Flooding Overcomes Small Covering Constraints

Christos Koufogiannakis and Neal E. Young University of California, Riverside

Covering Integer Programs

$$
\begin{aligned}
\min & c \cdot x \\
\text { subject to: } & A x \geq b \\
& x \leq u \\
& x \in Z_{+}^{n}
\end{aligned}
$$

Let δ be the maximum number of variables per constraint (i.e. $\delta=2$ for Vertex Cover).

Covering Integer Programs

$$
\begin{array}{r}
\min x_{1}+0.5 x_{2}+6 x_{3}: \\
2 x_{1}+x_{2} \geq 3 \\
x_{2}+4 x_{3} \geq 5 \\
\\
x_{2} \leq 2 \\
\\
x_{1}, x_{2}, x_{3} \in Z_{+}
\end{array}
$$

Let δ be the maximum number of variables per constraint ($\delta=2$ for this example).

Covering Integer Programs

$$
\begin{array}{r}
\min x_{1}+0.5 x_{2}+6 x_{3}: \\
2 x_{1}+x_{2} \geq 3 \\
x_{2}+4 x_{3} \geq 5 \\
\\
x_{2} \leq 2 \\
\\
x_{1}, x_{2}, x_{3} \in Z_{+}
\end{array}
$$

Let δ be the maximum number of variables per constraint ($\delta=2$ for this example).

Goal: Simple δ-approximation algorithm, applicable in the sequential

Covering Integer Programs

$$
\min x_{1}+0.5 x_{2}+6 x_{3}:
$$

$$
2 x_{1}+x_{2} \geq 3
$$

$$
\begin{aligned}
& x_{2}+4 x_{3} \geq 5 \\
& x_{2} \leq 2 \\
& x_{1}, x_{2}, x_{3} \in Z_{+}
\end{aligned}
$$

Let δ be the maximum number of variables per constraint ($\delta=2$ for this example).

Goal: Simple δ-approximation algorithm, applicable in the sequential, distributed

Covering Integer Programs
 $$
\min x_{1}+0.5 x_{2}+6 x_{3}:
$$

$$
\begin{aligned}
& x_{2} \leq 2 \\
& x_{1}, x_{2}, x_{3} \in Z_{+}
\end{aligned}
$$

Let δ be the maximum number of variables per constraint ($\delta=2$ for this example).

Goal: Simple δ-approximation algorithm, applicable in the sequential, distributed and online setting.

Covering Integer Programs

$$
\begin{gathered}
\min x_{1}+0.5 x_{2}+6 x_{3} \\
2 x_{1}+x_{2} \geq 3 \\
\\
x_{2} \leq 2 \\
x_{1}, x_{2}, x_{3} \in Z_{+}
\end{gathered}
$$

Let δ be the maximum number of variables per constraint ($\delta=2$ for this example).

Goal: Simple δ-approximation algorithm, applicable in the sequential, distributed and online setting.

Covering Integer Programs

$$
\begin{array}{r}
\min x_{1}+0.5 x_{2}+6 x_{3}: \\
2 x_{1}+x_{2} \geq 3 \\
x_{2}+4 x_{3} \geq 5 \\
\\
x_{2} \leq 2 \\
\\
x_{1}, x_{2}, x_{3} \in Z_{+}
\end{array}
$$

Let δ be the maximum number of variables per constraint ($\delta=2$ for this example).

Goal: Simple δ-approximation algorithm, applicable in the sequential, distributed and online setting.

Covering Integer Programs

$$
\begin{array}{r}
\min x_{1}+0.5 x_{2}+6 x_{3}: \\
2 x_{1}+x_{2} \geq 3 \\
x_{2}+4 x_{3} \geq 5 \\
\\
x_{2} \leq 2 \\
\\
x_{1}, x_{2}, x_{3} \in Z_{+}
\end{array}
$$

Previous sequential δ-approximation algorithms use the KC-inequalities and an ellipsoid-based method [Carr et al., 2000][Pritchard, 2009].

Covering Integer Programs

$$
\begin{array}{r}
\min x_{1}+0.5 x_{2}+6 x_{3}: \\
2 x_{1}+x_{2} \geq 3 \\
\\
x_{2}+4 x_{3} \geq 5 \\
\\
x_{2} \leq 2 \\
\\
x_{1}, x_{2}, x_{3} \in Z_{+}
\end{array}
$$

Previous sequential δ-approximation algorithms use the KC-inequalities and an ellipsoid-based method [Carr et al., 2000][Pritchard, 2009].

