j 6∈ J),
9 choosing z such that max{maxi Pi δ,maxi:Cix≤U Ci δ} = 1.

10 For j ∈ J , let xj ← xj + δj .
11 For i ∈

⋃
j∈J I

p
j , update Pix and pi(x). For i ∈

⋃
j∈J I

c
j , update Cix and ci(x).

12 For j ∈ J , update CT

j c(x), P
T

j p(x), and λ(x, j).
13 If mini Cix ≥ U then return x/U . ⊲ finished

14 operation (b): scale λ0 ⊲ assertion: λ∗(x) ≥ (1 + ǫ)λ0

15 Let λ0 ← (1 + ǫ)λ0.

work. In each subsequent increment within the phase, update all quantities incrementally, in
time O(logN) and doing total work linear in the sizes of the sets Ep = {(i, j) : j ∈ J, i ∈ Ipj } and
Ec = {(i, j) : j ∈ J, i ∈ Icj} of active edges.

(For example: update each Pix by noting that the increment increases Pix by ∆p
i =

∑
j:i∈Ip

j
Pijδj ;

update P T

j p(x) by noting that the increment increases it by
∑

i∈Ip
j
Pij∆

p
i . Update J by noting

that λ(x, j) only increases within the phase, so J only shrinks, so it suffices to delete a given j
from J in the first increment when λ(x, j) exceeds (1 + ǫ)λ0.)

Bounding the work and time. In each increment, if a given j is in J , then the increment
increases xj. When that happens the parameter z is at least Θ(1/U) (using Pix = O(U) and
Cix = O(U)) so xj increases by at least a factor of 1 + Θ(1/U). The value of xj is initially at
least n−1/maxi Pij and finally O(U/maxi Pij). It follows that j is in the set J during at most
O(U log(nU)) increments. Thus, for any given non-zero Pij , the pair (i, j) is in Ep in at most
O(U log(nU)) increments. Likewise, for any given non-zero Cij , the pair (i, j) is in Ec in at most
O(U log(nU)) increments. Hence, the total work for Alg. 3 is O(NU log(nU)), as desired.

To bound the total time, note that, within each of the O(U) phases, some j remains in J
throughout the phase. As noted above, no j is in J for more than O(U log(nU)) increments.
Hence, each phase has O(U log(nU)) increments. To finish, recall that each increment takes
O(logN) time. This concludes the proof of Thm. 1.

3 Pure Covering

This section gives Alg’s 4 and 5 for covering, and their performance guarantees, for use in the
next section. The proofs (in the appendix) are similar to those of Lemmas 1 and 2.

Lemma 4. Alg. 4 returns a solution x such that w · x ≤ (1 +O(ǫ))opt(A,w) +w · x0, where x0

is the initial solution given to the algorithm.

Lemma 5. (i) Alg. 5 is a specialization of Alg. 4 and (ii) scales λ0 O(U) = O(log(m)/ǫ2) times.

6

Algorithm 4 Generic approximation algorithm for covering lps

1 function Covering(matrix A, cost w, initial solution x = x0 ∈ R
n
+, ǫ ∈ (0, 1/10))

2 Define U = ln(m)/ǫ2, where m is the number of constraints,

ai(x) = (1− ǫ)Aix if Ai x ≤ U , else ai(x) = 0,

|a(x)| =
∑

i ai(x),

λ(x, j) = wj/(A
T

j a(x)) (AT

j is column j of A).

3 while mini Aix ≤ U do
4 Choose vector δ ∈ R

n
+ such that

5 (i) ∀j ∈ [n] if δj > 0 then λ(x, j) ≤ (1 +O(ǫ))opt(A,w)/|a(x)|, and
6 (ii) max{Aiδ : i ∈ [m], Aix ≤ U} = 1.
7 Let x← x+ δ.

