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ON A LINEAR PROGRAM FOR MINIMUM-WEIGHT
TRIANGULATION∗

ARMAN YOUSEFI† AND NEAL E. YOUNG‡

Abstract. Minimum-weight triangulation (MWT) is NP-hard. It has a polynomial-time con-
stant-factor approximation algorithm, and a variety of effective polynomial-time heuristics that, for
many instances, can find the exact MWT. Linear programs (LPs) for MWT are well-studied, but
previously no connection was known between any LP and any approximation algorithm or heuristic
for MWT. Here we show the first such connections: For an LP formulation due to Dantzig, Hoffman,
and Hu [Math. Programming, 31 (1985), pp. 1–14], (i) the integrality gap is constant, and (ii) given
any instance, if the aforementioned heuristics find the MWT, then so does the LP.
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1. Introduction. In 1979, Garey and Johnson [16] listed minimum-weight tri-
angulation (MWT) as one of a dozen important problems known to be neither in P
nor NP-hard. In 2006 the problem was finally shown to be NP-hard [29]. The problem
has a subexponential time exact algorithm [33], as well as a polynomial-time approx-
imation scheme (PTAS) for random inputs [19]. Currently it is not known whether,
for some constant c > 1, finding a c-approximation is NP-hard, but this is unlikely, as
a quasi–polynomial-time approximation scheme exists [32]. MWT has an O(log n)-
approximation algorithm [31] and, most important here, an O(1)-approximation al-
gorithm called QuasiGreedy [25]. The constant in the big-O upper bound from [25]
is astronomically large.

If restricted to simple polygons, MWT has a well-known O(n3)-time dynamic-
programming algorithm [18, 23]. Polynomial-time algorithms also exist for instances
with a constant number of “shells” [2] and for instances with only a constant number
of vertices in the interior of the region R to be triangulated [17, sect. 2.5.1]; also see
[20, 5, 34, 24].

Linear program (LP) of Dantzig, Hoffman, and Hu for MWT. Linear-programming
methods are a primary paradigm for the design of approximation algorithms. For
many hard combinatorial optimization problems, especially so-called packing and
covering problems, the polynomial-time approximation algorithm with the best ap-
proximation ratio is based on linear programming, either via randomized rounding
or the primal-dual method. The design of a good approximation algorithm is often
synonymous with bounding the integrality gap of an underlying LP.

MWT has several straightforward linear-programming relaxations. Studying their
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integrality gaps may lead to better approximation algorithms, or may widen our
understanding of general methods and their limitations (as standard randomized
rounding and primal-dual approaches may be insufficient for MWT).

Dantzig, Hoffman, and Hu [8] introduce the following LP (presented here as re-
formulated by [10]). Below, � denotes the set of empty triangles.1 R denotes the
region to be triangulated, minus the sides of triangles in �. The LP asks to assign a
nonnegative weight Xt to each triangle t ∈ � so that, for each point p in the region,
the triangles containing it are assigned total weight 1:

(1.1) minimize c(X) =
∑
t∈�

c(t)Xt subject to X ∈ R
�
≥0 and (∀p ∈ R)

∑
t�p

Xt = 1.

Above, R�
≥0 is the set of vectors of nonnegative reals, indexed by the triangles in �.

The cost c(t) of triangle t is the sum over the edges e in t of the cost c(e) of the edge,
defined to be |e|/2 (the length of e), unless e is on the boundary of R, in which case
the cost is |e|. (Internal edges are discounted by 1/2 since any internal edge occurs
in either zero or two triangles in any triangulation.) R as specified is infinite, but
can easily be restricted to a polynomial-size set of points without weakening the LP.
(E.g., let R contain, for each possible edge e, two points p and q, each on one side of
e and very near e.)

For the simple-polygon case, the above LP finds the exact MWT (every extreme
point has 0/1 coordinates, and so corresponds to a triangulation). This was shown by
Dantzig, Hoffman, and Hu [8, Thm. 7], then (apparently independently) by De Loera
et al. [10, Thm. 4.1(i)] and Kirsanov [22, Cor. 3.6.2]. For summaries of these results,
see [11, Chap. 8] and [36]. Kirsanov describes an instance (a 13-gon with a point at
the center) for which this LP has integrality gap just above 1, as well as instances (50
random points equidistant from a center point) that are solved by the LP but not by
the heuristics described later.

Other authors have considered edge-based LPs, mainly for use in branch-and-
bound [26, 27, 30, 35, 3]. These edge-based LPs have unbounded integrality gaps.

LPs for maximal independent sets, which are well-studied, are closely related to
all of the above LPs, as triangulations can be defined as maximal independent sets
of triangles (or of edges). The above LPs enforce some, but not all, well-studied
inequalities for maximal independent sets.

It is known to be NP-hard to determine whether there exists a triangulation
whose edge set is a subset of a given set S [28]. For a given set S, if we change the
cost function in the above LP to c(X) =

∑
e/∈S

∑
t�e Xt, the LP will have a zero-cost

integer solution iff there is such a triangulation. Unless P = NP, this implies that
the LP with that cost function has unbounded integrality gap.2 Thus, any bound on
the integrality gap of the LP with the MWT cost function must rely intrinsically on
that cost function. Similarly, given an arbitrary fractional solution X , it is NP-hard

1That is, triangles lying in the region to be triangulated, whose vertices are in the given set of
points, but otherwise contain none of the given points.

2If the LP has bounded integrality gap, it has a zero-cost fractional solution iff it has a zero-cost
integer solution.
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to determine whether there is an integer solution in the support of X .3 These are
obstacles to standard randomized-rounding methods.

First new result: Integrality gap is constant. We show that LP (1.1) has constant
integrality gap. This is the first nontrivial upper bound on the integrality gap of any
MWT LP. To show it, we revisit the analysis of QuasiGreedy [25], which shows
that QuasiGreedy produces a triangulation of cost O(|mwt(G)|), where |mwt(G)|
is the length of the MWT of the given instance G (and also the cost of the optimal
integer solution to the LP). We generalize their arguments to show that there exists
a triangulation of cost O(c(X∗)), where c(X∗) is the cost of the optimal fractional
solution to the LP.

