Fictitious Play beats Simplex for fractional packing and covering

Christos Koufogiannakis and Neal E. Young
University of California, Riverside

June 28, 2007

fractional packing and covering

Linear programming with non-negative coefficents.
Equivalent to solving a zero-sum matrix game A with non-negative coefficients:

Theorem (von Neumann's Min-Max Theorem 1928)

$$
\begin{aligned}
\min _{x} & \max _{i} A_{i} x=\max _{\hat{x}} \min _{j} A_{j}^{\top} \hat{x} \\
& x: \text { mixed strategy for min (column) player } \\
& \hat{x}: \text { mixed strategy for max (row) player } \\
& i: \text { row, } j: \text { column }
\end{aligned}
$$

- How to compute ($1 \pm \varepsilon$)-optimal x and \hat{x} quickly?
- Simplex algorithm: $\Omega\left(n^{3}\right)$ time for dense $n \times n$ matrix.

This talk: $O\left(n^{2}+n \log (n) / \varepsilon^{2}\right)$ time.

practical performance versus simplex

playing a zero-sum game

- $x=$ mixed strategy for min
- $A_{i} x=$ payoff if max plays row i against mixed strategy x

	\min						
	$x: .5$	0	.5	$A x$			
$\max :$	$A:$	1	1	0			
	.5						
	0	1	1	.5			

Min plays $x=(.5,0, .5)$, max gets at most $.5 \Rightarrow$ game val $\leq .5$.

playing a zero-sum game

- $x=$ mixed strategy for min
- $A_{i} x=$ payoff if max plays row i against mixed strategy x
- $\hat{x}=$ mixed strategy for max
- $A_{j}^{\top} \hat{x}=$ payoff if min plays column j against mixed strategy \hat{x}

$$
\min
$$

	.2		1	0	0
	.4	$A:$	1	1	0
	.4		0	1	1
		$A^{\top} \hat{x}$	$:$.		.8

Max plays $\hat{x}=(.2, .4, .4)$, min pays at least $.4 \Rightarrow$ game val $\geq .4$.

playing a zero-sum game

- $x=$ mixed strategy for min
- $A_{i} x=$ payoff if max plays row i against mixed strategy x
- $\hat{x}=$ mixed strategy for max
- $A_{j}^{\top} \hat{x}=$ payoff if min plays column j against mixed strategy \hat{x}

			min		
	\hat{x}	x: . 5	0	. 5	Ax
	. 2	1	0	0	. 5
max :	. 4	A: 1	1	0	. 5
	. 4	0	1	1	. 5
		$A^{\top} \hat{x}: .6$. 8	. 4	

Min plays $x=(.5,0, .5)$, max gets at most $.5 \Rightarrow$ game val $\leq .5$. Max plays $\hat{x}=(.2, .4, .4)$, min pays at least $.4 \Rightarrow$ game val $\geq .4$.

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy, chosen by considering only opponent's past plays.

- $x_{j}=$ \#times column j played so far.
- $\hat{x}_{i}=$ \#times row i played so far.
... note $|x|=|\hat{x}| \neq 1$
e.g. in 21'st round...

	\min		
$\max :$	1	1	
	11		
	1	1	
0	0		
	0	1	

Robinson's update rule ($x /|x|, \hat{x} /|\hat{x}|$ converge to optimal):

- Max plays best row against x.
- Min plays best col against \hat{x}.

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy, chosen by considering only opponent's past plays.

- $x_{j}=$ \#times column j played so far.
- $\hat{x}_{i}=$ \#times row i played so far.
... note $|x|=|\hat{x}| \neq 1$
e.g. in 21'st round...

	\min				
	1	11	$A x$		
	1	0	0	8	
$\max :$	1	1	0	9	
\rightarrow	0	1	1	12	\leftarrow max plays
					best row against x

Robinson's update rule ($x /|x|, \hat{x} /|\hat{x}|$ converge to optimal):

- Max plays best row against x.
- Min plays best col against \hat{x}.

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy, chosen by considering only opponent's past plays.

- $x_{j}=$ \#times column j played so far.
- $\hat{x}_{i}=$ \#times row i played so far.
... note $|x|=|\hat{x}| \neq 1$
e.g. in 21'st round...

$$
\min \quad \downarrow
$$

Robinson's update rule ($x /|x|, \hat{x} /|\hat{x}|$ converge to optimal):

- Max plays best row against x.
- Min plays best col against \hat{x}.

