
Fictitious Play beats Simplex
for fractional packing and covering

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

June 28, 2007

fractional packing and covering
Linear programming with non-negative coefficents.
Equivalent to solving a zero-sum matrix game A with non-negative coefficients:

Theorem (von Neumann’s Min-Max Theorem 1928)

min
x

max
i

Aix = max
x̂

min
j

AT
j x̂

x: mixed strategy for min (column) player
x̂ : mixed strategy for max (row) player
i : row, j: column

I How to compute (1± ε)-optimal x and x̂ quickly?

I Simplex algorithm: Ω(n3) time for dense n × n matrix.

This talk: O(n2 + n log(n)/ε2) time.

practical performance versus simplex

speedup:

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 1024 2048 4096 8192 16384 32768 65536

epsilon = 0.02
epsilon = 0.01

epsilon = 0.005

n = rows, columns

playing a zero-sum game

I x = mixed strategy for min

I Aix = payoff if max plays row i against mixed strategy x

I x̂ = mixed strategy for max

I AT
j x̂ = payoff if min plays column j against mixed strategy x̂

min
x : .5 0 .5

x̂

Ax

.2

1 0 0 .5
max :

.4

A : 1 1 0 .5

.4

0 1 1 .5 ← max gets ≤ 5

ATx̂ : .6 .8 .4
↑

Min plays x = (.5, 0, .5), max gets at most .5 ⇒ game val ≤ .5.

Max plays x̂ = (.2, .4, .4), min pays at least .4⇒ game val ≥ .4.

playing a zero-sum game

I x = mixed strategy for min

I Aix = payoff if max plays row i against mixed strategy x

I x̂ = mixed strategy for max

I AT
j x̂ = payoff if min plays column j against mixed strategy x̂

min

x : .5 0 .5

x̂

Ax

.2 1 0 0

.5

max : .4 A : 1 1 0

.5

.4 0 1 1

.5 ← max gets ≤ 5

ATx̂ : .6 .8 .4
↑

Min plays x = (.5, 0, .5), max gets at most .5 ⇒ game val ≤ .5.

Max plays x̂ = (.2, .4, .4), min pays at least .4⇒ game val ≥ .4.

playing a zero-sum game

I x = mixed strategy for min

I Aix = payoff if max plays row i against mixed strategy x

I x̂ = mixed strategy for max

I AT
j x̂ = payoff if min plays column j against mixed strategy x̂

min
x : .5 0 .5x̂ Ax

.2 1 0 0 .5
max : .4 A : 1 1 0 .5

.4 0 1 1 .5

← max gets ≤ 5

ATx̂ : .6 .8 .4

↑

Min plays x = (.5, 0, .5), max gets at most .5 ⇒ game val ≤ .5.

Max plays x̂ = (.2, .4, .4), min pays at least .4⇒ game val ≥ .4.

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.

I xj = #times column j played so far.

I x̂i = #times row i played so far. ... note |x | = |x̂ | 6= 1

e.g. in 21’st round...
min

↓

x : 8 1 11

x̂ Ax
1

1 0 0

8

max :

10

1 1 0

9
→ 9

0 1 1

12 ← max plays
best row against xATx̂ : 11 19 9

↑ min plays best col against x̂

Robinson’s update rule (x/|x |, x̂/|x̂ | converge to optimal):

I Max plays best row against x .

I Min plays best col against x̂ .

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.

I xj = #times column j played so far.

I x̂i = #times row i played so far. ... note |x | = |x̂ | 6= 1

e.g. in 21’st round...
min

↓

x : 8 1 11

x̂

Ax

1

1 0 0 8
max :

10

1 1 0 9
→

9

0 1 1 12 ← max plays
best row against x

ATx̂ : 11 19 9
↑ min plays best col against x̂

Robinson’s update rule (x/|x |, x̂/|x̂ | converge to optimal):

I Max plays best row against x .

I Min plays best col against x̂ .

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.

I xj = #times column j played so far.

I x̂i = #times row i played so far. ... note |x | = |x̂ | 6= 1

e.g. in 21’st round...
min ↓

x : 8 1 11

x̂

Ax

1 1 0 0

8

max : 10 1 1 0

9
→

9 0 1 1

12 ← max plays
best row against x

ATx̂ : 11 19 9
↑ min plays best col against x̂

Robinson’s update rule (x/|x |, x̂/|x̂ | converge to optimal):

I Max plays best row against x .

I Min plays best col against x̂ .

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.

I xj = #times column j played so far.

I x̂i = #times row i played so far. ... note |x | = |x̂ | 6= 1

e.g. in 21’st round...
min ↓

x : 8 1 11x̂ Ax
1 1 0 0 8

max : 10 1 1 0 9
→ 9 0 1 1 12 ← max plays

best row against xATx̂ : 11 19 9
↑ min plays best col against x̂

Robinson’s update rule (x/|x |, x̂/|x̂ | converge to optimal):

I Max plays best row against x .

