Fictitious Play beats Simplex
for fractional packing and covering

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

June 28, 2007



fractional packing and covering

Linear programming with non-negative coefficents.

Equivalent to solving a zero-sum matrix game A with non-negative coefficients:

Theorem (von Neumann's Min-Max Theorem 1928)
min max Aix = max min A%
X i X j

x: mixed strategy for min (column) player
X: mixed strategy for max (row) player
i row, j: column

» How to compute (1 + ¢)-optimal x and X quickly?

» Simplex algorithm: Q(n?) time for dense n x n matrix.

This talk: O(n? + nlog(n)/e?) time.



practical performance versus simplex

16384 T
epsilon = 0.02
epsilon =001 ———

4096 epsilon= 0A0057/,

1024

256

speedup: o

16

4

1

0.25

0.0625
1024 2048 4096 8192 16384 32768 65536

n = rows, columns




playing a zero-sum game

» x = mixed strategy for min

» A;x = payoff if max plays row i against mixed strategy x

A

x

max : A

=)
= O O U

.5
5
.5

O = = O

«— max gets <5H

Min plays x = (.5,0,.5), max gets at most .5 = game val < .5.



playing a zero-sum game

» x = mixed strategy for min
» A;x = payoff if max plays row i against mixed strategy x
» X = mixed strategy for max

> AJT>A< = payoff if min plays column j against mixed strategy X

max :

N e
OO R
oo~ = O

ATX

>N B OO

Max plays X = (.2, .4,.4), min pays at least .4 = game val > .4.



playing a zero-sum game

» x = mixed strategy for min
» A;x = payoff if max plays row i against mixed strategy x
» X = mixed strategy for max

> AJT>A< = payoff if min plays column j against mixed strategy X

min
g X S5 0 5 Ax
2 1 0 0 5
max: 4 A: 1 1 0 5
A4 0 1 1 5
A%X:6 8 4

Min plays x = (.5,0,.5), max gets at most .5 = game val < .5.
Max plays X = (.2, .4,.4), min pays at least .4 = game val > .4.



mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.
> x; = #times column j played so far.

> X; = #times row / played so far. ... note |x| =|X| #1

e.g. in 21'st round...
min

[y
—

X

max :

O = = 00
e =
= O O

Robinson's update rule (x/|x|, X/|X| converge to optimal):
» Max plays best row against x.

» Min plays best col against X.



mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.

> x; = #times column j played so far.

> X; = #times row / played so far. ... note |x| =|X| #1

e.g. in 21'st round...

min
x:8 1 11 Ax
1 0 0 8
max : 1 1 0 9
— 0 1 1 12 <« max plays

best row against x

Robinson's update rule (x/|x|, X/|X| converge to optimal):
» Max plays best row against x.

» Min plays best col against X.



mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.

> x; = #times column j played so far.

> X; = #times row / played so far. ... note |x| =|X| #1
e.g. in 21'st round...
min |
X
1 1 0 O
max : 10 1 1 0
9 0 1 1
Ax:11 19 9

T min plays best col against X
Robinson's update rule (x/|x|, X/|X| converge to optimal):
» Max plays best row against x.

» Min plays best col against X.



mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.

> x; = #times column j played so far.

> X; = #times row i played so far. ... note |x| = [%] #1
e.g. in 21'st round...
min |

% x:8 1 11 Ax

1 1 0 0 8
max : 10 1 1 0 9

— 9 0 1 1 12 <« max plays
A%:11 19 9 best row against x

T min plays best col against X
Robinson's update rule (x/|x|, X/|X| converge to optimal):
» Max plays best row against x.

» Min plays best col against X.



algorithm = smoothed fictitious play
random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

e.g. in round 201: min e=.1
x:80 10 110 , b
1 0 0 80 €8
max : 1 1 0 90 €°
0 1 1 120 e!2

» max plays random row i from distribution p/|p|
where p; = exp( €Ajx) — concentrated on best columns against x



algorithm = smoothed fictitious play
random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

e.g. in round 201: min e=.1
X
10 1 0 0
max : 100 1 1 0
90 0 1 1
AT :110 190 90
prell e 19 o9

» min plays random column j from distribution p/|p|
where p; = exp(—£AX) — concentrated on best rows against



algorithm = smoothed fictitious play
random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

e.g. in round 201: min e=.1
g x:80 10 110, b
10 1 0 0 80 €8
max : 100 1 1 0 90 &€°
90 0 1 1 120 e®?
A% :110 190 90
,fJ : efll 6719 e79

» max plays random row i from distribution p/|p|
where p; = exp( €Ajx) — concentrated on best columns against x

» min plays random column j from distribution p/|p|
where p; = exp(—£AX) — concentrated on best rows against

STOP when max; Ajx & In(n)/e2 or min; Ajk = In(n)/e2.



correctness

With high probability, mixed strategies x/|x| for min
and x/|X| for max are (1 £ O(¢))-optimal.