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy, chosen by considering only opponent's past plays.

- $x_{j}=$ \#times column j played so far.
- $\hat{x}_{i}=$ \#times row i played so far.
... note $|x|=|\hat{x}| \neq 1$
e.g. in 21'st round...

			\min	\downarrow		
	\hat{x}	$x: 8$	1	11	$A x$	
	1	1	0	0	8	
$\max :$	10	1	1	0	9	
\rightarrow	9	0	1	1	12	\leftarrow max plays
		$A^{\top} \hat{x}: 11$	19	9		best row against x
		min plays best col against \hat{x}				

Robinson's update rule ($x /|x|, \hat{x} /|\hat{x}|$ converge to optimal):

- Max plays best row against x.
- Min plays best col against \hat{x}.
algorithm $=$ smoothed fictitious play random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)
e.g. in round 201:

\min				
	10	110	$A x$	p
1	0	0	80	e^{8}
1	1	0	90	e^{9}
0	1	1	120	e^{12}

- max plays random row i from distribution $p /|p|$ where $p_{i}=\exp \left(\varepsilon A_{i} x\right)$ - concentrated on best columns against x
algorithm $=$ smoothed fictitious play random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice) e.g. in round 201: \min $\varepsilon=.1$

	\hat{x}			
	10	1	0	0
$\max :$	100	1	1	0
	90	0	1	1
		$A^{\top} \hat{x}: 110$	190	90
		$\hat{p}: e^{-11}$	e^{-19}	e^{-9}

- min plays random column j from distribution $\hat{p} /|\hat{p}|$ where $\hat{p}_{j}=\exp \left(-\varepsilon A_{j}^{\top} \hat{x}\right)$ - concentrated on best rows against \hat{x}
algorithm $=$ smoothed fictitious play random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice) e.g. in round 201:

$$
\min
$$

$\varepsilon=.1$

	\hat{x}	$x: 80$	10	110	Ax	p
	10	1	0	0	80	e^{8}
max :	100	1	1	0	90	e^{9}
	90	0	1	1	120	e^{12}
		$A^{\top} \hat{x}: 110$	190	90		
		$\hat{p}: e^{-11}$	e^{-19}	e^{-9}		

- max plays random row i from distribution $p /|p|$ where $p_{i}=\exp \left(\varepsilon A_{i} x\right)$ - concentrated on best columns against x
- min plays random column j from distribution $\hat{p} /|\hat{p}|$ where $\hat{p}_{j}=\exp \left(-\varepsilon A_{j}^{\top} \hat{x}\right)-$ concentrated on best rows against \hat{x}

STOP when $\max _{i} A_{i} x \approx \ln (n) / \varepsilon^{2}$ or $\min _{j} A_{j}^{\top} \hat{x} \approx \ln (n) / \varepsilon^{2}$.

correctness

With high probability, mixed strategies $x /|x|$ for min and $\hat{x} /|\hat{x}|$ for max are $(1 \pm O(\varepsilon))$-optimal.

Proof.

Recall $p_{i}=\exp \left(\varepsilon A_{i} x\right), \hat{p}_{j}=\exp \left(-\varepsilon A_{j}^{\top} \hat{x}\right)$, min plays from \hat{p}, \max from p.

$$
\text { By algebra: } \quad \frac{\left|p^{\prime}\right| \times\left|\hat{p}^{\prime}\right|}{|p| \times|\hat{p}|} \approx 1+\varepsilon \frac{p^{\top}}{|p|} A \Delta x-\varepsilon \frac{\hat{p}^{\top}}{|\hat{p}|} A^{\top} \Delta \hat{x}
$$

By update rule, $\mathrm{E}[\Delta x]=\frac{\hat{p}}{|\hat{p}|}$ and $\mathrm{E}[\Delta \hat{x}]=\frac{p}{|p|}$
\Rightarrow expectation of r.h.s. equals 1 (i.e., $|p| \times|\hat{p}|$ non-increasing)

$$
\begin{aligned}
& \Rightarrow \text { (w.h.p.) }|p| \times|\hat{p}|=n^{O(1)} \\
& \quad \Rightarrow \max _{i} A_{i} \times \leq \min _{j} A_{j}^{\top} \hat{x}+O(\ln (n) / \varepsilon)
\end{aligned}
$$

Stopping cond'n and weak duality $\Rightarrow(1 \pm O(\varepsilon))$-optimal.