8 return x/U

Algorithm 5 Sequential implementation of Alg. 4

1 function Sequential-Covering(A, w, ǫ)
2 Define U, ai, λ(x, j), etc. as in Alg. 4 and λ∗(x) = minj λ(x, j).
3 Initialize xj ← 0 for j ∈ [n] and λ0 ← maximinj∈[n]wj/(Aij |a(x)|).
4 Repeatedly do one of the following two operations whose precondition is met:
5 operation (a): increment x ⊲ precondition: λ∗(x) ≤ (1 + 4ǫ)λ0

6 Choose j ∈ [n] such that λ(x, j) ≤ (1 + 4ǫ)λ0.
7 Let xj ← xj +min{1/Aij : Aix ≤ U}.
8 if mini Aix ≥ U , then return x/U .

9 operation (b): scale λ0 ⊲ precondition: λ∗(x) ≥ (1 + ǫ)λ0

10 Let λ0 ← (1 + ǫ)λ0.

4 Facility Location

The facility location lp. Given a set C of m customers, a set F of n facilities, an opening cost
fj ≥ 0 for each facility j, and a cost cij ≥ 0 for assigning customer i to facility j, the standard
facility-location linear program is

minimizex,y cost(x, y) =
∑

j fjyj +
∑

ij cij xij

subject to
∑

j xij ≥ 1 for i ∈ C, (2)

yj ≥ xij ≥ 0 for i ∈ C, j ∈ F.

For notational convenience, assume cij =∞ if customer i may not be assigned to facility j. The
input size is N = {(i, j) : cij <∞}. A (1+ ǫ)-approximate solution is a feasible pair (x, y) whose
cost is at most 1 + ǫ times minimum.

Theorem 2. For facility location lps, there are (1 + ǫ)-approximation algorithms running
(i) in time O(N log(m)/ǫ2), and
(ii) in parallel time O(log2(m) log(N/ǫ) log(N)/ǫ4), doing work O(N log(N/ǫ) log(m)/ǫ2).

Reducing to Set Cover. There are two standard reductions of facility location to set cover,
both increasing the size of the lp super-linearly (see appendix Section 5.3). Our algorithms will

7

Algorithm 6 Sequential (1 + ǫ)-approximation algorithm for facility-location lps

1 function Sequential-Facility-Location(facilities F , customers C, costs f, c, ǫ)

2 Define U = ln(m)/ǫ2,

Aix =
∑

j∈F xij (for i ∈ C),

ai(x) = (1− ǫ)Aix if Aix ≤ U , else ai(x) = 0,

λ(x, j, S) = (fj +
∑

i∈S cij)/
∑

i∈S ai(x) (for j ∈ F , S ⊆ C).

3 Initialize yj, xij ← 0 for j ∈ F, i ∈ C and λ0 ← (maxi∈C minj∈F fj + dij)/|a(x)|.
4 repeat
5 for each j ∈ F do
6 while λ(x, j, Sj) ≤ (1 + ǫ)λ0 where Sj = {i ∈ C : cij < (1 + ǫ)λ0 aj(x)} do
7 operation (a): increment for j ⊲ assert: λ(x, j, Sj) ≤ (1 + 4ǫ)λ0

8 Let yj ← yj + 1, and, for i ∈ Sj, let xij ← xij + 1.
9 If mini∈C Aix ≥ U , then return (x/U, y/U).

10 operation (b): scale λ0 ⊲ assert: minj,S λ(x, j, S) ≥ (1 + ǫ)λ0

11 Let λ0 ← (1 + ǫ)λ0.

efficiently emulate Alg’s 4 and 5 on the set-cover lp produced by Hochbaum’s reduction, without
explicitly building the set-cover lp. Given a facility-location instance (F,C, f, c), the reduction
gives the following lp (A,w). For each facility j ∈ F and subset S ⊆ C of customers, there is a
variable x′j′ with cost wj′ = fj +

∑
i∈S cij , where j′ = j′(j, S) is unique to the pair (j, S). For

each customer i ∈ C, there is a constraint Aix ≥ 1, where Aij′ is 1 if i ∈ S and 0 otherwise
(where j′ = j′(j, S)). The resulting lp is min{w · x′ : x′ ∈ R

ℓ
+, Ax

′ ≥ 1}, where ℓ ≈ m2n.
This lp and the facility-location lp are equivalent: each feasible solution x′ to the set-

cover lp yields a feasible solution (x, y) of the facility-location lp of the same or lesser cost
(xij =

∑
S∋i x

′
j′(j,S) and yj = maxi xij), and the lps have the same optimal cost.

