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What would the world be like if...

SAT is hard in the worst case, BUT...

generating hard random instances of SAT is hard? - Lipton, 1993



worst-case versus average-case complexity

1. worst-case complexity

You choose an algorithm.
Adversary chooses input maximizing algorithm’s cost.

2. worst-case expected complexity of randomized algorithm

You choose a randomized algorithm.
Adversary chooses input maximizing expected cost.

3. average-case complexity against hard input distribution

Adversary chooses a hard input distribution.
You choose algorithm to minimize expected cost on random input.



There are hard-to-compute hard input distributions.

For algorithms, the Universal Distribution is hard:
1. worst-case complexity of deterministic algorithms
~ 2. worst-case expected complexity of randomized algorithms
~ 3. average-case complexity under Universal Distribution
— Li/Vitényi, FOCS (1989)

v

For circuits (non-uniform), there exist hard distributions:
1. worst-case complexity for deterministic circuits
~ 2. worst-case expected complexity for randomized circuits
— Adleman, FOCS (1978)
~ 3. average-case complexity under hard input distribution
— "“Yao's principle”. Yao, FOCS (1977)
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NP-complete problems are (worst-case) hard for circuits.
tUnless the polynomial hierarchy collapses. — Karp/Lipton, STOC (1980)

v
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Q: Is it hard to generate hard random inputs?
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For circuits (non-uniform), there exist hard distributions:
1. worst-case complexity for deterministic circuits
~ 2. worst-case expected complexity for randomized circuits
— Adleman, FOCS (1978)

~ 3. average-case complexity under hard input distribution
— "“Yao's principle”. Yao, FOCS (1977)

NP-complete problems are (worst-case) hard for circuits. |
tUnless the polynomial hierarchy collapses. — Karp/Lipton, STOC (1980)




the zero-sum game underlying Yao's principle

max plays from
2" inputs of size n:

X1 X2 e X_] Ce XN
G -
G payoff for play G, x; is
min _
placys.froTn ; 1 if circuit G
2™ circuits G .
of size n€: errs on input Xx;;

0 otherwise

Cm

mixed strategy for min = a randomized circuit;
mixed strategy for max = a distribution on inputs

worst-case expected complexity of optimal random circuit

= value of game
= average-case complexity of best circuit against hardest distribution




Max can play near-optimally from poly-size set of inputs.
max plays
uniformly’ from just O(n®)
of the 2" inputs of size n:
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thm: Max has near-optimal distribution with support size O(n€).

corollary: A poly-size circuit can generate hard random inputs.
— Lipton/Y, STOC (1994)

proof: Probabilistic existence proof, similar to Adleman’s for min (1978).
Similar results for non-zero-sum Nash Eq. — Lipton/Markakis/Mehta (2003)



Q: Is it hard to generate hard random inputs?

A: Poly-size circuits can do it (with coin flips)...

Specifically, a circuit of size O(n°!) can generate random inputs
that are hard for all circuits of size O(n°).



PART II

APPROXIMATION
ALGORITHMS




Near-optimal distribution, proof of existence

lemma: Let M be any [0, 1] zero-sum matrix game.

Then each player has an e-optimal mixed strategy X that plays
uniformly from a multiset S of O(log(N)/<?) pure strategies.
N is the number of opponent’s pure strategies.

proof: Let p* be an optimal mixed strategy.

Randomly sample O(log(N)/e?) times from p* (with replacement).

Let S contain the samples. Let mixed strategy X play uniformly from S.
For any pure strategy j of the opponent, by a Chernoff bound,

PriMx > Mjx* +¢] <1/N.

This, Mjx* < value(M), and the naive union bound imply the lemma. [J
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What does the method of conditional probabilities give?

A rounding algorithm that does not depend on the fractional opt x*:

input: matrix M, € >0
output: mixed strategy X and multiset S

X—0.5<0

. Repeat O(log(N)/e?) times:

Choose i minimizing >_:(1 + g)Mi%,
Add / to S and increment X;.