Slow, not suitable for the distributed or online setting.

Weighted Vertex Cover

Given a node-weighted graph, find a minimum-weight subset of the nodes, touching all the edges.

Weighted Vertex Cover

$$
\begin{aligned}
& \min c \cdot x: \\
& x_{u}+x_{v} \geq 1 \quad \forall(u, v) \\
& x \in\{0,1\}^{n}
\end{aligned}
$$

Given a node-weighted graph, find a minimum-weight subset of the nodes, touching all the edges.

A sequential and online

2-approximation algorithm for Weighted VC

- "Edge discount": reduce edge endpoints' costs equally.
- Do edge discounts until zero-cost nodes form a cover. Return the cover formed by the zero-cost nodes.
[Bar-Yehuda and Even, 1981]
edge discount operation

Reduce both endpoints' costs equally.

edge discount operation

Reduce both endpoints' costs equally.
edge discount operation

Reduce both endpoints' costs equally.

Theorem: $\operatorname{cost}(C) \leq 2 \mathrm{OPT}$

Distributed Computation

- Proceed in rounds.
- In each round:
- Each node exchanges $O(1)$ messages with immediate neighbors,
- then does some computation.
- goal: Finish in a poly-log number of rounds.

1. form independent rooted "stars"
2. coordinate discounts within stars

- Done when zero-cost vertices cover all edges.
goal: Done after $O(\log n)$ rounds ($n=\# n o d e s)$.

How to form stars

1. Each node randomly chooses to be "boy" or "girl" (just for this round)
2. For the round, use only edges from boys to highercost (or equal-cost) girls. (Pretend other edges don't exist. $)^{\dagger}$
3. Each boy chooses a random neighbor (girl of \geq cost).
\dagger In each round, every edge has a one in four chance of being used.
(... will be used if low-cost endpoint is boy, high-cost endpoint is girl)

How to form stars:

1. Each node randomly chooses to be "boy" or "girl".
2. Use only edges from boys to higher-cost (or equal-cost) girls. (Pretend other edges don't exist.)
3. Each boy chooses a random neighbor (girl of \geq cost).

How to form stars:

1. Each node randomly chooses to be "boy" or "girl".
2. Use only edges from boys to higher-cost (or equal-cost) girls. (Pretend other edges don't exist.)
3. Each boy chooses a random neighbor (girl of \geq cost).

How to form stars:

1. Each node randomly chooses to be "boy" or "girl".
2. Use only edges from boys to higher-cost (or equalcost) girls. (Pretend other edges don't exist.)
3. Each boy chooses a random neighbor (girl of \geq cost).

How to form stars:

1. Each node randomly chooses to be "boy" or "girl".
2. Use only edges from boys to higher-cost (or equalcost) girls. (Pretend other edges don't exist.)
3. Each boy chooses a random neighbor (girl of \geq cost).

How to form stars:

1. Each node randomly chooses to be "boy" or "girl".
2. Use only edges from boys to higher-cost (or equalcost) girls. (Pretend other edges don't exist.)
3. Each boy chooses a random neighbor (girl of \geq cost).

How girls allocate discounts

- Each girl allocates discounts greedily, in alphabetic order.
- If she partially allocates some boy's discount, then...
- with probability $1 / 2$:

1. She revokes discounts to all other boys.
2. She allocates full discount to that boy.

Some boys may be jilted (have no chance for discount).

- Each girl allocates discounts greedily, in alphabetical order.
- If she partially allocates some boy's discount, then... with probability $1 / 2$:

She revokes discounts to all other boys. She allocates full discount to that boy.

Each girl allocates discounts greedily, in alphabetical order.

- If she partially allocates some boy's discount, then... with probability $1 / 2$:

She revokes discounts to all other boys. She allocates full

- Each girl allocates discounts greedily, in alphabetical order.
- If she partially allocates some boy's discount, then... with probability $1 / 2$:

She revokes discounts to all other boys. She allocates full discount to that boy.

