Fictitious Play beats Simplex for fractional packing and covering

Christos Koufogiannakis and Neal E. Young University of California, Riverside

June 28, 2007

・ロト・日本・日本・日本・日本・今日・

fractional packing and covering

Linear programming with non-negative coefficents.

Equivalent to solving a zero-sum matrix game A with non-negative coefficients:

Theorem (von Neumann's Min-Max Theorem 1928)

$$\min_{x} \max_{i} A_{i}x = \max_{\hat{x}} \min_{j} A_{j}^{\mathsf{T}}\hat{x}$$

x: mixed strategy for min (column) player
x: mixed strategy for max (row) player
i: row, j: column

- How to compute $(1 \pm \varepsilon)$ -optimal x and \hat{x} quickly?
- Simplex algorithm: $\Omega(n^3)$ time for dense $n \times n$ matrix.

This talk: $O(n^2 + n \log(n)/\varepsilon^2)$ time.

practical performance versus simplex

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

playing a zero-sum game

- x = mixed strategy for min
- $A_i x =$ payoff if max plays row *i* against mixed strategy x

Min plays x = (.5, 0, .5), max gets at most $.5 \Rightarrow$ game val $\le .5$.

◆□ > ◆□ > ◆豆 > ◆豆 > □ □ ● の < ⊙

playing a zero-sum game

- ► x = mixed strategy for min
- $A_i x =$ payoff if max plays row *i* against mixed strategy x
- $\hat{x} = \text{mixed strategy for max}$
- $A_i^{\mathsf{T}} \hat{x} =$ payoff if min plays column j against mixed strategy \hat{x}

Max plays $\hat{x} = (.2, .4, .4)$, min pays at least $.4 \Rightarrow$ game val $\ge .4$.

playing a zero-sum game

- ► x = mixed strategy for min
- $A_i x =$ payoff if max plays row *i* against mixed strategy x
- $\hat{x} = \text{mixed strategy for max}$
- $A_i^{\mathsf{T}} \hat{x} =$ payoff if min plays column j against mixed strategy \hat{x}

Min plays x = (.5, 0, .5), max gets at most $.5 \Rightarrow$ game val $\le .5$. Max plays $\hat{x} = (.2, .4, .4)$, min pays at least $.4 \Rightarrow$ game val $\ge .4$.

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy, chosen by considering only opponent's past plays.

- $x_j = \#$ times column *j* played so far.
- $\hat{x}_i = \#$ times row *i* played so far.

e.g. in 21'st round...

		min		
	<i>x</i> : 8	1	11	
	1	0	0	
max :	1	1	0	
	0	1	1	

Robinson's update rule $(x/|x|, \hat{x}/|\hat{x}|$ converge to optimal):

- Max plays best row against x.
- Min plays best col against \hat{x} .

... note $|x| = |\hat{x}| \neq 1$

990

... note $|x| = |\hat{x}| \neq 1$

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy, chosen by considering only opponent's past plays.

• $x_j = \#$ times column *j* played so far.

• $\hat{x}_i = \#$ times row *i* played so far.

e.g. in 21'st round...

	<i>x</i> : 8	1	11	Ax	
	1	0	0	8	
max :	1	1	0	9	
\rightarrow	0	1	1	12	\leftarrow max plays
					best row against x

Robinson's update rule $(x/|x|, \hat{x}/|\hat{x}|$ converge to optimal):

- Max plays best row against x.
- Min plays best col against \hat{x} .

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy, chosen by considering only opponent's past plays.

- $x_j = \#$ times column *j* played so far.
- $\hat{x}_i = \#$ times row *i* played so far.

e.g. in 21'st round...

Robinson's update rule $(x/|x|, \hat{x}/|\hat{x}|$ converge to optimal):

- Max plays best row against x.
- Min plays best col against \hat{x} .

... note $|x| = |\hat{x}| \neq 1$

500

... note $|x| = |\hat{x}| \neq 1$

mixed strategies via fictitious play (Brown, Robinson 1951)

Repeated play. In each round each player plays single pure strategy, chosen by considering only opponent's past plays.

- $x_j = \#$ times column *j* played so far.
- $\hat{x}_i = \#$ times row *i* played so far.

e.g. in 21'st round...

			min	\downarrow		
	â	<i>x</i> : 8	1	11	Ax	
	1	1	0	0	8	
max :	10	1	1	0	9	
\rightarrow	9	0	1	1	12	\leftarrow max plays
		$A^{T}\hat{x}: 11$	19	9		best row against x
			\uparrow min plays best col against $\hat{\pmb{\chi}}$			

Robinson's update rule $(x/|x|, \hat{x}/|\hat{x}|$ converge to optimal):

- Max plays best row against x.
- Min plays best col against \hat{x} .

algorithm = smoothed fictitious play

random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

• max plays random row *i* from distribution p/|p|where $p_i = \exp(\varepsilon A_i x)$ – concentrated on best columns against x

algorithm = smoothed fictitious play

random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

• min plays random column *j* from distribution $\hat{p}/|\hat{p}|$ where $\hat{p}_j = \exp(-\varepsilon A_i^T \hat{x})$ – concentrated on best rows against \hat{x}

algorithm = smoothed fictitious play

random play from exp. distribution (a la Grigoriadis/Khachiyan 1995, expert advice)

- max plays random row i from distribution p/|p| where p_i = exp(εA_ix) – concentrated on best columns against x
- min plays random column *j* from distribution $\hat{p}/|\hat{p}|$ where $\hat{p}_j = \exp(-\varepsilon A_i^T \hat{x})$ – concentrated on best rows against \hat{x}

STOP when $\max_i A_i x \approx \ln(n)/\varepsilon^2$ or $\min_j A_i^T \hat{x} \approx \ln(n)/\varepsilon^2$.

correctness

With high probability, mixed strategies x/|x| for min and $\hat{x}/|\hat{x}|$ for max are $(1 \pm O(\varepsilon))$ -optimal.