Our analysis also reduces the approximation ratio in their analysis by an order of
magnitude, but the approximation ratio remains a large constant.

MWT heuristics. Much of the MWT literature concerns polynomial-time heuris-
tics that, given an instance, find edges that must be in (or excluded from) any MWT.
Here is a summary. Gilbert [18] observes that the shortest potential edge is in every
MWT. Yang, Xu, and You [38] extend this result by proving that an edge xy is in
every MWT if, for any edge pq that intersects xy, |xy| ≤ min{|px|, |py|, |qx|, |qy|}.
(We refer to the edges satisfying this property as the Y XY -subgraph.) This subgraph
includes every edge connecting two mutual nearest neighbors. Keil [21] defines another
heuristic called β-skeleton as follows. An edge pq is in the β-skeleton iff there does
not exist a point z in the point set such that ∠pzq ≥ arcsin(1/β). Thus, an edge pq is
in the β-skeleton iff the interior of the two circles of diameter β · |pq| passing through
p and q do not contain any points. Keil [21] then shows that for β ≥ √

2, an edge that
is in β-skeleton is in every MWT. Cheng and Xu [7] strengthen this to β ≥ 1/ sink,
where k ≈ π/3.1. Das and Joseph [9] show that an edge e cannot be in any MWT
if both of the two triangles with base e and base angle π/8 contain other vertices.
Drysdale, McElfresh, and Snoeyink [15] strengthen this to angle π/4.6. This property
of e is called the diamond property. Dickerson, Keil, and Montague [12] describe a
simple local-minimality property such that, if an edge e lacks the property, the edge
cannot be in any MWT. Using this, they show that the so-called LMT-skeleton must
be in the MWT.

A primary use of the heuristics is to solve some instances of MWT exactly in
polynomial time as follows: Given an instance, use the heuristics to identify edges
that are in the MWT. If the regions left untriangulated by these edges are simple
polygons (equivalently, if the edges span the given points), then find the MWT of
each region independently using the standard dynamic-programming algorithm. (The
MWT will be the union of the MWT’s of the regions.) According to [12], most random
instances with 40,000 points are solvable in this way.

Second new result: The LP generalizes heuristics. We show that LP (1.1) general-
izes these heuristics in that if the heuristics solve a given instance as described above,

3Given an arbitrary subset S of the edges, the problem of determining whether S contains a
triangulation reduces to the problem of determining whether there is an integer solution in the
support of a given fractional solution to the LP, as follows. Let set S′ consist of the empty triangles
whose edges are in S, so S contains a triangulation (by edges) iff S′ contains a triangulation (by
triangles). For each triangle t ∈ S′, solve the LP with the cost function that gives t cost zero,
every other triangle in S′ cost one, and all triangles not in S′ cost infinity. If (for any t ∈ S′) the
LP for t has no finite-cost feasible solution, then S′ contains no triangulation. Otherwise, for each
t ∈ S′, let Xt denote an optimal fractional solution to the LP for t. Let X̃ =

∑
t∈S′ Xt/|S′| be the

average of these fractional solutions. Because of the choice of the cost function, if a given Xt does
not give positive weight to t, then no (integer) triangulation in S′ contains t. Thus, S′ contains a

triangulation iff there is a triangulation in the support of X̃.
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then so does the LP (that is, the extreme points of the LP are integer solutions—
incidence vectors of optimal triangulations). In this sense, the LP, whose formulation
requires little explicit geometry, generalizes all of these varied and generally incom-
parable heuristics. (In fact, the LP appears to be stronger than the heuristics in that
some natural instances are solved by the LP, but not by the heuristics [22, sect. 3.5].4)
This is the first connection we know of between the heuristics and any MWT LP.

Roughly speaking, the heuristics are based on a combination of (i) local-
improvement arguments about the MWT, and (ii) logical closure (once the heuristic
determines the status of one edge with respect to the MWT, this in turn determines
the status of other edges, and so on). We extend these arguments to apply to the
optimal fractional triangulation X∗. This is possible because (i) X∗ looks “locally”
like an MWT, and (ii) the LP enforces logical closure of linear constraints on X∗.

After we finished the body of this work, we became aware of and examined addi-
tional heuristics by Wang, Chin, and Xu [37] and Aichholzer et al. [1]. We conjecture
that the LP generalizes them as well.

An equivalent formulation of the LP. The following constraints are equivalent to
the last constraints in LP (1.1) (see, e.g., [10, Thm. 1.1(i), Prop. 2.5], [36], or [22,
Thm. 3.4.1]) and are useful for reasoning about fractional triangulations. For any
fractional triangulation X and edge e,

(1.2)
∑

t∈left(e)

Xt −
∑

t∈right(e)

Xt = [e ∈ boundary(R)].

Here left(e) contains the triangles that contain e and lie on one side of e, while right(e)
contains the triangles that contain e and lie on the other side of e. (If e is on the
boundary, take right(e) = ∅.) The notation [x ∈ S] denotes 1 if x ∈ S and 0 otherwise.

Practical considerations. Using the O(n2) constraints (1.2) instead of the con-
straints in (1.1) gives an equivalent LP with total size (i.e., nonzeros in the constraint
matrix) proportional to the number of empty triangles. The empty triangles can be
identified, and the LP constructed, in time proportional to their number [14]. Their
number is always O(n3), but often smaller (e.g., O(n2) in expectation for randomly
distributed points).

The time to construct and solve the LP can be further reduced by a prepro-
cessing step based on the heuristics—remove any variable Xt if the heuristics prove
any edge of t to be excluded from every MWT, and add a constraint

∑
t∈left(e) Xt =∑

t∈right(e) Xt = 1 if they prove that an interior edge e is in every MWT. For randomly

distributed points, only O(n) edges (in expectation) have the diamond property, form-
ing O(n2) possible empty triangles, from which the modified LMT-skeleton can be
computed in O(n2)-time [12, 13]. In our ad hoc experiments on “typical” instances
with 104 to 105 points, only a small number of variables were left undetermined by
the heuristics. This allowed us to use standard linear-programming solvers to quickly
solve the remaining LP. (This is in keeping with the experiments of [12], which found
that most random instances on 40,000 points were solvable by heuristics.) Similarly,
this preprocessing should help integer linear-programming solvers to quickly find the
MWT (for instances for which the optimal solution is fractional). It is known that,
asymptotically, for n random points, the expected number of remaining variables is
Ω(n), but the leading constant is apparently astronomically small [6].

