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fractional packing and covering

Linear programming with non-negative coefficents.

Equivalent to solving a zero-sum matrix game A with non-negative coefficients:

Theorem (von Neumann's Min-Max Theorem 1928)
min max Aix = max min A%
X i X j

x: mixed strategy for min (column) player
X: mixed strategy for max (row) player
i row, j: column

» How to compute (1 + ¢)-optimal x and X quickly?

» Simplex algorithm: Q(n?) time for dense n x n matrix.

This talk: O(n? + nlog(n)/e?) time.



practical performance versus simplex

16384 T
epsilon = 0.02
epsilon =001 ———

4096 epsilon= 0A0057/,

1024

256

speedup: o

16

4

1

0.25

0.0625
1024 2048 4096 8192 16384 32768 65536

n = rows, columns




playing a zero-sum game

» x = mixed strategy for min

» A;x = payoff if max plays row i against mixed strategy x
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Min plays x = (.5,0,.5), max gets at most .5 = game val < .5.
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Max plays X = (.2, .4,.4), min pays at least .4 = game val > .4.



playing a zero-sum game

» x = mixed strategy for min
» A;x = payoff if max plays row i against mixed strategy x
» X = mixed strategy for max

> AJT>A< = payoff if min plays column j against mixed strategy X
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Min plays x = (.5,0,.5), max gets at most .5 = game val < .5.
Max plays X = (.2, .4,.4), min pays at least .4 = game val > .4.



mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.
> x; = #times column j played so far.

> X; = #times row / played so far. ... note |x| =|X| #1

e.g. in 21'st round...
min
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Robinson's update rule (x/|x|, X/|X| converge to optimal):
» Max plays best row against x.

» Min plays best col against X.
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mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy,
chosen by considering only opponent’s past plays.

> x; = #times column j played so far.

> X; = #times row i played so far. ... note |x| = [%] #1
e.g. in 21'st round...
min |
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T min plays best col against X
Robinson's update rule (x/|x|, X/|X| converge to optimal):
» Max plays best row against x.

» Min plays best col against X.



algorithm = smoothed fictitious play
random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

e.g. in round 201: min e=.1
x:80 10 110 , b
1 0 0 80 €8
max : 1 1 0 90 €°
0 1 1 120 e!2

» max plays random row i from distribution p/|p|
where p; = exp( €Ajx) — concentrated on best columns against x
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algorithm = smoothed fictitious play
random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

e.g. in round 201: min e=.1
g x:80 10 110, b
10 1 0 0 80 €8
max : 100 1 1 0 90 &€°
90 0 1 1 120 e®?
A% :110 190 90
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» max plays random row i from distribution p/|p|
where p; = exp( €Ajx) — concentrated on best columns against x

» min plays random column j from distribution p/|p|
where p; = exp(—£AX) — concentrated on best rows against

STOP when max; Ajx & In(n)/e2 or min; Ajk = In(n)/e2.



correctness

With high probability, mixed strategies x/|x| for min
and x/|X| for max are (1 £ O(¢))-optimal.

Proof.

Recall p; = exp(eA;x), pj = exp(—£AjX), min plays from p, max from p.

By algebra: 1P > 1P| \p[ ~ l+¢ P AAX—&—ATAX
[Pl % | || I

By update rule, E[Ax] = & and E[AX] =

- \ |
= expectation of r.h.s. equals 1 (i.e., |p| X |p| non-increasing)

= (whp.) |p| x [p| = n°®)
= max; Aix < minj Ai& + O(In(n)/¢).

Stopping cond'n and weak duality = (1 £ O(e))-optimal. O



implementation in time O(n? + nlog(n)/c?)
» max plays random /i from p, where p; = exp( €A;x)
» min plays random j from p, where p; = exp(—eAJTf()
STOP when max; Ajx ~ In(n)/e? or min; AT% ~ In(n) /.
Bottleneck is maintaining p, p (i.e., Ax, A'X):

Ax : +1 AAx

Do work for each increase in a row payoff A;x...

but A;x < In(n)/e2, so total work O(nlog(n)/e?).
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implementation in time O(n? + nlog(n)/c?)
» max plays random /i from p, where p; = exp( €A;x)
» min plays random j from p, where p; = exp(—eAJTf()
STOP when max; Ajx ~ In(n)/e? or min; AT% ~ In(n) /.
Bottleneck is maintaining p, p (i.e., Ax, A'X):
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AA'X : + +

Do work for each increase in a row payoff A;x...
or a column payoff Aj%... (7!)
but A;x < In(n)/e2, so total work O(nlog(n)/e?).
fix: delete column j when Af% > In(n)/e2... (O(n?) time)



generalizing to any non-negative matrix A

» adapt ideas for width-independence (Garg/Konemann 1998)
» random sampling to deal with small Aj;

> preprocess matrix — approximately sort within each row & column

running time for N non-zeros, r rows, c cols:

O(N + (r + c) log(N)/e?).



practical performance

» first implementation: 10n? + 75nlog(n)/e? basic op's
» simplex (GLPK): at least 5n3 basic op’s for ¢ < 0.05
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conclusion

For dense matrices with thousands of rows and columns, the
algorithm finds near-optimal solution much faster than Simplex!

open problems:
» improve Luby & Nisan's parallel algorithm (1993)
» mixed packing/covering problems
» implicitly defined problems (e.g. multicommodity flow)

» dynamic problems
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