
Lagrangian Relaxation
via Randomized Rounding,

Introduction

Neal E. Young

UCR, 1/28/04

Lagrangian relaxation algorithms

[1950] von Neumann. Numerical method for determination of the value and the best strategies of a zero-
sum two-person game with large numbers of strategies.

[1950] Brown and von Neumann. Solutions of games by differential equations.

[1952] Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations.

[1958] Ford and Fulkerson. A suggested computation for maximal multicommodity flow.

[1960] Dantzig and Wolfe. Decomposition principle for linear programs.

[1962] Benders. Partitioning procedures for solving mixed-variables programming problems.

[1971] Held and Karp. The traveling salesman problem and minimum spanning trees.

[1977] Khachiyan. Convergence rate of the game processes for solving matrix games.
 ...
[1979] Shapiro. A survey of Lagrangean techniques for discrete optimization.
 Annals of Discrete Mathematics, 5:113--138, 1979.

Lagrangian relaxation algorithms

Shahrokhi and Matula. The maximum concurrent flow problem. JACM, 1990.

Klein, Plotkin, Stein, and Tardos. Faster approximation algorithms for the unit capacity concurrent flow
problem with applications to routing and finding sparse cuts. SICOMP, 1994.

Goldberg. A natural randomization strategy for multicommodity flow and related problems. IPL, 1992.

Awerbuch and Leighton. A simple local-control approximation algorithm for multicommodity flow. FOCS,
1993.

Luby and Nisan. A parallel approximation algorithm for positive linear programming. STOC, 1993.
 --- incrementing multiple variables simultaneously

Awerbuch and Leighton. Improved approximation algorithms for the multi-commodity flow problem and
local competitive routing in dynamic networks. STOC, 1994.

Leighton, Makedon, Plotkin, Stein, Tardos, and Tragoudas. Fast approximation algorithms for multicommodity
flow problems. JCSS, 1995.

Plotkin, Shmoys, and Tardos. Fast approximation algorithms for fractional packing and covering problems.
MOR, 1995.

Radzik. Fast deterministic approximation for the multicommodity flow problem. SODA, 1995.

Lagrangian relaxation algorithms

Grigoriadis and Khachiyan.
 A sublinear-time randomized approximation algorithm for matrix games. OR Research Letters, 1995.
 An exponential-function reduction method for block-angular convex programs. Networks, 1995.

Young. Randomized rounding without solving the linear program. SODA, 1995.

Karger and Plotkin. Adding multiple cost constraints to combinatorial optimization problems, with
applications to multicommodity flows. STOC, 1995.

Grigoriadis and Khachiyan.
 Coordination complexity of parallel price-directive decomposition. MOR, 1996.
 Approximate minimum-cost multicommodity flows in o(knm/ε^2) time. Math. Programming, 1996.

Garg and Konemann. Faster and simpler algorithms for multicommodity flow and other fractional packing
problems. FOCS, 1998. --- variable-size increments

Konemann. Fast Combinatorial Algorithms for Packing and Covering Problems
PhD thesis, Max-Planck-Institute for Informatik, 2000. --- dropping met covering constraints

Fleischer. Approximating fractional multicommodity flow independent of the number of commodities. SIAM J.
Discrete Math, 2000. --- partitioning increments into phases

The probabilistic method

In order to prove the existence of a combinatorial
structure with certain properties, we construct an
appropriate probability space and show that a randomly
chosen element in the space has the desired properties
with positive probability.

- Alon, Spencer, Erdos: “The Probabilistic Method” (1992)

(applications in combinatorics, graph theory, number theory, combinatorial
geometry, computer science.)

Randomized rounding for approximation algorithms

“For each of the problems we consider, we first show the existence of
a provably good approximate solution using the probabilistic method
[1]. [We then] show that the probabilistic existence proof can be
converted, in a very precise sense, into a deterministic approximation
algorithm. To this end we use an interesting “method of conditional
probabilities”... We apply our method to integer programs arising in
packing, routing, and maximum multicommodity flow...