Sequential algorithm. Alg. 6 is our sequential algorithm. To prove correctness, we show that
it is a valid specialization of Alg. 5 as run on the set-cover lp given by the reduction. During the
course of Alg. 6, given the current (x, y) and λ0, for any given facility j ∈ F , the following lemma
justifies restricting attention to a single canonical subset Sj = Sj(λ0, x) of “nearby” customers.

Lemma 6. Consider any x, λ0, and i ∈ F during the execution of Alg. 6. Let λ(x, j, S) be
as defined there and λ′

0 = (1 + ǫ)λ0. Then minS⊆C λ(x, j, S) ≤ λ′
0 iff λ(x, j, Sj) ≤ λ′

0 where
Sj = {i ∈ C : cij < λ′

0 ai(x)}.

Proof. λ(x, j, S) ≤ λ′
0 iff fj +

∑
i∈S(cij −λ′

0ai(x)) ≤ 0, so S = Sj is the best set for a given j.

Lemma 7. (i) Alg. 6 is a specialization of Alg. 4 on the set-cover lp.
(ii) Alg. 6 can be implemented to run in time O(N log(m)/ǫ2).

Proof. (i) Based on the reduction, doing an increment in Alg. 5 corresponds to choosing a facility
j ∈ F and set S ⊆ C, then incrementing yj and xij for i ∈ S; the precondition for doing the
increment (in Alg. 5) translates to λ(x, j, S) ≤ (1 + 4ǫ)λ0. When Alg. 6 does an increment for
(j, Sj), this precondition is met because λ(x, j, Sj) ≤ (1 + ǫ)λ0.

When Alg. 6 scales λ0, by inspection, Alg. 6 guarantees λ(x, j, Sj) ≥ (1 + ǫ)λ0 for all j ∈ F .
By Lemma 6 this implies λ(x, j, S) ≥ (1+ ǫ)λ0 for all S ⊆ C, meeting the precondition in Alg. 5.

8

Algorithm 7 Parallel (1 + ǫ)-approximation algorithm for facility-location lps

1 function Parallel-Facility-Location(facilities F , customers C, costs f, c)
2 Define U , Aix, ai(x), etc. as in Alg. 6, and ℓ = maxi∈C minj∈F fj + cij .
3 Initialize xij ← ǫℓ/ (fj + cij)|F ||C| for j ∈ F, i ∈ C, and yj ←

∑
i∈C xij for j ∈ F .

4 Initialize λ0 ← ℓ/|a(x)|.
5 repeat
6 operation (b): scale λ0

7 Let λ0 ← (1 + ǫ)λ0. ⊲ assertion: minj,S λ(x, j, S) ≥ (1 + ǫ)λ0

8 Let x← top-up(x) (per Lemma 8). Guarantees ∀i, j. cij < λ0 ai(x) only if xij = yj.
9 repeat

10 operation (a): increment x ⊲ assertion: minj λ(x, j, Sj) ≤ (1 + 4ǫ)λ0

11 Define Sj = {i ∈ C : cij < λ0 ai(x)} and J = {j ∈ F : λ(x, j, Sj) ≤ λ0}.
12 For each j ∈ J , increase yj by z yj , and increase xij by z yj for i ∈ Sj ,
13 choosing z s.t. zmaxi∈C

∑
j∈J :i∈Sj

yj = 1 (the max. increase in any Aix is 1).

14 if mini∈C Aix ≥ U then return x/U .

15 until J = ∅

(ii) To implement the algorithm, maintain x, y, Aix, and ai(x) for each i ∈ C. Within each
iteration of the for loop for a given j ∈ F , call the sequence of increments done in the while
loop a run for j. To do the first increment of each run, compute Sj and λ(x, j, Sj) directly
(from scratch). Then, in each subsequent increment in the run, update the relevant quantities
incrementally: e.g., after doing an increment for (j, Sj), update Aix and ai(x) (for i ∈ Sj with
Aix ≤ U) by noting that the increment increases Aix by 1 and decreases ai(x) by a factor of
1− ǫ; delete from Sj any i’s that cease to satisfy cij < λ0ai(x).