CLlet X —%/>0 %

. Return X.

N N

lemma: Let M be any [0, 1] zero-sum matrix game.

The algorithm computes an e-optimal mixed strategy X that plays
uniformly from a multiset S of O(log(N)/<?) pure strategies.

(N is the number of opponent’s pure strategies.)




the sample-and-increment rounding scheme

— for packing and covering linear programs

input: fractional solution x* € R

output: integer solution X

t=0

. Let probability distribution p = x*/ Zj X7
. Let X 0.

[y

. Repeat until no %X; can be incremented:

Sample index j randomly from p.

o s W

Increment X;, unless doing so would either
(a) cause X to violate a constraint of the linear program,
(b) or not reduce the slack of any unsatisfied constraint.

6. Return X.




applying the method of conditional probabilities gives

gradient-descent algorithms with penalty functions from conditional expectations

greedy algorithms (primal-dual), e.g.:
Ha-approximation ratio for set cover and variants

— Lovasz, Johnson, Chvatal, etc. (1970)
2-approximation for vertex cover (via dual)

— Bar Yehuda/Even, Hochbaum (1981-2)
Improved approx. for non-metric facility location - Y (2000)

v

multiplicative-weights algorithms (primal-dual), e.g.:
(1 + e)-approx. for integer/fractional packing/covering variants
(e.g. multi-commodity flow, fractional set cover, frac. Steiner forest,...)
— LMSPTT, PST, GK, GK, F, etc. (1985-now)
A very interesting class of algorithms...

randomized-rounding algorithms, e.g.:
Improved approximation for non-metric k-medians
- Y, ACMY (2000,2004)
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a fast packing/covering alg. (shameless self-promotion)

Inputs: non-negative matrix A; vectors b, ¢; € >0

fractional covering: minimize c-x: Ax > b;x > 0

fractional packing: maximize c-x: Ax < b;x >0

theorem: For fractional packing/covering, (1 & ¢)-approximate
solutions can be found in time

(#rows + Fcols) log n)
g2 '

@) (#non—zeros +

“Beating simplex for fractional packing and covering linear programs”,
— Koufogiannakis/Young FOCS (2007)




Thank you.



a fractional set cover x*




sample and increment for set cover

sample and increment:

. Let x* € R be a fractional solution.
. Let [x*| denote > _xZ.
. Define distribution p by ps = xZ /|x*|.

Sample random set s according to p.

1

2

3

4. Repeat until all elements are covered:

5

6 Add s if it contains not-yet-covered elements.
7

. Return the added sets.

» For any element e, with each sample,
Prle is covered] = > . xZ/|x*| > 1/|x*|.

soe”’'s




existence proof for set cover o

theorem: With positive probability,

after T = [In(n)|x*|] samples,

the added sets form a cover. J

proof: For any element e:

» With each sample,

Prle is covered] = > . x3/|x*| > 1/|x*|.
» After T samples,

Pr[e is not covered] < (1 —1/|x*)T < 1/n.

So, expected number of uncovered elements is less than 1. [
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corollary: There exists a set cover of size at most [In(n)|x*|].
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method of conditional probabilities o

algorithm:

1. Let x* > 0 be a fractional solution. 140

2. Repeat until all elements are covered:
3. Add a set s, where s is chosen to keep conditional
E[# of elements not covered after T rounds] < 1.

4. Return the added sets.

Given first t samples, expected number of elements not covered
after T — t more rounds is at most

o= S -1

e not yet
covered



algorithm o

the greedy set-cover algorithm E

algorithm: i

1=0

1. Repeat until all elements are covered:
2. Choose a set s to minimize ®;.
= Choose s to cover the most not-yet-covered elements.

3. Return the chosen sets.

(No fractional solution needed!)

of size at most [In(n) ming~ |x*|]. — Johnson, Lovasz,... (1974)

corollary: The greedy algorithm returns a cover J

also gives H(maxs |s|)-approximation for weighted-set-cover
— Chvatal (1979)



Thank you.
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