Remarks. The results here suggest that the LP of [8] captures much of the struc-
ture of MWT. This suggests a line of attack for improving the approximation ratio:

4Where G contains the center of a unit circle and n− 1 random points on the circle.
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use systematic linear-programmingmethods such as randomized rounding, the primal-
dual method, and lift-and-project [4] to study the integrality gap of the LP. Success
would yield a better approximation (conceivably, even a PTAS, using lift-and-project).
Failure would increase our understanding of the limitations of these techniques.

Implicit in our bound on the integrality gap is a polynomial-time algorithm with
matching approximation ratio. Actually, there are two. Both algorithms first com-
pute Levcopoulos and Krznaric’s [25] convex partition lk of the point set (see our
Lemma 2.15), then extend lk by triangulating each face f of lk. The triangulation of
each f can be done either (a) using the standard dynamic program to find an MWT
of f , or (b) as follows: compute the fractional solution X to the LP, then, for each
face f of lk, transpose X into a fractional triangulation Xf of f (as described in
section 2.1), and then use the cheapest triangulation of f implicit in Xf .

That the first algorithm above is an O(1)-approximation algorithm follows from
Levcopoulos and Krznaric’s previous work [25]. However, the bound we show here—
54(λ+1), where λ is a large constant per Lemma 2.15—is substantially smaller than
their previous bound. Roughly speaking, we obtain a better bound by analyzing the
transposal operation at the level of triangles instead of edges.

Open problems. The integrality gap is constant, but there is still a huge gap
between the best lower bound known (barely above 1.0) and the upper bound shown
here (astronomically large). The next step in improving our upper bound would be
to reduce the value of λ in Lemma 2.15. We suspect that a primal-dual analysis is
implicit in the analysis here; making the dual solution explicit might be a step in this
direction.

Many different cost functions (other than the total edge length) for triangulations
are studied in the literature. The MWT LP extends naturally by modifying the cost
function or restricting the set of allowed triangles. (For example, the integrality of the
extreme points of the LP for the simple-polygon case implies that the simple-polygon
result generalizes to any linear cost function.) We conjecture that results similar to
those in this paper can be obtained for other cost functions.

If MWT heuristics can solve a given instance of MWT, then so can the LP.
However, the heuristics are also useful for instances that they do not completely solve:
in such instances, the heuristics can still identify some edges that are in (or excluded
from) every MWT, even if these do not completely determine the triangulation. Can
some analogous property be shown for the LP? That is, is there some condition (e.g.,
based on the optimal primal-dual solution to the LP) such that, if the condition holds
for an edge e, that edge must be in (or excluded from) every MWT?

Definition 1.1. The interior of a segment pq is pq − {p, q}. The interior of a
polygon P consists of P minus its boundary. Two sets properly intersect (or overlap,
or cross) if the intersection of their interiors is nonempty. The (Euclidean) length of
line segment pq is denoted |pq|. For any set E of segments, ‖E‖2 denotes the total
length of segments in E.

A planar straight-line graph (PSLG) is an undirected graph G = (V,E) along
with a planar embedding that identifies each vertex with a planar point and each edge
with the line segment connecting its endpoints, so that each edge intersects other edges
(and V ) only at its endpoints. The length of G is the sum of the Euclidean lengths
of its edges. G partitions the plane into polygonal faces.5 A face or polygon is empty
if its interior contains no vertex.

5Where two points are in the same face if there is a path between them that intersects no edge,
with the caveat that the term face excludes the single such unbounded region.
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A diagonal, or potential edge, of G is any segment pq �∈ E connecting two ver-
tices of a face, and contained in that face, so that G′ = (V,E ∪ {pq}) is still a PSLG.
A partition of G is a PSLG that extends G by adding (noncrossing) diagonals; equiv-
alently, the faces of the partition refine the faces of G. A convex partition of G is
a partition whose faces are empty and strictly convex. The minimum-length convex
partition of G is denoted mcp(G). A triangulation of G is a partition whose faces are
empty triangles. A fractional triangulation X is a feasible solution to the LP. For
any potential edge e, the weight of edge e in X, denoted Xe, is

∑
t�eXt if e is on the

boundary of the region to be triangulated, and otherwise half this amount.
Formally, an instance of MWT is specified by a planar point set V , implicitly

defining a PSLG G = (V,E), where E contains the edges on the boundary of the
convex hull of V . A solution is a minimum-length triangulation of G.

Throughout, we fix an instance G = (V,E) of MWT specified by a given point
set V . Unless stated otherwise, every graph considered is a partition of G. Since the
vertex set V is the same for all such graphs, we identify each particular graph by its
edge set.

2. Integrality gap is constant. This section proves our first new result.
Theorem 2.1. Given any instance G = (V,E) of MWT, for any fractional

triangulation X, there exists an integer solution of value O(c(X)). That is, LP (1.1)
has constant integrality gap.

Proof. Fix the MWT instance G and an arbitrary fractional triangulation X . Fix
a convex partition cp of G. (Later, we will fix cp to be a particular convex partition
lk with some particular properties.)

The idea of the proof is to define a “rounding” procedure that converts X into
the desired integer solution. The procedure fractures X into a separate fractional
triangulation Xf for each face f of cp (where Xf covers exactly f). Then, indepen-
dently within each face f of cp, the procedure replaces the fractional triangulation
Xf by the optimal integer triangulation of f . The final “rounded” solution is then
the union of these integer triangulations (one for each face f of cp), of total cost at
most

∑
f∈cp

c(Xf ) (and, hopefully, O(c(X))).
In the second step, since each f is a simple polygon, it follows from known results

(see, e.g., [8, Thm. 7]; also see the introduction) that the cost of the optimal integer
triangulation of f is at most the cost of Xf . Thus, the integrality gap will be O(1)
as long as the first step triangulates the faces so that

∑
f c(X

f) = O(c(X)).
The proof is divided into two parts: (i) describing a correct rounding procedure

that fractures X into a fractional triangulation Xf for each face f of cp (we call this
transposing X into f), and (ii) bounding the cost

∑
f c(X

f ) by O(c(X)).