- Each girl allocates discounts greedily, in alphabetical order.
- If she partially allocates some boy's discount, then... with probability $1 / 2$:

She revokes discounts to all other boys. She allocates full discount to that boy.

each of girl's boys is either:

- jilted (girl gives no chance of any discount)
- not jilted (girl gives at least 50% chance of discount)

Analysis

- Guaranteed to return a 2-approximate solution, since it implements the edgediscount algorithm.
- What about running time?
- Goal: Show O(log n) rounds (w.h.p.).

Analysis of number of rounds

- "Delete" edges when one endpoint's cost becomes zero.
- lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.
- proof: (next)
corollary: Number of rounds is $O\left(\log n^{2}\right)=O(\log n)$
in expectation and with high probability.
lemma: In each round, in expectation, a constant fraction of each boy's active edges are deleted.

This girl would not jilt boy. Would have 50% chance of zeroing boy's cost.

This girl would not
jilt boy. Would reduce boy's cost to zero.

This girl would not jilt boy.
Would have
50% chance of
zeroing boy's cost.

key observation:

girl would jilt boy \Rightarrow her cost is going to zero regardless of what boy does. girl would not jilt boy \Rightarrow if boy chooses her, she has at least a 50\% chance of zeroing boy's cost..

- case (i): At least half of boy's girls would jilt him.
\Rightarrow At least half of boy's edges will be deleted regardless of what boy does.
- case (ii): At least half of boy's girls would not jilt him.
\Rightarrow Boy has at least a 50% chance of choosing a girl who has at least a 50% chance of zeroing his cost (deleting all his edges).
- There is a simple, fast, sequential, online and distributed 2-approximation algorithm for Weighted Vertex Cover!

More general Covering Problems

$\min x_{u}+2 x_{v}+3 x_{w}:$

$$
\begin{aligned}
& x_{u}+x_{v} \geq 3 \\
& x_{v}+x_{w} \geq 4 \\
& x_{u}, x_{v}, x_{w} \in Z_{+}
\end{aligned}
$$

Bar-Yehuda and Even's algorithm does not extend to non 0/1 problems.

More general Covering Problems

$\min x_{u}+2 x_{v}+3 x_{w}:$

$$
\begin{aligned}
& x_{u}+x_{v} \geq 3 \\
& x_{v}+x_{w} \geq 4 \\
& x_{u}, x_{v}, x_{w} \in Z_{+}
\end{aligned}
$$

Bar-Yehuda and Even's algorithm does not extend to non 0/1 problems.

Goal: Simple 2-approximation algorithm, applicable in the sequential, distributed and online setting.

Flooding algorithm

1. Let $x \leftarrow 0$.
2. While \exists edge (u, v) s.t. $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor<b_{u v}$ do:
3. Raise x_{u} at rate $1 / c_{u}$ and x_{v} at rate $1 / c_{v}$ until $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor \geq b_{u v}$. 4. Return $\lfloor x\rfloor$.

Flooding algorithm

1. Let $x \leftarrow 0$.
2. While \exists edge (u, v) s.t. $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor<b_{u v}$ do:
3. Raise x_{u} at rate $1 / c_{u}$ and x_{v} at rate $1 / c_{v}$ until $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor \geq b_{u v}$. 4. Return $\lfloor x\rfloor$.
$\min x_{u}+2 x_{v}+3 x_{w}$:

$$
\begin{aligned}
& x_{u}+x_{v} \geq 3 \\
& x_{v}+x_{w} \geq 4 \\
& x_{u}, x_{v}, x_{w} \in Z_{+}
\end{aligned}
$$

Flooding algorithm

1. Let $x \leftarrow 0$.
2. While \exists edge (u, v) s.t. $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor<b_{u v}$ do:
3. Raise x_{u} at rate $1 / c_{u}$ and x_{v} at rate $1 / c_{v}$ until $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor \geq b_{u v}$. 4. Return $\lfloor x\rfloor$.
$\min x_{u}+2 x_{v}+3 x_{w}$:

$$
x_{u}+x_{v} \geq 3
$$

$$
x_{u}, x_{v}, x_{w} \in Z_{+}
$$

Flooding algorithm

1. Let $x \leftarrow 0$.
2. While \exists edge (u, v) s.t. $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor<b_{u v}$ do:
3. Raise x_{u} at rate $1 / c_{u}$ and x_{v} at rate $1 / c_{v}$ until $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor \geq b_{u v}$. 4. Return $\lfloor x\rfloor$.
$\min x_{u}+2 x_{v}+3 x_{w}$:

$$
x_{u}+x_{v} \geq 3
$$

$$
x_{u}, x_{v}, x_{w} \in Z_{+}
$$

Flooding algorithm

1. Let $x \leftarrow 0$.
2. While \exists edge (u, v) s.t. $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor<b_{u v}$ do:
3. Raise x_{u} at rate $1 / c_{u}$ and x_{v} at rate $1 / c_{v}$ until $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor \geq b_{u v}$. 4. Return $\lfloor x\rfloor$.
$\min x_{u}+2 x_{v}+3 x_{w}$:

$$
\begin{aligned}
& x_{u}+x_{v} \geq 3 \\
& x_{v}+x_{w} \geq 4 \\
& x_{u}, x_{v}, x_{w} \in Z_{+}
\end{aligned}
$$

Flooding algorithm

1. Let $x \leftarrow 0$.
2. While \exists edge (u, v) s.t. $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor<b_{u v}$ do:
3. Raise x_{u} at rate $1 / c_{u}$ and x_{v} at rate $1 / c_{v}$ until $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor \geq b_{u v}$. 4. Return $\lfloor x\rfloor$.
$\min x_{u}+2 x_{v}+3 x_{w}$:

$$
\begin{aligned}
& x_{u}+x_{v} \geq 3 \\
& x_{v}+x_{w} \geq 4 \\
& x_{u}, x_{v}, x_{w} \in Z_{+}
\end{aligned}
$$

Flooding algorithm

1. Let $x \leftarrow 0$.
2. While \exists edge (u, v) s.t. $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor<b_{u v}$ do:
3. Raise x_{u} at rate $1 / c_{u}$ and x_{v} at rate $1 / c_{v}$ until $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor \geq b_{u v}$. 4. Return $\lfloor x\rfloor$.
$\min x_{u}+2 x_{v}+3 x_{w}$:
$x_{u}+x_{v} \geq 3$
$x_{v}+x_{w} \geq 4$
$x_{u}, x_{v}, x_{w} \in Z_{+}$

Return $x_{u}=2, x_{v}=3, x_{w}=\left\lfloor\frac{4}{3}\right\rfloor=1$

Flooding algorithm

1. Let $x \leftarrow 0$.
2. While \exists edge (u, v) s.t. $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor<b_{u v}$ do:
3. Raise x_{u} at rate $1 / c_{u}$ and x_{v} at rate $1 / c_{v}$ until $\left\lfloor x_{u}\right\rfloor+\left\lfloor x_{v}\right\rfloor \geq b_{u v}$.
4. Return $\lfloor x\rfloor$.

Let x^{*} be any feasible solution.
Each step starts with a non-yet-satisfied constraint, so $x_{u}^{*}>x_{u}$ or $x_{v}^{*}>x_{v}$.
Let residual $_{c}(x)$ be the min cost to increase x to full feasibility.
The step increases the cost by 2β but it reduces residual $_{c}(x)$ by at least $\beta \Rightarrow 2$-approximation

Results (sequential)

- Covering Mixed Integer Programs: Nearly linear time δ-approximation algorithm. Improves over the previous ellipsoid-based (slow) algorithm.
- Non-metric Facility Location: Linear time δ approximation. δ is the maximum number of facilities that might serve a customer.
- Covering problems with submodular cost function

ICALP 2009

Results (online)

- Online CMIP: δ-competitive algorithm.
- Paging, Weighted Caching, File Caching, Connection Caching: Generalize k-competitive algorithms i.e. Landlord, Harmonic, Greedy-Dual. Upgradable Caching: $(k+d)$-competitive algorithm, where k is the cache size and d is the number of upgradable parameters.

Results (distributed)

- Covering Mixed Integer Programs with 2 variables per constraint: 2-approximation in $O(\log |C|)$ rounds, where $|C|$ is the number of constraints. Also, 2-approximation in RNC.
\Longrightarrow 2-approximation for Weighted Vertex Cover in $O(\log n)$ rounds.

Covering Problems with at most δ variables per constraint: δ-approximation in $O\left(\log ^{2}|C|\right)$ rounds.

thank you