The time for the run for j is proportional to (A) |{i ∈ C : cij <∞}| (the number of possible
customers that j might serve), plus (B) the number of times yj and any xij ’s increase by 1
during the phase. By Thm. 7 (ii), there are O(U) iterations of the outer repeat loop, so the
total time for (A) is O(UN). Since each yi and each xij never exceeds U , the time for (B) is also
O(UN).

Parallel facility location. Lemma 7 proves Thm. 2 part (i). Next we prove part (ii).

Lemma 8. (i) Algorithm 7 is a (1 +O(ǫ))-approximation algorithm for facility-location lps.
(ii) Algorithm 7 has a parallel implementation running in time O(log2(m) log(N/ǫ) log(N)/ǫ4)
and doing work O(N log(N/ǫ) log(m)/ǫ2).

Proof. In line 8, top-up(x) does the following for each customer i ∈ C independently. Consider
the facilities j ∈ F such that cij < λ0ai(x) and xij < yj, in order of increasing cij . When consid-

ering facility j, increase xij just until either xij = yj or cij = λ0ai(x) (recall ai(x) = (1− ǫ)Aix).
(Do this in parallel in O(logN) time and O(N) work as follows. For each customer i, assume its
facilities are presorted by increasing cij . Raise each xij by δij , computed as follows. Compute
the prefix sums dj =

∑
j′�i j

yj−xij where j
′ ≺i j if j′ is before j in the ordering. Check for each

j whether cij < λ0(1− ǫ)Aix+dj . If so, then let δij = yj − xij; otherwise, if cij < λ0(1− ǫ)Aix+dj′

where j′ is the facility preceding j, then choose δij to make cij = λ0(1− ǫ)Aix+dj′+δij ; otherwise,
take δij = 0.)

9

(i) We prove that, except for the call to top-up in line. 8, Alg. 7 is a specialization of Alg. 4 on
the cover lp. To verify, note that ℓ ≤ opt(F,C, f, c) ≤ |C|ℓ, because the minimum cost to serve
any single customer j is ℓ = minj∈F fj + cij , and each customer can be served at cost at most ℓ.
Then (following the proof of correctness of Alg’s 5 and 6) Alg. 7 maintains the invariant λ0 ≤
(1 + ǫ)opt(F,C, f, c)/|a(x)|. (Indeed, initially λ0 = ℓ/|a(x)| ≤ opt(F,C, f, c)/|a(x)|, because
ℓ ≤ opt(F,C, f, c). Increasing xij’s and yj’s only decreases |a(x)|, so preserves the invariant.
When Alg. 7 increases λ0 to (1 + ǫ)λ0, by inspection minj∈F λ(x, j, Sj) > λ0. By Lemma 6,
this ensures minj∈F,S⊆C λ(x, j, S) > λ0, which by Lemma 10 implies λ0 < opt(F,C, f, c)/|a(x)|,
so the invariant is preserved.) Since λ0 ≤ (1 + ǫ)opt(F,C, f, c)/|a(x)|, by inspection of the
definition of J in Alg. 7, the increment to x and y corresponds to a valid increment in Alg. 4.
So, except for the call to top-up in line. 8, Alg. 7 is an implementation of algorithm Alg. 4.

Regarding the call to top-up, we observe that it preserves Invariant 4 in the proof of cor-
rectness of Alg. 4. (To verify this, consider any xij with xij < yj and cij < λ0ai(x). Increasing
xij increases c · x/opt at rate cij/opt which, by the assumption on cij and the invariant on
λ0, is at most (1 + ǫ)ai(x)/|a(x)|. On the other hand, increasing xij increases lmin a(x) at rate
at least (1 − O(ǫ))ai(x)/|a(x)| (see e.g. [27]). Hence, invariant 4 is preserved.) It follows that
the performance guarantee from Lemma 4 (i) holds here. Since ℓ ≤ opt(F,C, f, c), the initial
solution (x0, y0) costs at most ǫopt(F,C, f, c), so, by that performance guarantee, Alg. 7 returns
a cover of cost (1 +O(ǫ))opt(F,C, f, c). This shows Lemma 8 part (i).