2.1. Part (i)—fracturing X into the faces of CP. Fix any face f of cp of
the convex partition cp. Our goal is to convert X into a fractional triangulation Xf

of f .
We start with the observation that X , restricted to triangles that cross f , can be

separated into independent layers, where each layer is a set of triangles that uniformly
covers f (and possibly some points outside f). We say such a layer blankets f .

Definition 2.2 (blanket). A set B of empty polygons with endpoints in V
blankets the face f if the union of the polygons contains f and no two polygons
overlap within f (they may overlap outside f).

In this subsection, the polygons in blankets are always triangles.
The next lemma describes how to decompose X (over f) into blankets.
Lemma 2.3. There exists a set B of blankets (each containing only triangles)
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x1

x2

Fig. 1.

and weights εB > 0 for each B ∈ B such that
∑

B∈B εB = 1 and, for every triangle t
crossing f , Xt =

∑
B∈B [t ∈ B] εB.

Recall that “[t ∈ B]” is 1 if t is in B, else 0.
Proof. Recall that, for MWT instances consisting of a simple polygon, the LP

gives optimal 0/1 solutions (see, e.g., [8, Thm. 7]). We adapt a proof of that property.
Choose any triangle t that crosses f and has Xt > 0. If t completely covers f ,

then stop and take B = {t}. Otherwise, some edge e of triangle t crosses the interior
of f . Since e has positive weight, there must be a positive-weight triangle t′ that
has e as an edge and lies on e’s opposite side (this is implied by constraint (1.2)).
Glue t and t′ together to form a polygonal region. Continue in this way, growing the
polygonal region by repeatedly gluing a new triangle to any boundary edge e that
crosses f . Stop when the region has no boundary edge that crosses f . The triangles
glued together in this way form the blanket B.

Let εB be the minimum weight of any triangle in B. This gives the first blanket
B and its weight εB. Subtract εB from each Xt for t ∈ B. This reduces X ’s coverage
of f uniformly by εB. To generate the remaining blankets in B (and their weights),
iterate this process as long as X still covers f with positive (and necessarily uniform)
weight. (The process does terminate, as each iteration brings some Xt to zero.)

Fix the set B of blankets of f from Lemma 2.3 and the corresponding weights εB.
We next describe how to convert any single blanketB ∈ B into a true triangulation

B̂f of f . The final fractional triangulationXf will be the convex combination of these
triangulations, where the triangulation of B is given weight εB.

Recall that any blanket B ∈ B consists of triangles that together uniformly cover
the convex face f (and may extend outside of f). To define the triangulation B̂f , we
start with edge transposals (see, e.g., Lemma 4.2 of [25]). For any edge e that crosses
f , transposing e in f slides e to its transposal, denoted ef , a diagonal of f that has
minimum length among four or fewer diagonals that are “near” e. We give the formal
definition next, and then extend that to define transposals of triangles and blankets
B ∈ B.

Definition 2.4 (transposing an edge [25]; see Figure 1). Fix any triangle edge
e = x1x2 that crosses f (that is, that intersects the boundary of f in two points or
along an edge). The transposal of e in f , denoted ef , is defined by the following
operation: Clip the edge x1x2 to chord x′

1x
′
2 = (x1x2) ∩ f of f . For each endpoint x′

i

of x′
1x

′
2, if the endpoint lies in the interior of an edge e of f (as opposed to being a

vertex of f), then slide x′
i along e to one of the endpoints of e, called the destination

of xi. Otherwise (the endpoint is a vertex of f), take that vertex as the destination.
Choose the destinations (for those where there is a choice) to minimize the length of
the diagonal that connects the destinations. (Break ties consistently.) The resulting
diagonal is ef .
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Next we define what it means to transpose triangles and blankets. We give a
somewhat uninformative formal definition, then describe the important properties.

Definition 2.5. For any triangle t, the transposal of t in f , denoted tf , is the
convex hull of the endpoints of the transposals of the edges of t that cross f .

For any blanket B ∈ B, the transposal of B in f , denoted Bf , is the set contain-
ing, for each triangle t ∈ B, the transposal tf of t. That is, Bf = {tf | t ∈ B}.

Consider a blanket B ∈ B. By definition, the edges of triangles in B do not
cross within f . But, a priori, their transposals might. We next argue that this is not
the case. In fact, we prove more: roughly speaking, that transposing preserves the
topology of the partition that B induces on f . More precisely, consider that partition,
which comes from clipping the edges of the triangles in B into f as shown in Figure
2. Consider any edge Y Z. Focus on just those chords that have an endpoint in the
interior of Y Z. Order these chords, as shown in the left picture, according to the
order of their endpoints on Y Z going from Y to Z. For chords sharing an endpoint
on Y Z, break ties in favor of chords that lean closer to Y .

Lemma 2.6 (transposing preserves order). In the above ordering of chords along
Y Z, all chords whose endpoints have transposal destination Y precede all chords whose
endpoints have destination Z. (Informally, when transposing the edges, when we slide
the endpoints to their destinations, the endpoints that slide to Y precede the endpoints
that slide to Z, so no crossings are introduced.)

Proof. Without loss of generality, assume that Z lies (one vertex) clockwise of
Y . Focus on the chords xw, where x is in the interior of Y Z. Let CY contain those
chords whose endpoint x has destination Y . Let CZ contain those whose endpoint x
has destination Z. We show that, if we leave Y and travel counterclockwise around
the boundary to Z, we encounter the chords in CY before we encounter the chords in
CZ . This proves the claim, because, as chords in C do not cross, as we travel coun-
terclockwise we must encounter chords in the same order that we would if traveling
clockwise from Y to Z.

Consider the perpendicular bisector of Y Z. Since f is convex, the bisector in-
tersects the boundary of f at a single point across from Y Z. Suppose that this
intersection point is in the interior of some edge b as shown in Figure 3. (If the
intersection is a vertex of f , take b to be that point and follow similar reasoning.)

As we travel counterclockwise from Y to Z, until we pass the first endpoint of b,
every chord endpoint w that we encounter is in some edge e of f that lies entirely on
the Y -side of the bisector. Since both endpoints of e are closer to Y than to Z, no
matter which endpoint of e is the destination of w, the destination of x will definitely
be Y . Thus, until we pass the first endpoint of b, we encounter only chords in CY .