Proof.

Recall $p_i = \exp(\varepsilon A_i x)$, $\hat{p}_j = \exp(-\varepsilon A_j^{\mathsf{T}} \hat{x})$, min plays from \hat{p} , max from p.

By algebra:
$$\frac{|p'| \times |\hat{p}'|}{|p| \times |\hat{p}|} \approx 1 + \varepsilon \frac{p^{\mathsf{T}}}{|p|} A \Delta x - \varepsilon \frac{\hat{p}^{\mathsf{T}}}{|\hat{p}|} A^{\mathsf{T}} \Delta \hat{x}.$$

By update rule, $\mathrm{E}[\Delta x] = rac{\hat{p}}{|\hat{p}|}$ and $\mathrm{E}[\Delta \hat{x}] = rac{p}{|p|}$

 \Rightarrow expectation of r.h.s. equals 1 (i.e., $|p| \times |\hat{p}|$ non-increasing)

$$\Rightarrow (\text{w.h.p.}) |p| \times |\hat{p}| = n^{O(1)}$$

$$\Rightarrow \max_{i} A_{i}x \leq \min_{j} A_{j}^{\mathsf{T}}\hat{x} + O(\ln(n)/\varepsilon).$$

Stopping cond'n and weak duality \Rightarrow (1 ± $O(\varepsilon)$)-optimal.

implementation in time $O(n^2 + n \log(n) / \varepsilon^2)$

• max plays random *i* from *p*, where $p_i = \exp(\varepsilon A_i x)$

• min plays random j from \hat{p} , where $\hat{p}_j = \exp(-\varepsilon A_j^T \hat{x})$

STOP when $\max_i A_i x \approx \ln(n)/\varepsilon^2$ or $\min_j A_j^{\mathsf{T}} \hat{x} \approx \ln(n)/\varepsilon^2$.

Bottleneck is maintaining p, \hat{p} (i.e., Ax, $A^{T}\hat{x}$):

ΔAx		+1	Δx :
	0	0	1
+1	0	1	1
+ 1	1	1	0

Do work for each increase in a row payoff $A_i x \dots$

but $A_i x \leq \ln(n)/\varepsilon^2$, so total work $O(n \log(n)/\varepsilon^2)$.

implementation in time $O(n^2 + n \log(n) / \varepsilon^2)$

• max plays random *i* from *p*, where $p_i = \exp(\varepsilon A_i x)$

• min plays random j from \hat{p} , where $\hat{p}_j = \exp(-\varepsilon A_i^{\mathsf{T}} \hat{x})$

STOP when $\max_i A_i x \approx \ln(n)/\varepsilon^2$ or $\min_j A_j^{\mathsf{T}} \hat{x} \approx \ln(n)/\varepsilon^2$.

Bottleneck is maintaining p, \hat{p} (i.e., Ax, $A^{T}\hat{x}$):

$\Delta \hat{x}$			
	1	0	0
	1	1	0
+1	0	1	1
	$\Delta A^{T} \hat{x}$:	+ 1	+ 1

Do work for each increase in a row payoff $A_i x ...$ or a column payoff $A_j^T \hat{x} ...$ (?!) but $A_i x \leq \ln(n)/\varepsilon^2$, so total work $O(n \log(n)/\varepsilon^2)$. implementation in time $O(n^2 + n \log(n)/\varepsilon^2)$

• max plays random *i* from *p*, where $p_i = \exp(\varepsilon A_i x)$

• min plays random j from \hat{p} , where $\hat{p}_j = \exp(-\varepsilon A_i^{\mathsf{T}} \hat{x})$

STOP when $\max_i A_i x \approx \ln(n)/\varepsilon^2$ or $\min_j A_j^{\mathsf{T}} \hat{x} \approx \ln(n)/\varepsilon^2$.

Bottleneck is maintaining p, \hat{p} (i.e., Ax, $A^{T}\hat{x}$):

$\Delta \hat{x}$			
	1	0	0
	1	1	0
+ 1	0	1	1
	$\Delta A^{T} \hat{x}$:	+ 1	+ 1

Do work for each increase in a row payoff $A_i x...$ or a column payoff $A_j^T \hat{x}...$ (?!) but $A_i x \leq \ln(n)/\varepsilon^2$, so total work $O(n \log(n)/\varepsilon^2)$. fix: delete column j when $A_j^T \hat{x} \geq \ln(n)/\varepsilon^2...$ ($O(n^2)$ time)

generalizing to any non-negative matrix A

- adapt ideas for width-independence (Garg/Könemann 1998)
- random sampling to deal with small A_{ii}
- preprocess matrix approximately sort within each row & column

running time for N non-zeros, r rows, c cols:

$$O(N + (r + c) \log(N) / \varepsilon^2).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

practical performance

- first implementation: $10n^2 + 75n \log(n)/\varepsilon^2$ basic op's
- simplex (GLPK): at least $5n^3$ basic op's for $\varepsilon \leq 0.05$

◆□> ◆□> ◆目> ◆目> ◆目> ○ へ⊙

conclusion

For dense matrices with thousands of rows and columns, the algorithm finds near-optimal solution much faster than Simplex!

open problems:

- improve Luby & Nisan's parallel algorithm (1993)
- mixed packing/covering problems
- implicitly defined problems (e.g. multicommodity flow)

dynamic problems