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The probabilistic method

In order to prove the existence of a combinatorial 
structure with certain properties, we construct an 
appropriate probability space and show that a randomly 
chosen element in the space has the desired properties 
with positive probability.  

- Alon, Spencer, Erdos: “The Probabilistic Method” (1992)

(applications in combinatorics, graph theory, number theory, combinatorial 
geometry, computer science.)



Randomized rounding for approximation algorithms

“For each of the problems we consider, we first show the existence of 
a provably good approximate solution using the probabilistic method 
[1]. [We then] show that the probabilistic existence proof can be 
converted, in a very precise sense, into a deterministic approximation 
algorithm. To this end we use an interesting “method of conditional 
probabilities”... We apply our method to integer programs arising in 
packing, routing, and maximum multicommodity flow...  

The time taken to solve the linear program relaxations of the integer 
programs dominates the net running time theoretically (and, most 
likely, in practice as well).”

-- Raghavan (1988)



set cover problem

sets elements

goal: minimum-size 
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fractional set cover problem

sets elements

goal: minimum-size
fractional 
set cover
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approximation algorithm for set cover

1. Compute optimal fractional set cover x*.

2. Randomly round x* to get collection S of sets.

3. Return S.

randomized rounding scheme

analysis
 With non-zero probability:
   S is a set cover, and
   size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

how?



randomized rounding scheme
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random sampling, T=3
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randomized rounding scheme
1. Compute optimal fractional set cover x*.

2. Compute probability distribution p on sets.

3. Repeat  T = ln(n) size(x*) times:

4.     Choose a random set S according to p.

5. Return chosen sets.

Randomly sample T sets from distribution defined by x*.



Analysis

• Size of S is T (guaranteed).  T = ln(n) size(x*).

• Each iteration, each element covered with probability ≥ 1/size(x*).

• Expected number of elements left uncovered after T rounds:

Therefore, with positive probability, S is a cover

n

[
1− 1

size(x∗)

]T
< n exp(−T/size(x∗))

= 1



method of conditional probabilities
randomized rounding scheme

analysis
 With non-zero probability:
   S is a cover. 
   size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

1. Compute optimal fractional set cover x*.
2. Deterministically round x* to get S.
3. Return S.

deterministic algorithm

analysis
 Always!
   1. S is a cover. 
   2. size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

1.Compute optimal fractional set cover x*.
2.Randomly round x* to get collection S of sets.
3.Return S.

bottleneck



method of conditional probabilities
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replace each random choice w/ deterministic one
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Need to compute conditional expectations

• Let nt be the number of elements not yet covered.

• Expected number of elements left uncovered after T-t more rounds:

Choose each set to minimize this.
Choose each set to minimize nt.

Given the choices made in the first t iterations:

nt

[
1− 1

size(x∗)

]T−t



derandomized algorithm
1. Repeat T times (or until all elements covered):

2.    Choose set to minimize 
  number of elements not yet covered.

3. Return chosen sets.

Choose sets to minimize conditional expectation.

≡  greedy algorithm [ Johnson, Lovász 1974]
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method of conditional probabilities
randomized rounding scheme

analysis
 With non-zero probability:
   S is a cover. 
   size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

deterministic algorithm

analysis
 Always:
   1. S is a cover. 
   2. size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

1.Compute optimal fractional set cover x*.
2.Randomly round x* to get collection S of sets.
3.Return S.

1. Compute optimal fractional set cover x*.
2. Deterministically round x* to get S.
3. Return S.

the big mystery



randomized rounding 
scheme based on 
random sampling

method of conditional probabilities

greedy algorithm



randomized rounding 
scheme based on 
random sampling

method of conditional probabilities
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existence proof

performance guarantee



rounding scheme for fractional set cover
1. Compute optimal fractional set cover x*.

2. Compute probability distribution p on sets.

3. Let  μ = 2ln(n)/ε2.
4. Repeat  T = size(x*)μ times:
5.      Choose a random set S according to p.

6. Let x(S) = (#times S chosen)/μ.
7. Return x.

Randomly sample T sets from distribution defined by x*.
(Expect each element to be covered at least μ times.)
Assign each set s weight x(s) = # times s chosen / μ.
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thm:   With pos. prob. x is a (1-ε)-cover.  

Consider an element e.
 E[# times e covered] ≥ μ.

Pr[# times e covered < (1-ε)μ]  <  1/n   (Chernoff, ’52)

Expected # insufficiently covered elements < 1.

With pos. prob., x covers every e at least 1-ε.

Note:  size(x) = T/μ = size(x*).    (guaranteed)



derandomized algorithm
1. Let  μ = 2ln(n)/ε2.
2. Repeat until every element is covered μ times:
3.  Choose a set S that maximizes

Σe∈S  (1- ε)(#times e covered so far).
4. Let x(S) = (#times S chosen)/μ.
5. Return x.

Choose each set to minimize   Σe (1-ε)(#times e covered so far)
.

Assign each set s weight x(s) = (# times chosen) / μ.

Yields (1-ε)-cover x,  size(x) ≤ size(x*).

At most  T = O(log(n) size(x*)/ε2) iterations.

 from Chernoff



multi-commodity flow

input:  set of paths P in directed graph

maximize Σp∈P f(p) subject to

for each edge e,  Σp∋e f(p) ≤ μ.



rounding scheme for multicommodity flow
1. Compute optimal multicommodity flow f*.

2. Compute probability distribution q on paths.

3. Let  μ = 3ln(n)/ε2.
4. Repeat  T = size(f*)μ times:
5.      Choose a random path p according to q.

6. Let f(p) = (#times p chosen)/μ.
7. Return p.

Randomly sample T paths from distribution defined by f*.
(Expect each edge to be covered at most μ times.)
Assign each path p flow  f(p) = # times p chosen / μ.



derandomized algorithm
1. Let  μ = 3ln(n)/ε2.
2. Repeat until flow on some edge would exceed μ:
3.  Choose a path p that minimizes

Σe∈p  (1+ ε)(#times e covered so far).
4. Let f(p) = (#times p chosen)/μ.
5. Return f.

Yields (1+ε)-feasible flow f,  size(f) ≥ size(f*).

At most  T = O(m log(n) /ε2) iterations.



More...

• Random stopping times

• Probabilistic tools (Chernoff-like bounds)

• packing and covering - linear programs and 
integer linear programs with non-negative 
coefficients (k-medians, facility location)

• parallel algorithms

• beyond packing and covering (frac. Steiner tree)

• convex (non-linear) programs

• dynamic problems

• relations to on-line algorithms, learning theory?