(ii) Call each iteration of the outer loop a phase. By Lemma 7 (ii), there are O(U) phases.
Consider any phase. In the first iteration of the inner loop, compute all quantities J , Aix, and
ai(x) for each i ∈ C, λ(x, j, Sj) etc. directly, from scratch, in O(N) work and O(logN) time.
In each subsequent iteration within the phase, update each changing quantity incrementally
(similarly to Alg. 3), doing work proportional to

∑
i∈F |Sj|, the number of pairs (i, j) where

i ∈ Sj .
At the start of the phase, the call to top-up ensures xij = yj if i ∈ Sj. Because each Sj

decreases monotonically during the phase, this property is preserved throughout the phase. In
the choice of z, each sum

∑
j∈J :i∈Sj

yj is therefore equal to
∑

j∈J :i∈Sj
xij, which is less than U

(as ai(x) = 0 if the sum exceeds U). Therefore, z is at least 1/U . Hence, for each i ∈ Sj, the
variable xij increases by at least a 1 + 1/U factor in the iteration. On the other hand, at the
start of the algorithm xij = ǫℓ/ (fi + cij)|F ||C|, while at the end (by the performance guarantee
(i) and ℓ ≤ opt(f, c)), xij ≤ ℓ/(fi + cij). Hence, xij increases by at most a factor of |F ||C|/ǫ
throughout. Hence, the number of iterations in which i occurs in any Sj is O(log1+1/U |F ||C|/ǫ) =
O(U log(|F ||C|/ǫ)) = O(U logmn/ǫ). In each such iteration, i contributes to at most |{j|cij <
∞}| pairs. Hence, the total work is O(NU log(mn/ǫ)).

To bound the time, note that within each of the O(U) phases, there is some pair i′, j′ such that
i′ is in Sj′ in the next-to-last iteration of the phase, and (since the sets J and Sj′ monotonically
decrease during the phase) i′ is in Sj′ in every iteration of the phase. As observed above, i′ occurs
in ∪jSj in at most O(U log(mn/ǫ)) iterations. Hence, the number of iterations of the inner loop
within each phase is O(U log(mn/ǫ)). Since each iteration can be implemented in O(logmn)
time, (ii) follows.

References

[1] Z. Allen-Zhu and L. Orecchia. Using optimization to break the epsilon barrier: A faster and sim-
pler width-independent algorithm for solving positive linear programs in parallel. arXiv preprint
arXiv:1407.1925, 2014.

10

[2] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: A meta-algorithm and
applications. Theory of Computing, 8:121–164, 2012.

[3] Y. Azar, U. Bhaskar, L. Fleischer, and D. Panigrahi. Online mixed packing and covering. In Proceed-
ings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 85–100.
SIAM, 2013.

[4] S. Basu and Y. Bresler. O(N2log2N) filtered backprojection reconstruction algorithm for tomography.
Image Processing, IEEE Transactions on, 9(10):1760–1773, 2000.

[5] D. Bienstock. Potential function methods for approximately solving linear programming problems:
theory and practice. Kluwer Academic Publishers, 2002.

[6] D. Bienstock and G. Iyengar. Approximating fractional packings and coverings in O(1/ǫ) iterations.
SIAM Journal on Computing, 35(4):825–854, 2006.

[7] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng. Electrical flows, Laplacian
systems, and faster approximation of maximum flow in undirected graphs. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 273–282. ACM, 2011.

[8] F. A. Chudak and V. Eleutério. Improved approximation schemes for linear programming relaxations
of combinatorial optimization problems. In Integer Programming and Combinatorial Optimization,
pages 81–96. Springer, 2005.

[9] L. Fleischer. Approximating fractional multicommodity flow independent of the number of commodi-
ties. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, page 24.
IEEE Computer Society, 1999.

[10] L. K. Fleischer. Approximating fractional multicommodity flow independent of the number of com-
modities. SIAM J. Discrete Math., 13(4):505–520, 2000.

[11] N. Garg and J. Koenemann. Faster and Simpler Algorithms for Multicommodity Flow and other
Fractional Packing Problems. Proceedings of the 39th Annual Symposium on Foundations of Computer
Science, pages 300–309, 1998.

[12] N. Garg and J. Koenemann. Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. SIAM Journal on Computing, 37(2):630–652, 2007.