As we travel through the interior of edge b (or, if b is a point, through b) for all
chord endpoints w that we encounter, their chords xw will have the same transposal
(since x is in the interior of Y Z and w is in the interior of b, and transposing breaks
ties consistently). Thus, traveling through b, either we encounter only chords in CY ,
or we encounter only chords in CZ .
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Once we pass the other endpoint of b, until we reach Z, every chord that we
encounter is an edge of f that lies entirely on the Z-side of the bisector, so, reasoning
as before, we encounter only chords in CZ .

Because transposing preserves order, the topological structure of the transposal
of any blanket B is inherited from the partition that B induces on f . See the example
in Figure 4.

Figure 4 shows five copies of a face f (with gray background). Copy 1 shows
the face blanketed by six triangles. In copy 2, the triangle edges are clipped to their
chords in the face, giving the partition that B induces on f . In copies 3 through 5,
each chord is shifted to its edge transposal by sliding each endpoint to its destination.
Copy 5 shows the resulting edge transposals and the transposal of B in f .

Clearly, in the partition that B induces on f (copy 2) each region is of the form
t ∩ f for some t ∈ B. Because transposing preserves order, moving the edges of that
partition to their transposals preserves the topological structure of the partition: the
transposal Bf of B (copy 5) is a convex partition of f whose edges are the transposals
of the edges of B, and whose regions are the transposals of the triangles in B. Also,
for each triangle t ∈ B, the boundary of its transposal tf consists of the transposals
of the edges of t, together with up to three edges of f .

The transposal of a blanket is a convex partition of the face, but not quite a trian-
gulation, because each of its regions may have up to six sides. To get a triangulation,
we simply triangulate each of its regions.

Definition 2.7. The triangulated transposal of a triangle t in f , denoted t̂f ,
is the MWT of the transposal tf , except that, if tf has no area, then tf is the empty

set. The triangulated transposal of a blanket B in f , denoted B̂f , is the union of the
triangulated transposals of the triangles in the blanket.

The transposal Bf is a convex partition of f whose regions are the transposals of
the triangles in B, so the triangulated transposal of B indeed triangulates f .
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Finally, we define the fractional triangulation Xf of f . We start with the frac-
tional triangulation X . We restrict X to triangles crossing f . We decompose this
restriction of X into a convex combination of blankets of f (per Lemma 2.3). Then,
in this convex combination, we replace each blanket B by its triangulated transposal
B̂f , a triangulation of f .6 Here is the formal definition.

Definition 2.8. Define the transposal ofX in f , denoted Xf , to be the fractional
triangulation of f formed by the convex combination of the transposals of the blankets
in B so that

Xf
t =

∑
B∈B

[t ∈ B̂f ] εB.

We now complete Part (i) of the proof of Theorem 2.1.
Lemma 2.9. Fix any fractional triangulation X and any convex face f . The

transposal Xf of X in f defined above is a feasible fractional triangulation of f . That
is, it covers the points in f uniformly with weight 1.

Proof. As discussed, this holds because Xf is a convex combination of triangula-
tions of f . Indeed, it covers each point p in f with total weight

∑
t

[p ∈ t]Xf
t =

∑
t

[p ∈ t]
∑
B∈B

[t ∈ B̂f ]εB =
∑
B∈B

εB
∑
t∈ ̂Bf

[p ∈ t] =
∑
B∈B

εB = 1.

The first equality is by definition of Xf . The second just exchanges the order of
summation. The third holds because B̂f triangulates f (so exactly one t ∈ B̂f

contains p). The last follows by Lemma 2.3.

2.2. Part (ii)—bounding the cost. Fix the convex partition cp and fractional
solution X . By Lemma 2.9, for each face f of cp, the transposal Xf as defined in
Part (i) is a fractional triangulation of f . To complete the proof of Theorem 2.1, we
bound the sum of the costs of these fractional triangulations.

We start by observing that we can view Xf as taking the weight of each triangle
t in X and transferring that weight to (every triangle in) the triangulated transposal
t̂f of t in f .

Fact 2.9.1.

Xf
t′ =

∑
t : t′∈̂tf

Xt.

Proof.

Xf
t′ =

∑
B∈B

[t′ ∈ B̂f ]εB =
∑
B∈B

∑
t∈B

[t′ ∈ t̂f ]εB =
∑

t : t′∈̂tf

∑
B∈B

[t′ ∈ B]εB =
∑

t : t′∈̂tf

Xt.

The first equality is the definition of Xf . The second holds by definition of B̂f

(namely, t′ ∈ B̂f iff t′ ∈ t̂f for some t ∈ B). The third just exchanges the order of
summation. The last follows from Lemma 2.3.

So far, we have considered how a blanket of triangles transposes into a single f .
Next we consider how a single triangle t transposes across multiple faces. Of course,
a given triangle t can cross many faces, but in all but two its transposal will have no
area (and thus will play no part in the triangulated transposal of X in f).

6Alternatively, we could take Xf to be the cheapest triangulation B̂f over all blankets B ∈ B.
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Lemma 2.10. Any given triangle t crosses at most two faces f in cp in which its
transposal tf has positive area. Thus, for a given t, only two faces f have c(t̂f ) > 0.

Proof. Fix a triangle t = ΔXY Z and consider how the faces of cp can overlap t.
Say that a face f is accommodating if t’s transposal tf in f has positive area.

In the two examples in Figure 5, each dashed edge is an edge transposal of an
edge of t. Within each accommodating face, the (positive area) transposal of t is dark.

We claim that every accommodating face touches all three edges of t. (A face
“touches” an edge if the intersection of the face and the edge, including boundaries
and endpoints, is nonempty. For example, the accommodating face 2 on the left of
the figure, and 2 and 5 on the right, touch all three edges of t. Each other face is
nonaccommodating and, except for 3 and 4 on the right, touches only two edges of t.)

The claim holds because, if a face f touches only two edges of t, the third edge
of t lies outside of f , so the two edges cross the interior of a single edge of f . Thus,
the two edges of t that touch f must have identical transposals, forcing tf to have no
area.