The time taken to solve the linear program relaxations of the integer
programs dominates the net running time theoretically (and, most
likely, in practice as well).”

-- Raghavan (1988)

set cover problem

sets elements

goal: minimum-size
set cover

elementssets

elementssets

set cover
of size 2

fractional set cover problem

sets elements

goal: minimum-size
fractional
set cover

fractional set cover problem

sets elements

0.0

1.0

0.5

0.5

fractional set
cover of size 2.0

fractional set cover problem

sets elements

0.0

1.0

0.5

0.5

fractional set
cover of size 2.0

1.0

1.0

1.5

1.5

1.0

2.0

1.0

coverage

approximation algorithm for set cover

1. Compute optimal fractional set cover x*.

2. Randomly round x* to get collection S of sets.

3. Return S.

randomized rounding scheme

analysis
 With non-zero probability:
 S is a set cover, and
 size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

how?

randomized rounding scheme

sets elements

0.00

0.50

0.25

0.25

step 1
scale fractional
cover by 1/2 to
get probability
distribution p

on sets

step 2
 sample from p

 T times

0.5

0.5

0.75

0.75

0.5

1.0

0.5

goal: convert fractional cover into true cover

probability
of being covered

 by a given sample
at least 1/2

random sampling, T=3

sets
0.00

0.50

0.25

0.25

✓
✓
✓
✓

elements

✓
✓
✓
✓

✓

random ✓
✓
✓
✓

✓

randomized rounding scheme
1. Compute optimal fractional set cover x*.

2. Compute probability distribution p on sets.

3. Repeat T = ln(n) size(x*) times:

4. Choose a random set S according to p.

5. Return chosen sets.

Randomly sample T sets from distribution defined by x*.

Analysis

• Size of S is T (guaranteed). T = ln(n) size(x*).

• Each iteration, each element covered with probability ≥ 1/size(x*).

• Expected number of elements left uncovered after T rounds:

Therefore, with positive probability, S is a cover

n

[
1− 1

size(x∗)

]T
< n exp(−T/size(x∗))

= 1

method of conditional probabilities
randomized rounding scheme

analysis
 With non-zero probability:
 S is a cover.
 size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

1. Compute optimal fractional set cover x*.
2. Deterministically round x* to get S.
3. Return S.

deterministic algorithm

analysis
 Always!
 1. S is a cover.
 2. size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

1.Compute optimal fractional set cover x*.
2.Randomly round x* to get collection S of sets.
3.Return S.

bottleneck

method of conditional probabilities

1.1 0.3

21

3.1

4 1

0.71.7 0.4 1.3

1.3

230 2213 1130 2320 1200 1 230 1100 1230 1100 1201 200 1200 1212 1240 1212

1.1 1.10.41.71.7

0.7

0.97

think of experiment as
random walk starting

here

number of elements left uncovered in each outcome

expected number left
if we were to start here

replace each random choice w/ deterministic one

1.1 0.3

21

3.1

4 1

0.71.7 0.4 1.3

1.3

230 2213 1130 2320 1200 1 230 1100 1230 1100 1201 200 1200 1212 1240 1212

1.1 1.10.41.71.7

0.7

0.97

make each choice deterministically
to keep conditional expectation less than 1

Need to compute conditional expectations

• Let nt be the number of elements not yet covered.

• Expected number of elements left uncovered after T-t more rounds:

Choose each set to minimize this.
Choose each set to minimize nt.

Given the choices made in the first t iterations:

nt

[
1− 1

size(x∗)

]T−t

derandomized algorithm
1. Repeat T times (or until all elements covered):

2. Choose set to minimize
 number of elements not yet covered.

3. Return chosen sets.

Choose sets to minimize conditional expectation.

