Sequential and Parallel Algorithms
for Mixed Packing and Covering

(from FOCS 2001)

Neal E. Young

UC Riverside

Marek is being punished.
He can eat only bacon, beans, and beets!

Can Marek get enough of what he needs
without getting too much of what he doesn’t?

Bacon

Beans

Beets

Nutrition Facts

Serving Size 4 pc

Servings per container 10
Amount Per Serving
Calories 110 Calories from Fat 80

% Daily Value

Total Fat 10g 30 %
Saturated Fat 9g 50 %
Cholesterol 3mg 10 %
Sodium 500mg 40 %
Total Carbohydrates Og 0%
Dietary Fiber Og 0%
Sugars Og
Protein 5g 30 %
Vitamin A 0% Vitamin B 7%
Vitamin C 2% Iron 16%

Nutrition Facts

Serving Size 1 cup

Servings per container 2

Amount Per Serving

Calories 200 Calories from Fat 16

% Daily Value

Total Fat 2g 5%
Saturated Fat Og 0%
Cholesterol Omg 0%
Sodium 0 mg 0%
Total Carbohydrates 6g 20%
Dietary Fiber 2g 15 %
Sugars Og
Protein 6g 35%
Vitamin A 40% Vitamin B 0%

Vitamin C 22% Iron 2%

Nutrition Facts

Serving Size 3 oz

Servings per container 5

Amount Per Serving

Calories 180 Calories from Fat O

% Daily Value

Total Fat Og 0%
Saturated Fat Og 0%
Cholesterol 3mg 15 %
Sodium 30mg 2%
Total Carbohydrates 8g 30%
Dietary Fiber 2g 15 %
Sugars 6g
Protein Og 0%

Vitamin A 40% Vitamin B 52%
Vitamin C 26% Iron 3%

unknowns

bacon, bean, beet 1 serving beans has 35%

of the RDA of protein

constraints _—

protein: 30 bacon + 35 bean > 100
vitamin A: 40 bean + 43 beet > 100
vitamin B: 7 bacon + 52 beet > 100
vitamin C: 2 bacon + 22 bean + 26 beet > 100

fat: 30 bacon + 5 bean < 100
sugar: 15 bean + 37 beet < 100
salt: 40 bacon + 2 beet < 100

cholesterol: 10 bacon + 10 bean + 15 beet < 100

g-approximate solutions:

protein:
vitamin A:
vitamin B:
vitamin C:
fat:
sugar:
salt:

cholesterol:

30 bacon + 35

30

40
10

bacon
bacon

bacon

bacon

bacon

40

+ 22
+ 5
15

bean

bean

bean

bean

bean

bean

43

52

26

37

15

beet
beet
beet

beet
beet
beet

(1-€)100
(1-€)100
(1-€)100
(1-€)100
(1+€) 100
(1+€) 100
(1+€) 100
(1+€) 100

Bibliography

[1950] von Neumann. Numerical method for determination of the value and the best strategies of a zero-
sum two-person game with large numbers of strategies.

[1950] Brown and von Neumann. Solutions of games by differential equations.

[1952] Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations.

[1958] Ford and Fulkerson. A suggested computation for maximal multicommodity flow.
[1960] Dantzig and Wolfe. Decomposition principle for linear programs.

[1962] Benders. Partitioning procedures for solving mixed-variables programming problems.
[1971] Held and Karp. The traveling salesman problem and minimum spanning trees.

[1977] Khachiyan. Convergence rate of the game processes for solving matrix games.

[1979] Shapiro. A survey of Lagrangean techniques for discrete optimization.
Annals of Discrete Mathematics, 5:113--138, 19709.

Bibliography
Grigoriadis and Khachiyan.

A sublinear-time randomized approximation algorithm for matrix games. OR Research Letters, 1995.
An exponential-function reduction method for block-angular convex programs. Networks, 1995.

Young. Randomized rounding without solving the linear program. SODA, 1995.

Karger and Plotkin. Adding multiple cost constraints to combinatorial optimization problems, with
applications to multicommodity flows. STOC, 1995.

Grigoriadis and Khachiyan.
Coordination complexity of parallel price-directive decomposition. MOR, 1996.
Approximate minimum-cost multicommodity flows in o(knm/e*2) time. Math. Programming, 1996.

Garg and Konemann. Faster and simpler algorithms for multicommodity flow and other fractional
packing problems. FOCS, 1998.

Konemann. Fast Combinatorial Algorithms for Packing and Covering Problems
PhD thesis, Max-Planck-Institute for Informatik, 2000.

Fleischer. Approximating fractional multicommodity flow independent of the number of commodities.
SIAM J. Discrete Math, 2000.

linear program

30

30

40
10

bacon

bacon

bacon

bacon

bacon
bacon

35
40

22

15

10

bean

bean

bean

bean
bean

bean

43

52

26

37

15

beet
beet
beet

beet
beet
beet

100
100
100
100

100
100
100
100

~J

beets

~J

beans

~J

bacon

After one serving of beets
RDA vit C

) 1
beets
2% 43
RDA vit B

15%

RDA chol

RDA vit A

bacon

RDA prot.

Greedy approach: Get protein, avoid sugar eat bacon

1
beets
0 0 37
ming...) beans max(...)
0 .
— avoid sugar
get protein

~

Get vitamin C, avoid salt eat beets

get vitamin C — a
» 1
beets ‘ avoid salt
.
28 0 l 42
beans
min(...) max(...)

\

bacon

Get protein, avoid sugar eat bacon

2
beets
30 0 74
ming...) beans max(...)
10
Sugar high
4
1

bacon

Get vitamin C, avoid salt ...

Vitamin C low — @

56

min(...)

bacon

... eat beans

: alt high

W)
/\

30

84

max(...)