[13] M. X. Goemans and J. A. Kelner. The mathematical work of Daniel Spielman. Notices of the AMS,
58(9), 2011.

[14] M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approximation algorithm for
matrix games. Operations Research Letters, 18(2):53–58, 1995.

[15] D. S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical programming, 22(1):148–
162, 1982.

[16] G. Kalai. The work of Daniel A. Spielman. In Proceedings of the International Congress of Mathe-
maticians, pages 101–112, 2010. Hyderabad, India.

[17] A. Kolen and A. Tamir. Covering problems. In R. L. Francis and P. B. Mirchandani, editors,
Discrete Location Theory (chapter 6). Wiley & Sons, Inc, 1990. Series in Discrete Mathematics and
Optimization.

[18] C. Koufogiannakis and N. E. Young. Beating Simplex for fractional packing and covering linear
programs. In Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on,
pages 494–504. IEEE, 2007.

[19] C. Koufogiannakis and N. E. Young. A nearly linear-time PTAS for explicit fractional packing and
covering linear programs. Algorithmica, 70(4):648–674, 2014.

[20] I. Koutis, G. L. Miller, and R. Peng. A fast solver for a class of linear systems. Communications of
the ACM, 55(10):99–107, 2012.

11

[21] M. Luby and N. Nisan. A parallel approximation algorithm for positive linear programming. Pro-
ceedings of the 25th annual ACM symposium on Theory of Computing, pages 448–457, 1993.

[22] Y. Nesterov. Rounding of convex sets and efficient gradient methods for linear programming problems.
Optimisation Methods and Software, 23(1):109–128, 2008.

[23] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph spar-
sification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 81–90. ACM, 2004.

[24] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for preconditioning and solving sym-
metric, diagonally dominant linear systems. arXiv preprint cs/0607105, 2006.

[25] M. J. Todd. The many facets of linear programming. Mathematical Programming, 91(3):417–436,
2002.

[26] N. K. Vishnoi. Lx = b: Laplacian solvers and their algorithmic applications. Foundations and Trends
in Theoretical Computer Science, 8(1-2):1–141, 2012. DOI: 10.1561/0400000054.

[27] N. E. Young. K-medians, facility location, and the Chernoff-Wald bound. In Proceedings of the
eleventh annual ACM-SIAM symposium on Discrete algorithms, pages 86–95. Society for Industrial
and Applied Mathematics, 2000.

[28] N. E. Young. Sequential and parallel algorithms for mixed packing and covering. In Proceedings of
IEEE Symposium on Foundations of Computer Science, pages 538–546, 2001.

5 Appendix

5.1 Mixed packing and covering

Lemma 9. In Alg. 1, if (P,C) is feasible, then, for any x, λ∗(x) ≤ |p(x)|/|c(x)|.

Proof. Let x∗ be a feasible solution. Since x∗ is feasible, it also satisfies (Cx∗) · c(x)/|c(x)| ≥ 1 ≥
(Px∗) · p(x)/|p(x)|, that is, x∗ ·

(
CTc(x)/|c(x)| −P Tp(x)/|p(x)|

)
≥ 0. Hence there exists a j such

that CT

j c(x)/|c(x)| − P T

j p(x)/|p(x)| ≥ 0, which is equivalent to λ(x, j) ≤ |p(x)|/|c(x)|.

Reminder of Lemma 1. Given any feasible instance (P,C), Alg. 1
(i) returns x such that Cx ≥ 1 and Px ≤ 1 +O(ǫ),
(ii) does step (a) at most O(U) times, and
(iii) does step (b) at most O(mU) times, where U = O(log(m)/ǫ2 +maxi Pix

0/ǫ).

Proof. (i) Fix (P,C). First observe that the algorithm maintains the invariant λ0 ≤ |p(x)|/|c(x)|.
The initial choice of λ0 guarantees that the invariant holds initially. By inspection, Line 13 is
executed only when λ∗(x) = minj λ(x, j) ≥ (1 + ǫ)λ0. This and Lemma 9 (λ∗(x) ≤ |p(x)|/|c(x)|)
imply that (1 + ǫ)λ0 ≤ |p(x)|/|c(x)|, so that the invariant is maintained.