Proof.

Recall p; = exp(eA;x), pj = exp(—£AjX), min plays from p, max from p.

By algebra: 1P > 1P| \p[ ~ l+¢ P AAX—&—ATAX
[Pl % | || I

By update rule, E[Ax] = & and E[AX] =

- \ |
= expectation of r.h.s. equals 1 (i.e., |p| X |p| non-increasing)

= (whp.) |p| x [p| = n°®)
= max; Aix < minj Ai& + O(In(n)/¢).

Stopping cond'n and weak duality = (1 £ O(e))-optimal. O



implementation in time O(n? + nlog(n)/c?)
» max plays random /i from p, where p; = exp( €A;x)
» min plays random j from p, where p; = exp(—eAJTf()
STOP when max; Ajx ~ In(n)/e? or min; AT% ~ In(n) /.
Bottleneck is maintaining p, p (i.e., Ax, A'X):

Ax : +1 AAx

Do work for each increase in a row payoff A;x...

but A;x < In(n)/e2, so total work O(nlog(n)/e?).



implementation in time O(n? + nlog(n)/c?)
» max plays random /i from p, where p; = exp( €A;x)
» min plays random j from p, where p; = exp(—eAJTf()
STOP when max; Ajx ~ In(n)/e? or min; AT% ~ In(n) /.
Bottleneck is maintaining p, p (i.e., Ax, A'X):

AX

0

1 1

+1 1
1

= = O O

AAX: + +
Do work for each increase in a row payoff A;x...
or a column payoff Aj%... (7!)
but A;x < In(n)/e2, so total work O(nlog(n)/e?).



implementation in time O(n? + nlog(n)/c?)
» max plays random /i from p, where p; = exp( €A;x)
» min plays random j from p, where p; = exp(—eAJTf()
STOP when max; Ajx ~ In(n)/e? or min; AT% ~ In(n) /.
Bottleneck is maintaining p, p (i.e., Ax, A'X):

AX

0

1 1

+1 1
1

= = O O

AA'X : + +

Do work for each increase in a row payoff A;x...
or a column payoff Aj%... (7!)
but A;x < In(n)/e2, so total work O(nlog(n)/e?).
fix: delete column j when Af% > In(n)/e2... (O(n?) time)



generalizing to any non-negative matrix A

» adapt ideas for width-independence (Garg/Konemann 1998)
» random sampling to deal with small Aj;

> preprocess matrix — approximately sort within each row & column

running time for N non-zeros, r rows, c cols:

O(N + (r + c) log(N)/e?).



practical performance

» first implementation: 10n? + 75nlog(n)/e? basic op's
» simplex (GLPK): at least 5n3 basic op’s for ¢ < 0.05

16384 .
‘ epsilon = 0.0Zf/
epsilon =001 ——
4096 - ﬁﬂm‘ré 0.005 ——
//// - 7
- .
1024 |- - ]
- -
T P g
256 |- /// P 4
/// _
64 [ -
speedup: e =
16 |- // - 4
— i -
_— - _—
4 = = - b
1 / b
025 | |
0.0625 L L L L L 1 L
1024 2048 4096 8192 16384 32768 65536

n = rows, columns



conclusion

For dense matrices with thousands of rows and columns, the
algorithm finds near-optimal solution much faster than Simplex!

open problems:
» improve Luby & Nisan's parallel algorithm (1993)
» mixed packing/covering problems
» implicitly defined problems (e.g. multicommodity flow)

» dynamic problems



	introduction
	fractional packing and covering
	practical motivation
	playing a zero-sum game
	fictitious play
	Grigoriadis and Khachiyan
	correctness
	running time
	generalizing
	practical performance
	conclusion