Get vitamin C, avoid sugar ...

vitamin C low ~

78

min(...)

bacon

... eat beans?

89

max(...)

Get vitamin C, completely avoid sugar... ... eat bacon?

(]
vitamin C low — @

beets

1.75

beans

100

max(...)

94.5

min(...)

sugar maxed out

bacon

Get vitamin C, completely avoid sugar and salt stuck!

vitamin C low — 0
2
beets
salt maxed out
96.6 1.75 100
ming(...) beans max(...)

sugar maxed out

bacon

Making a greedy approach work

Balance all needs in each step.

Take small bites.

Balancing all needs...

Smooth approximations of Max() and Min()

Lmax(y19y29“-9ym) = lnzeyi

Lmin(y19y29°°-9ym) = _lnze_yi

— Lmax(x,-x)

1
M, =

logiexplxi+texpl-x1) —

0.5

Imax < max +Inm

1
M, =

logiexplxi+texpl-x1) —

1 1.5

Change in Lmax() when inputs change:

gradient estimate is e-approximate within e-neighborhood

+€

_ Lmax

true < (1+¢)g

—T

g = change estimated by gradient

Algorithm: use Lmin and Lmax instead of min and max.
Choose increments so Lmin increases by > (1-¢) times as much as Lmakx.

0
beets
-1.38 0 1.38
Lmin(...) beans Lmax(...)
initially
ln m

bacon

Choose increments so Lmin increases by > (1-¢) times as much as Lmakx.

Stop when Lmin > ln(m)/e (= 13.8)

to get e-approximate solution: \

30 bacon + 35 bean > 1n(m) /€
40 bean + 43 beet >

7 bacon + 52 beet >

2 bacon + 22 bean + 26 beet >

target

30 bacon + 5 bean < 1In(m) + [In(m)/€ + In(m)]/(1l-€) = (1+0(e))1In(m)/€
15 bean + 37 beet <
40 bacon + 2 beet <

10 bacon + 10 bean + 15 beet <

Use gradients to estimate increase in Lmin and Lmax.

Partial derivative of
lmin w.r.t. beets is 30.2

\
/

+13.58

Lmax

(...)

+30.28

Lmin(...)

bacon

Variable if est. increase in lmin > .9 est. increase in lmax

Beets are ok, what about beans?

beets

+24.20

Lmin(...)

+7.58

max(...)

bacon

Beets and beans are okay to raise, but not bacon.

beets

-1.38

Lmin(...)

beans

1.38

max(...)

bacon

Raise beets. Now: by how much?
For gradient estimates to be e-accurate,

need inputs to lmin and lmax to change by < ¢

+30.28 +13.58

Lmin(...) Lmax

(...)

Estimate is e-accurate
if inputs to lmin change < ¢

Raise beets just enough so some constraint increases by €. (¢ =0.1)

Vitamin B up 0.1

beets

-1.33

min(...)

1.41

Up .05

max(...)

bacon

Up .03

Repeat.
Check variables... and raise ok one so some constraint increases by ¢

.002
beets
-1.33 0 1.41
ming(...) beans max(...)
0

bacon

Fifteen (1/520)-servings of beets later...

.029
beets
no
-0.69 0 1.87
ming(...) beans max(...)
Up .70 Up .49
0

bacon

and thirty-four (1/400)-servings of beans...

.029

beets

1.03 085 2.81
ming(...) DF]E;;S max(...)
Up 2.41 Up 1.42

bacon

After 204 rounds: (recall target = 13.8)

.155

beets

7.73 160 8.57

beans max(...)

min(...)

125

bacon

Delete covering constraints as they are satisfied

.155

beets

7.76 160 8.57

beans max(...)

min(...)

125

bacon

335 total rounds until lmin > target:

15 beet
34 bean
5 bacon
17 beet
12 bean
15 bacon
17 beet
12 bean
15 bacon
16 beet
12 bean
15 bacon
16 beet
12 bean
14 bacon
15 beet
13 bean
15 bacon
18 beet
9 bean
18 bacon
8 beet
10 bean

At end, scale up by 100/target:

Algorithm

1.
2
3
4
5.
6
/
8

x = (0,0,...,0)

. target = In(m)/e

Until Imin > target do:
Let X = X + 0, where vector 0 satisfies:

O[j]=0 only if ok to raise variable x][j],
and some constraint increases by .

Delete any satisfied covering constraints.
Return X, appropriately scaled.

Correctness

Is there always a variable to raise?

Does the algorithm terminate?

Lemma: If the constraints can be satisfied,

there is always a variable to raise.
Suppose there is a feasible solution x*:

«— At most 100

At least 100

x*[1]
x[1]

x*[2]
x[2]

x*[3]
x[3]

Lemma: If the constraints can be satisfied,

there is always a variable to raise.

Take vector d = ¢ x*/100.

o[1]
x[1]

d[2]

0 x[2]

d[3]
x[3]

Lemma: If the constraints can be satisfied,

there is always a variable to raise.
Add d to current x. Lmin increases by as much as Imax.

Raise by ¢
«— or less
Raise by ¢
or more A x+8[1]
\ > x[1] 2
x+8[2]

+¢ +e

Lmin(...) Lmax(...)

x[2]

x+8[3]
x[3]

QED

Lemma: There are O(m log(m)/c”) increments

Each increment increases at least one constraint by .

+6[1]

x[1]

+9[2]

x| 2]

+9[3]

x[3]

Constraint < O(target) at end,

so at most O(target/¢)
increments per constraint.

target = O(log(m)/¢)

Summary

Solutions meet constraints within 1+O(¢) factor.

O(m Iog(m)/ez) linear-time increments.

Faster implementations possible.