implementation in time $O\left(n^{2}+n \log (n) / \varepsilon^{2}\right)$

- max plays random i from p, where $p_{i}=\exp \left(\varepsilon A_{i} x\right)$
- min plays random j from \hat{p}, where $\hat{p}_{j}=\exp \left(-\varepsilon A_{j}^{\top} \hat{x}\right)$

STOP when $\max _{i} A_{i} x \approx \ln (n) / \varepsilon^{2}$ or $\min _{j} A_{j}^{\top} \hat{x} \approx \ln (n) / \varepsilon^{2}$.
Bottleneck is maintaining p, \hat{p} (i.e., $A x, A^{\top} \hat{x}$):

$\Delta x:$	+1		$\Delta A x$
1	0	0	
1	1	0	+1
0	1	1	+1

Do work for each increase in a row payoff $A_{i} \times \ldots$ but $A_{i x} \leq \ln (n) / \varepsilon^{2}$, so total work $O\left(n \log (n) / \varepsilon^{2}\right)$.

implementation in time $O\left(n^{2}+n \log (n) / \varepsilon^{2}\right)$

- max plays random i from p, where $p_{i}=\exp \left(\varepsilon A_{i} x\right)$
- min plays random j from \hat{p}, where $\hat{p}_{j}=\exp \left(-\varepsilon A_{j}^{\top} \hat{x}\right)$

STOP when $\max _{i} A_{i} x \approx \ln (n) / \varepsilon^{2}$ or $\min _{j} A_{j}^{\top} \hat{x} \approx \ln (n) / \varepsilon^{2}$.
Bottleneck is maintaining p, \hat{p} (i.e., $A x, A^{\top} \hat{x}$):

$$
\left.\begin{array}{rrrr}
\Delta \hat{x} & & & \\
& & 1 & 0 \\
& 1 & 1 & 0 \\
& & 0 & 1
\end{array}\right) 12
$$

Do work for each increase in a row payoff $A_{i} x \ldots$
or a column payoff $A_{j}^{\top} \hat{x} \ldots$ (?!) but $A_{i} x \leq \ln (n) / \varepsilon^{2}$, so total work $O\left(n \log (n) / \varepsilon^{2}\right)$.

implementation in time $O\left(n^{2}+n \log (n) / \varepsilon^{2}\right)$

- max plays random i from p, where $p_{i}=\exp \left(\varepsilon A_{i} x\right)$
- min plays random j from \hat{p}, where $\hat{p}_{j}=\exp \left(-\varepsilon A_{j}^{\top} \hat{x}\right)$

STOP when $\max _{i} A_{i} x \approx \ln (n) / \varepsilon^{2}$ or $\min _{j} A_{j}^{\top} \hat{x} \approx \ln (n) / \varepsilon^{2}$.
Bottleneck is maintaining p, \hat{p} (i.e., $A x, A^{\top} \hat{x}$):

$$
\begin{array}{rrrr}
\Delta \hat{x} & & & \\
& & 1 & 0 \\
& 1 & 1 & 0 \\
+1 & & 0 & 1 \\
& & 1 \\
& \Delta A^{\top} \hat{x}: & +1 & +1
\end{array}
$$

Do work for each increase in a row payoff $A_{i} x \ldots$
or a column payoff $A_{j}^{\top} \hat{x} \ldots$ (?!) but $A_{i x} \leq \ln (n) / \varepsilon^{2}$, so total work $O\left(n \log (n) / \varepsilon^{2}\right)$.
fix: delete column j when $A_{j}^{\top} \hat{x} \geq \ln (n) / \varepsilon^{2} \ldots\left(O\left(n^{2}\right)\right.$ time $)$

generalizing to any non-negative matrix A

- adapt ideas for width-independence (Garg/Könemann 1998)
- random sampling to deal with small $A_{i j}$
- preprocess matrix - approximately sort within each row \& column
running time for N non-zeros, r rows, c cols:

$$
O\left(N+(r+c) \log (N) / \varepsilon^{2}\right)
$$

practical performance

- first implementation: $10 n^{2}+75 n \log (n) / \varepsilon^{2}$ basic op's
- simplex (GLPK): at least $5 n^{3}$ basic op's for $\varepsilon \leq 0.05$

conclusion

For dense matrices with thousands of rows and columns, the algorithm finds near-optimal solution much faster than Simplex!
open problems:

- improve Luby \& Nisan's parallel algorithm (1993)
- mixed packing/covering problems
- implicitly defined problems (e.g. multicommodity flow)
- dynamic problems