≡ greedy algorithm [Johnson, Lovász 1974]

greedy algorithm

sets

✓
✓
✓
✓

elements

✓
✓
✓
✓

✓

greedy

method of conditional probabilities
randomized rounding scheme

analysis
 With non-zero probability:
 S is a cover.
 size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

deterministic algorithm

analysis
 Always:
 1. S is a cover.
 2. size(S) ≤ log(n) size(x*) ≤ log(n) size(OPT).

1.Compute optimal fractional set cover x*.
2.Randomly round x* to get collection S of sets.
3.Return S.

1. Compute optimal fractional set cover x*.
2. Deterministically round x* to get S.
3. Return S.

the big mystery

randomized rounding
scheme based on
random sampling

method of conditional probabilities

greedy algorithm

randomized rounding
scheme based on
random sampling

method of conditional probabilities

greedy algorithm

existence proof

performance guarantee

rounding scheme for fractional set cover
1. Compute optimal fractional set cover x*.

2. Compute probability distribution p on sets.

3. Let μ = 2ln(n)/ε2.
4. Repeat T = size(x*)μ times:
5. Choose a random set S according to p.

6. Let x(S) = (#times S chosen)/μ.
7. Return x.

Randomly sample T sets from distribution defined by x*.
(Expect each element to be covered at least μ times.)
Assign each set s weight x(s) = # times s chosen / μ.

sets elements
random

T=12

5

0

4

3

5

5

8

9

7

8

7

/6

/6

/6

/6

/6

/6

/6

/6

/6

/6

/6

μ=6

thm: With pos. prob. x is a (1-ε)-cover.

Consider an element e.
 E[# times e covered] ≥ μ.

Pr[# times e covered < (1-ε)μ] < 1/n (Chernoff, ’52)

Expected # insufficiently covered elements < 1.

With pos. prob., x covers every e at least 1-ε.

Note: size(x) = T/μ = size(x*). (guaranteed)

derandomized algorithm
1. Let μ = 2ln(n)/ε2.
2. Repeat until every element is covered μ times:
3. Choose a set S that maximizes

Σe∈S (1- ε)(#times e covered so far).
4. Let x(S) = (#times S chosen)/μ.
5. Return x.

Choose each set to minimize Σe (1-ε)(#times e covered so far)
.

Assign each set s weight x(s) = (# times chosen) / μ.

Yields (1-ε)-cover x, size(x) ≤ size(x*).

At most T = O(log(n) size(x*)/ε2) iterations.

 from Chernoff

multi-commodity flow

input: set of paths P in directed graph

maximize Σp∈P f(p) subject to

for each edge e, Σp∋e f(p) ≤ μ.

rounding scheme for multicommodity flow
1. Compute optimal multicommodity flow f*.

2. Compute probability distribution q on paths.

3. Let μ = 3ln(n)/ε2.
4. Repeat T = size(f*)μ times:
5. Choose a random path p according to q.

6. Let f(p) = (#times p chosen)/μ.
7. Return p.

Randomly sample T paths from distribution defined by f*.
(Expect each edge to be covered at most μ times.)
Assign each path p flow f(p) = # times p chosen / μ.

derandomized algorithm
1. Let μ = 3ln(n)/ε2.
2. Repeat until flow on some edge would exceed μ:
3. Choose a path p that minimizes

Σe∈p (1+ ε)(#times e covered so far).
4. Let f(p) = (#times p chosen)/μ.
5. Return f.

Yields (1+ε)-feasible flow f, size(f) ≥ size(f*).

At most T = O(m log(n) /ε2) iterations.

More...

• Random stopping times

• Probabilistic tools (Chernoff-like bounds)

• packing and covering - linear programs and
integer linear programs with non-negative
coefficients (k-medians, facility location)

• parallel algorithms

• beyond packing and covering (frac. Steiner tree)

• convex (non-linear) programs

• dynamic problems

• relations to on-line algorithms, learning theory?