Define lmax p(x) = log1+ǫ

∑
i pi(x) and lmin c(x) = log1−ǫ

∑
i ci(x) for p and c as defined in

the algorithm. We show that the algorithm maintains the invariant

(1 +O(ǫ)) lmin c(x) − log1−ǫm ≥ (1−O(ǫ))(lmax p(x)−maxi Pix
0/ǫ− log1+ǫm), (3)

where x0 is the initial solution given to the algorithm. By inspection, the invariant is initially
true. In a given execution of step (ii), let x be as at the start of the step; let index j be the one
chosen for the step. The step increases lmax p(x) by at most (1 + O(ǫ))

∑
j δjPj p(x)/|p(x)|; it

increases lmin c(x) by at least (1 −O(ǫ))
∑

j δjCj c(x)/|c(x)| (see e.g. [27]). Since δj > 0 only if
λ(x, j) ≤ (1+ ǫ)λ0, the first invariant λ0 ≤ |p(x)|/|c(x)| implies that the invariant is maintained.

12

Consider the step when the algorithm returns x/U . Just before the step, at least one i ∈ [m]
had Cix < U , so lmin c(x) < log1−ǫ (1− ǫ)U = U , and by the above invariant maxi Pix ≤
(1 + O(ǫ))U . During the step maxi Pix increases by at most 1 = O(ǫU), so after the step
maxi Pix ≤ (1 +O(ǫ))U still holds. Part (i) follows.

(ii) The algorithm maintains λ0 ≤ |p(x)|/|c(x)|, with equality at the start. Each time λ0 increases,
it does so by a 1 + ǫ factor, but throughout, Pix = O(U) and miniCix = O(U), so |p(x)|/|c(x)|

is always at most m(1 + ǫ)O(U)/(1− ǫ)O(U). Part (ii) follows.

(iii) Each increment either increases some Pix by at least 1/2, or increases some Cix by at least
1/2 where Cix ≤ U . Since Pix = O(U) throughout, part (iii) follows.

Reminder of Lemma 2. Given any feasible packing/covering instance (P,C), provided the
updates in lines 12–13 maintain Invariant (1):
(i) Each operation (a) or (b) done by Alg. 2 is a valid operation (a) or (b) of Alg. 1, so
(ii) Alg. 2 returns a (1 +O(ǫ))-approximate solution.

Proof. (i) Alg. 2 only does increments for a given j when λ̂j ≤ (1 + ǫ)2λ0/(1 − ǫ), which (with

the definition of λ̂j and ǫ ≤ 1/10) ensures λ(x, j) ≤ (1 + 4ǫ)λ0. Likewise, Alg. 2 only scales λ0

when minj λ̂j > (1 + ǫ)2λ0/(1− ǫ), which (with the guarantee) ensures minj λ(x, j) ≥ (1 + ǫ)λ0.
Thus, the precondition of each operation is appropriately met. (Alg. 2’s termination condition is
slightly different than that of Alg. 1, but this does not affect correctness.) This proves (i). Part
(ii) follows from Lemma 1 part (i).

5.2 Covering

Lemma 10. In Alg. 4, for any x, opt(A,w) ≥ |a(x)|λ∗(x), where λ∗(x) = minj∈[n] λ(x, j).

Proof. Let x∗ be a solution of cost w ·x∗ = opt(A,w). Draw a single j ∈ [n] at random from the
distribution x∗/|x∗|. By calculation the expectation of the quantity AT

ja(x)/|a(x)| − wj/(w · x
∗)

is proportional to (Ax∗)Ta(x)/|a(x)|−x∗ ·w/(w ·x∗), which is non-negative (as Ax∗ ≥ 1), so with
positive probability the quantity is non-negative, implying w · x∗ ≥ |a(x)|λ(x, j).

Reminder of Lemma 4. Alg. 4 returns a solution x such that w·x ≤ (1+O(ǫ))opt(A,w)+w·x0,
where x0 is the initial solution given to the algorithm.