Now consider the case that t has a face f that touches the interior of all three
edges of t (as in Figure 5, left). Since the faces are nonoverlapping and convex, no
face other than f can touch all three edges of t. By the claim, then, only face f might
be accommodating, so the lemma holds.

Assume that no face touches the interiors of all three edges of t.
By the claim, any accommodating face f still has to touch all three edges of t,

but now there is at least one edge, say XY , of t whose interior f avoids. Thus, f
must touch XY at an endpoint, say, Y . (For example, consider Figure 5, right. Faces
2, 3, 4, and 5 touch all three edges of t, but not all three interiors.) Since f touches
XY at Y but does not touch the interior of XY , there must be an edge wY of f that
extends through the interior of t. Since w is not inside t, wY must cut across t to the
interior of the edge XZ. Thus,

(2.1)
in this case, any accommodating face f must share some vertex v with t, and
an edge of the face must extend from v across the interior of t.

If there are two accommodating faces, they must extend an edge across t from
the same vertex Y , for otherwise the extending edges would cross inside t.

Now consider all edges in cp that extend from Y across the interior of t. Let
these edges be w1Y,w2Y, . . . , wkY , rotating in order around Y . (In Figure 5, k = 3.)
cp has k+1 corresponding faces f0, f1, . . . , fk, also in order rotating around Y , where
fi−1 and fi share edge wiY . By conclusion (2.1), only these k + 1 faces might be
accommodating.

To finish, we observe that fi is not accommodating unless i ∈ {0, k} (the first or
last face). Indeed, for i �∈ {0, k} edges wi−1Y and wiY of fi extend from Y across t
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to XZ. Since these edges touch at Y , the transposal of t in fi is thus just the point
Y . Thus, the transposal of t in fi has no area.

Our goal is to show that transposing X across the faces increases the cost of
X by at most a constant factor. For any triangle t, by the lemma and Fact 2.9.1,
transposing X transfers the weight Xt to the triangulated transposals t̂f of t in at
most two faces f .

To proceed we bound the cost of each t̂f in terms of the cost of t. Recall that t̂f

is the MWT of its (nontriangulated) transposal tf , which has at most six sides (up to
three edges of f and up to three transposals of edges of t). We start by bounding the
cost of tf . Our bound depends on the sensitivity of the edges of the convex partition
cp, defined as follows.

Definition 2.11 (sensitivity). An edge e is σ-sensitive if, for any potential edge
e′ that crosses e, for each endpoint x of e′, the distance from x to the closest endpoint
of e is at most σ|e′|.

In other words, the circle of radius σ|e′| around each endpoint of e′ contains an
endpoint of e.

For the rest of this section, fix σ such that all edges of cp are σ-sensitive.
Lemma 2.12. For any face f of cp and triangle t, the total length of the edges

in t’s transposal tf that are not also edges of cp is at most 2σ times the length of t’s
edges.

Proof. Let f be any face of cp and e be any edge that crosses f .
We claim that the length of the edge transposal ef of e in f is at most 2σ times

the length of e. This claim implies the lemma, because each edge of the transposal of
t (but not of cp) is the edge transposal ef of a unique edge e of t. To finish, we prove
the claim.

For an edge e that crosses f , one of the following three cases holds: (1) e is
incident to one vertex of f and properly intersects one s side of f (as in the left of
Figure 6), (2) e properly intersects two sides s and s′ of f (as in the right of Figure
6), or (3) e is incident to two vertices of f .

In case (1), let W be the vertex that f shares with e (and ef ). Since s is σ-
sensitive, and e crosses s, the endpoint W of e is at most σ|e| from some endpoint of
s. Since |ef | is the minimum distance between W and any endpoint of s, this implies
|ef | ≤ σ|e|.

In case (2), let Y be an endpoint of e and let Z and Z ′, respectively, be the closest
endpoints of s and s′ to Y . Because ef is the shortest segment from an endpoint of s
to an endpoint of s′, |ef | ≤ |ZZ ′|. By the triangle inequality, |ZZ ′| ≤ |Y Z|+ |Y Z ′|.
Because s and s′ are σ-sensitive, |Y Z| and |Y Z ′| are each at most σ |e|.

In case (3), the transposal ef of e is the same as e, so the claim holds.
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It is straightforward to extend the bound to the triangulated transposal t̂f of t.
Recall that the cost of a triangle t is the sum of the costs of its edges, where the cost
of an edge is half its length, unless the edge is on the boundary of the entire region,
in which case the cost of the edge is its length. The cost c(t̂f ) of a triangulation t̂f is
the sum of the costs of the triangles in the triangulation.

Lemma 2.13. For any face f and any triangle t, the cost c(t̂f ) of the triangulated
transposal of t in f is at most three times the cost c(tf ) of the (nontriangulated)
transposal of t in f .

Proof. Recall that tf has at most six vertices, say, v1, v2, . . . , vk, ordered clockwise.
Triangulate tf by adding up to three interior diagonals connecting the odd vertices
(e.g., v1v3, v3v5, v5v1). The total length of the added diagonals is at most the total
length of the boundary. Likewise, the sum of costs of the added diagonals is at most
the sum of the costs of the edges on the boundary of tf .

Each added edge occurs in two triangles in this triangulation, whereas each bound-
ary edge occurs in just one triangle. Thus, adding the diagonals gives a triangulation
of cost at most three times the cost of tf . The lemma follows, as c(t̂f ) is the minimum
cost of any triangulation of tf .

Next we gather the bounds in the previous lemmas to bound the total cost across
all the faces. We are not finished, as the bound depends on not only the cost of the
fractional triangulation, but also the total length of the edges in the convex partition
cp and the sensitivity σ of those edges.

Lemma 2.14. The total cost
∑

f c(X
f) is at most 3‖cp‖2 + 12σ c(X).

Proof. The total cost is

∑
f

c(Xf ) =
∑
f,t

Xt c(t̂
f ) by Fact 2.9.1,

≤ 3
∑
f,t

[c(t̂f ) > 0] Xt c(t
f ) by Lemma 2.13,

≤ 3‖cp‖2 + 6σ
∑
t,f

[c(t̂f ) > 0] Xt c(t) by Lemma 2.12,

≤ 3‖cp‖2 + 12σ
∑
t

Xt c(t) by Lemma 2.10,

= 3‖cp‖2 + 12σ c(X) by definition of c(X).