I Min plays best col against x̂ .

algorithm = smoothed fictitious play
random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

e.g. in round 201: ε = .1min
x : 80 10 110

x̂

Ax p

10

1 0 0 80 e8

max :

100

1 1 0 90 e9

90

0 1 1 120 e12

ATx̂ : 110 190 90

p̂ : e−11 e−19 e−9

I max plays random row i from distribution p/|p|
where pi = exp(εAix) – concentrated on best columns against x

I min plays random column j from distribution p̂/|p̂|
where p̂j = exp(−εAT

j x̂) – concentrated on best rows against x̂

STOP when maxi Aix ≈ ln(n)/ε2 or minj AT
j x̂ ≈ ln(n)/ε2.

algorithm = smoothed fictitious play
random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

e.g. in round 201: ε = .1min

x : 80 10 110

x̂

Ax p

10 1 0 0

80 e8

max : 100 1 1 0

90 e9

90 0 1 1

120 e12

ATx̂ : 110 190 90

p̂ : e−11 e−19 e−9

I max plays random row i from distribution p/|p|
where pi = exp(εAix) – concentrated on best columns against x

I min plays random column j from distribution p̂/|p̂|
where p̂j = exp(−εAT

j x̂) – concentrated on best rows against x̂

STOP when maxi Aix ≈ ln(n)/ε2 or minj AT
j x̂ ≈ ln(n)/ε2.

algorithm = smoothed fictitious play
random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

e.g. in round 201: ε = .1min
x : 80 10 110x̂ Ax p

10 1 0 0 80 e8

max : 100 1 1 0 90 e9

90 0 1 1 120 e12

ATx̂ : 110 190 90

p̂ : e−11 e−19 e−9

I max plays random row i from distribution p/|p|
where pi = exp(εAix) – concentrated on best columns against x

I min plays random column j from distribution p̂/|p̂|
where p̂j = exp(−εAT

j x̂) – concentrated on best rows against x̂

STOP when maxi Aix ≈ ln(n)/ε2 or minj AT
j x̂ ≈ ln(n)/ε2.

correctness

With high probability, mixed strategies x/|x | for min
and x̂/|x̂ | for max are (1± O(ε))-optimal.

Proof.
Recall pi = exp(εAix), p̂j = exp(−εAT

j x̂), min plays from p̂, max from p.

By algebra:
|p′| × |p̂′|
|p| × |p̂|

≈ 1 + ε
pT

|p|
A∆x − ε

p̂T

|p̂|
AT∆x̂ .

By update rule, E[∆x] = p̂
|p̂| and E[∆x̂] = p

|p|

⇒ expectation of r.h.s. equals 1 (i.e., |p| × |p̂| non-increasing)

⇒ (w.h.p.) |p| × |p̂| = nO(1)

⇒ maxi Aix ≤ minj AT
j x̂ + O(ln(n)/ε).

Stopping cond’n and weak duality ⇒ (1± O(ε))-optimal.

implementation in time O(n2 + n log(n)/ε2)

I max plays random i from p, where pi = exp(εAix)

I min plays random j from p̂, where p̂j = exp(−εAT
j x̂)

STOP when maxi Aix ≈ ln(n)/ε2 or minj AT
j x̂ ≈ ln(n)/ε2.

Bottleneck is maintaining p, p̂ (i.e., Ax , ATx̂):

∆x : + 1

∆x̂

∆Ax
1 0 0
1 1 0 + 1

+ 1

0 1 1 + 1

∆ATx̂ : + 1 + 1

Do work for each increase in a row payoff Aix ...

or a column payoff AT
j x̂ ... (?!)

but Aix ≤ ln(n)/ε2, so total work O(n log(n)/ε2).

fix: delete column j when AT
j x̂ ≥ ln(n)/ε2... (O(n2) time)

implementation in time O(n2 + n log(n)/ε2)

I max plays random i from p, where pi = exp(εAix)

I min plays random j from p̂, where p̂j = exp(−εAT
j x̂)

STOP when maxi Aix ≈ ln(n)/ε2 or minj AT
j x̂ ≈ ln(n)/ε2.

Bottleneck is maintaining p, p̂ (i.e., Ax , ATx̂):

∆x : + 1

∆x̂

∆Ax

1 0 0
1 1 0

+ 1

+ 1 0 1 1

+ 1

∆ATx̂ : + 1 + 1

Do work for each increase in a row payoff Aix ...
or a column payoff AT

j x̂ ... (?!)

but Aix ≤ ln(n)/ε2, so total work O(n log(n)/ε2).

fix: delete column j when AT
j x̂ ≥ ln(n)/ε2... (O(n2) time)

implementation in time O(n2 + n log(n)/ε2)

I max plays random i from p, where pi = exp(εAix)

I min plays random j from p̂, where p̂j = exp(−εAT
j x̂)

STOP when maxi Aix ≈ ln(n)/ε2 or minj AT
j x̂ ≈ ln(n)/ε2.

Bottleneck is maintaining p, p̂ (i.e., Ax , ATx̂):

∆x : + 1

∆x̂

∆Ax

1 0 0
1 1 0

+ 1

+ 1 0 1 1

+ 1

∆ATx̂ : + 1 + 1

Do work for each increase in a row payoff Aix ...
or a column payoff AT

j x̂ ... (?!)

but Aix ≤ ln(n)/ε2, so total work O(n log(n)/ε2).

fix: delete column j when AT
j x̂ ≥ ln(n)/ε2... (O(n2) time)

generalizing to any non-negative matrix A

I adapt ideas for width-independence (Garg/Könemann 1998)

I random sampling to deal with small Aij

I preprocess matrix — approximately sort within each row & column

running time for N non-zeros, r rows, c cols:

O(N + (r + c) log(N)/ε2).

practical performance

I first implementation: 10n2 + 75n log(n)/ε2 basic op’s

I simplex (GLPK): at least 5n3 basic op’s for ε ≤ 0.05

speedup:

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 1024 2048 4096 8192 16384 32768 65536

epsilon = 0.02
epsilon = 0.01

epsilon = 0.005

n = rows, columns

conclusion

For dense matrices with thousands of rows and columns, the
algorithm finds near-optimal solution much faster than Simplex!

open problems:

I improve Luby & Nisan’s parallel algorithm (1993)

I mixed packing/covering problems

I implicitly defined problems (e.g. multicommodity flow)

I dynamic problems

	introduction
	fractional packing and covering
	practical motivation
	playing a zero-sum game
	fictitious play
	Grigoriadis and Khachiyan
	correctness
	running time
	generalizing
	practical performance
	conclusion