Proof. First we observe that the algorithm is well-defined. In each iteration, by definition of
λ∗(x), there exists a j ∈ [n] such that λ(x, j) = λ∗(x). By Lemma 10, for this j, λ(x, j) ≤
opt(A,w)/|a(x)|. So, in each iteration there exists a suitable vector δ ∈ R

n
+. Next we prove the

approximation ratio.
Define lmin a(x) = log1−ǫ |a(x)| for a as defined in the algorithm. We show that the algorithm

maintains the invariant

(1 +O(ǫ))(lmin a(x)− log1−ǫm) ≥
w · x− w · x0

opt(A,w)
. (4)

The invariant is initially true by inspection. In a given iteration of the algorithm, let x be
as at the start of the iteration, let vector δ be the one chosen in that iteration. The it-
eration increases w · x/opt(A,w) by

∑
j δjwj/opt(A,w). It increases lmin a(x) by at least

(1 − O(ǫ))
∑

j δj A
T

ja(x)/|a(x)| (see e.g. [27]). By the choice of δ, the definition of λ∗, and

13

Lemma 10, if δj > 0 then wj/opt(A,w) ≤ (1 + O(ǫ))AT

ja(x)/|a(x)|, so the invariant is main-
tained.

Before the last iteration, at least one i has Aix ≤ U , so lmin cov(x) ≤ log1−ǫ (1− ǫ)U = U .
This and the invariant imply that finally (w ·x−w ·x0)/opt(A,w) ≤ 1+(1+O(ǫ))U +log1−ǫm.
By the choice of U this is (1 +O(ǫ))U .

Reminder of Lemma 7. (i) Alg. 5 is a specialization of Alg. 4 and (ii) scales λ0 O(U) =
O(log(m)/ǫ2) times.

Proof. (i) Observe that the algorithm maintains the invariant λ0 ≤ opt(A,w)/|a(x)|. The
invariant is true for the initial choice of λ0 because the minimum cost to satisfy just a single
constraint Aix ≥ 1 is minj∈[n]wj/Aij . Scaling λ0 only decreases |a(x)|, so maintains the invariant.
increment is done only when (1+ ǫ)λ0 ≤ λ∗(x), which by Lemma 10 is at most opt(A,w)/|a(x)|,
so increment also preserves the invariant. Since the algorithm maintains this invariant, it is a
special case of Alg. 4 with cost(x0) = 0.

(ii) One way to satisfy every constraint Aix ≥ 1 is as follows: for every i, choose j minimizing
wj/Aij then add 1/Aij to xj . The cost of this solution is at most mλ0. Hence, the initial value
of λ0 is at least m−1 opt(A,w)/|a(x)|. At termination (by the invariant from part (i) above) λ0

is at most opt(A,w)/|a(x)|. Also, |a(x)| decreases by at most a factor of m/(1− ǫ)U during the
course of the algorithm, while each scaling of λ0 increases λ0 by a factor of 1 + ǫ. It follows that
the number of scalings is at most log1+ǫm

2/(1 − ǫ)U = O(U).

5.3 Facility location

Hochbaum’s reduction [15]. For every “star” (j, C), where j is a facility and C is a subset
of clients j might serve, create a set Cj containing those clients, whose cost is the cost of opening
facility j and using j to serve the customers in C. There are exponentially many sets.

More efficient reduction [17, §6.2]. For every facility j, create a set Fj with cost equal
to the cost of opening j. For every client i and facility j, create an element (i, j) and a set
Sij = {(i, j)}. For every i, let ≺i order the facilities j by increasing distance from i, breaking
ties arbitrarily, and make Fj be {(i, k) : j ≺i k}. Give Sij cost equal to the distance d(i, j) from
i to j, minus the distance d(i, j′) to i’s next closest facility j′, if any. For intuition, note that
if a set Fj is chosen, then (for any given i) that set covers {(i, k) : j ≺i k}, while i’s remaining
elements can be covered using the sets {Sik : k �i j} at total cost d(i, j). The resulting LP can
have Ω(nm2) non-zeros.

14

	1 Introduction
	2 Mixed Packing and Covering
	2.1 Proof of part (i), sequential algorithm
	2.2 Proof of part (ii), parallel algorithm

	3 Pure Covering
	4 Facility Location
	5 Appendix
	5.1 Mixed packing and covering
	5.2 Covering
	5.3 Facility location