To proceed further, we need a convex partition whose edges have constant sensi-
tivity and total length O(c(X)). Levcopoulos and Krznaric have shown the existence
of something close: a convex partition lk whose edges are 4.45-sensitive and have
total length O(mcp(G)) (recall that mcp(G) is the minimum-length convex partition
of G).

Lemma 2.15 (see [25]). For some constant λ > 0, for any MWT instance G,
there exists a convex partition lk of G, whose edges are 4.45-sensitive, having total
length ‖lk‖2 ≤ λ ‖mcp(G)‖2.

Proof. Levcopoulos and Krznaric show that what they call the quasi-greedy convex
partition has the above properties: for the first property, see their Lemma 5.4 and the
discussion before it; for the second property, see their Corollary 5.3 [25].

This convex partition will work for us: we prove next that ‖mcp(G)‖2 ≤ 18 c(X).
(Note that ‖mcp(G)‖2 is trivially at most the cost of any integer triangulation, but
the bound here concerns the fractional triangulation, so requires proof.)
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Fig. 7.

The proof uses the constraints on X and leverages a previous analysis of mcp(G)
due to Plaisted and Hong [31, Lemma 10].

Lemma 2.16. ‖mcp(G)‖2 ≤ 18 c(X).
Proof. For every vertex v in the interior of the convex hull of the vertex set V ,

define a star at v to be a subset of edges incident to v such that no two successive
edges (around v) are separated by an angle of 180 degrees or more. For every vertex
v on the boundary of the convex hull of V , define the (only) star at v to consist of
the two boundary edges incident to v. Let Smin(v) denote the minimum cost of any
star at v. Plaisted and Hong show ‖mcp(G)‖2 ≤ 6

∑
v∈V Smin(v) [31, Lemma 10].

We claim Smin(v) ≤ (3/2)
∑

e�v Xe|e|, where Xe is
∑

t�eXt if e is on the bound-
ary of the convex hull; otherwise Xe is half this amount. As

∑
v

∑
e�v Xe|e| =

2
∑

eXe|e| = 2 c(X), the claim implies the lemma. We prove the claim.
It is easy to see that, for any boundary vertex v, Smin(v) ≤ ∑

e�v Xe|e|, so we
restrict our attention to just an interior vertex v and its edges.

Because X satisfies constraint (1.2), rotating clockwise around v, there is a se-
quence v1, v2, . . . , vk of distinct vertices such that for each i = 1, . . . , k, the triangle
v vi v(i+1) mod k has positive weight in X . (To find the sequence, take any positive-
weight triangle that has v as a vertex. Let v1 and v2 be the other vertices, in clockwise
order. By constraint (1.2), there is a positive-weight triangle that shares edge vv2 and
lies clockwise to that edge. Let v3 be the other vertex of that triangle. By constraint
(1.2), there is a positive-weight triangle that shares edge vv3 and lies clockwise to
that edge. Let v4 be the other vertex of that triangle. Continue, stopping when the
next vertex vi that would be added is v1—this must happen by constraint (1.2).)

Let ei and ti denote edge vvi and triangle v vi v(i+1) mod k, respectively. Note that
each edge, and each triangle, is distinct. Call the sequence of edges h = (e1, e2, . . . , ek)
a helix. Let wrap(h) denote the number of times h wraps around v. By a standard
construction the Xe’s can be expressed as a linear combination of incidence vectors
of helices. (Similar to Lemma 2.3’s proof, repeatedly find a helix h, choose weight
εh, and subtract εh/wrap(h) from each triangle Xti in the helix, reducing coverage
near v by εh.) This gives a probability distribution ε on helices h such that each
Xe =

∑
h[e ∈ h]εh/wrap(h).

Now choose a helix h at random from the probability distribution ε. Partition
h greedily into contiguous subsequences of edges such that each group g is maximal
subject to the constraint that the total clockwise angle around v swept by the group’s
edges is at most 360◦. (In Figure 7, white triangles separate groups.) Each group
contains a star, and (as neighboring groups are separated by at most 180◦) there are
at least �360wrap(h)/(360 + 180)� = �2wrap(h)/3� groups.

From the randomly chosen h, choose a group g uniformly at random from h’s
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first �2wrap(h)/3� groups. For any given edge e, the probability that e is in g is at
most

∑
h [e ∈ h]εh/(2wrap(h)/3) = (3/2)Xe. Thus, by linearity of expectation, the

expected total length E[‖g‖2] of edges in g is at most (3/2)
∑

e�v Xe|e|. On the other
hand, every g contains a star, so Smin(v) ≤ E[‖g‖2]. This proves Lemma 2.16.

For the rounding procedure, fix the (previously arbitrary) convex partition cp to
be the partition lk from Lemma 2.15. The cost of the final triangulation is at most

∑
f

c(Xf) because each face f is simple,

≤ 3‖lk‖2 + 12 σ c(X) by Lemma 2.14,

≤ 3λ‖mcp(G)‖2 + 54 c(X) by Lemma 2.15,

≤ 3λ · 18 c(X) + 54 c(X) by Lemma 2.16,

= 54(λ+ 1) c(X).

Hence, the integrality gap is at most 54(λ + 1), completing the proof of Theo-
rem 2.1.

3. The LP generalizes heuristics. This section proves our second new result
(the LP generalizes MWT heuristics). Here is a summary of heuristics for determining
that a given potential edge e = xy of G is in every MWT of a given MWT instance
G = (V,E):
β-skeleton: For β = 1/ sink where k ≈ π/3.1, there does not exist a point z in the

point set such that ∠xzy ≥ arcsin(1/β) ≈ π/3.1. Equivalently, the two disks
of diameter β |e| having e as a chord are empty of points. If this condition
holds, then e is in every MWT of G [21, 7].

Y XY -subgraph: For every potential edge pq that crosses e = xy, its size |e| is at most
min{|px|, |py|, |qx|, |qy|}. If this condition holds, then e is in every MWT of
G [38, 18].

maximality: For every potential edge that crosses e, that edge is known to be excluded
from every MWT. If so, then e is in every MWT of G (see, e.g., [12]).

Here is a summary of heuristics for determining that a given potential edge e of G
(not on the boundary of the region to be triangulated) is excluded from every MWT
of G:
independence: Some potential edge that crosses e is known to be in every MWT. If

this condition holds, then e is not in any MWT of G (see e.g., [12]).
diamond: Neither of the two triangles with base e and base angle π/4.6 is empty. If

this condition holds, then e is not in any MWT of G [9, 15].
LMT-skeleton: For every two triangles t and t′ for which e is locally minimal, one of

the edges of t or t′ is known to be excluded from every MWT. If this condition
holds, then e is not in any MWT of G [12]. (Edge e is locally minimal for
two triangles t and t′ if t∩ t′ = e and t and t′ together are a minimum-length
triangulation of the quadrilateral Q = t ∪ t′—that is, either Q is nonconvex,
or e is not longer than the other diagonal of Q.)

Let E∗ denote the set of edges that can be deduced to be in every MWT by applying
the logical closure of the above six rules. (Logical closure is necessary because the
maximality, independence, and LMT-skeleton conditions depend on the known status
of edges other than e. For example, if one of the conditions implies that some edge
e′ is excluded from every MWT, then the LMT-skeleton condition may then in turn
imply that some new edge e is excluded from every MWT, because e′ lies on one of
two triangles t or t′ in the pair for which e is locally minimal.)
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Ideally, the set E∗ gives a partition of G in which every face is empty. If this
happens, then the remaining edges in the MWT can be found by triangulating each
remaining face independently using the standard dynamic-programming algorithm,
and we say G is solvable via the heuristics. According to [12], most random instances
with as many as 40,000 points are solvable via the heuristics.7

Here is our second new result. If an instance is solvable via the heuristics, then
LP (1.1) solves the instance also.

Theorem 3.1. For any instance G of MWT, let E∗ be the partition of G defined
above. If every face of E∗ is empty, then every optimal extreme point of the LP (for
G) is the incidence vector of a minimum-length triangulation.

The remainder of this section gives the proof. The first step is to show that each
condition above that ensures that an edge is in (or excluded from) every MWT also
ensures that the LP gives the edge weight 1 (or 0) in any optimal fractional solution.

Say that LP (1.1) forces a potential edge e to z (where z ∈ {0, 1}) if, for every
optimal fractional triangulation X∗ of G, the weight that X∗ gives to e is z.

Lemma 3.2. If any of the following conditions hold, the LP forces potential edge
e of G to 1:

1. β-skeleton: The β-skeleton condition above holds for e.
2. Y XY -subgraph: The Y XY -subgraph condition above holds for e.
3. maximality: The LP forces every potential edge that crosses e to 0.

Proof idea. Part 3 is relatively straightforward: if X∗ gives weight 0 to every edge
that crosses e, then no triangle t that crosses e has positive X∗

t , so the only way X∗

can cover points near e is with triangles that have e as a side.
The original β-skeleton and the Y XY -subgraph heuristics are shown to be valid

for MWT by local-improvement arguments: if the condition holds for an edge e that is
not in the MWT, then a polygon P covering e within the MWT can be retriangulated
at lesser cost, contradicting the optimality of the MWT [21, 7, 38, 18]. Here we extend
those arguments to any optimal fractional triangulation X∗: if the condition holds
and X∗ does not give e weight 1, then a polygon P ′ covering e whose triangles have
positive weight in X∗ can be retriangulated (lowering the weight of those triangles by
ε > 0 and raising the weight of other triangles by ε), giving a fractional triangulation
that costs less than X∗.

The original arguments are intricate geometric case analyses, typically taking
several pages. The arguments do not extend completely to our setting for the following
reason: in the MWT setting, the polygon P identified for retriangulation is the union
of noncrossing triangles, whereas here, in the fractional setting, the polygon P ′ is the
union of triangles that can cross (much as in Lemma 2.3). If the triangles in P ′ do not
cross, then the original arguments apply, but in general additional analysis is needed.

To illustrate, consider the β-skeleton. Suppose for contradiction that the β-
skeleton condition holds for an edge e = ab but e does not occur in the MWT.
Previous works [21, 7] show that there must be a sequence t1, t2, . . . , tm of empty tri-
angles in the MWT whose union P covers e, as shown on the left in Figure 8. Using
the β-skeleton condition, [21, 7] show that this union has a triangulation that costs
less than does t1, . . . , tm, contradicting the optimality of the MWT.

In the current context, if e has weight below 1 in X∗, then there must (similarly)
exist a sequence t1, t2, . . . , tm of empty triangles with positive weight in X∗ covering e,

7Reference [12] defines the modified LMT-skeleton to be the set of edges that can be deduced
to be in every MWT via (the logical closure of) just the diamond, LMT-skeleton, maximality, and
independence conditions above. The use of logical closure is crucial for the effectiveness of the
LMT-skeleton.
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but these triangles can cross (see the example in Figure 8). We extend the arguments
of [21, 7] to show that, even if such a crossing occurs, a triangulation of lower cost
can still be found.

Full proof. Here are the details of the proofs for part 1 (β-skeleton) and part
2 (Y XY -subgraph). Part 3 (maximality) has been discussed already above, in the
proof idea.

Part 1 (β-skeleton): The original β-skeleton heuristics are shown to be valid
for MWT by local-improvement arguments: if an edge e is in the β-skeleton (for
β ≈ 1/ sin(π/3.1)) but not in the MWT, then a polygon P covering e within the
MWT can be retriangulated at lesser cost, contradicting the optimality of the MWT
[21, 7]. We briefly sketch this argument and then extend it to any optimal fractional
triangulation X∗.

Assume for the remainder of this section that e goes horizontally from the point
a on the left to the point b on the right. If ab is not in the MWT, there exists a
set of MWT edges that intersect e. Let e1, . . . , en, be the set of edges indexed in
nondecreasing order of their length. If the edges are removed from the MWT, an
empty polygonal region P results. In [21, 7] it is shown that P can be retriangulated
at lesser cost by a set of edges that contains ab. The idea is to generate a sequence
of triangulated polygons P0, . . . , Pn such that P0 is the degenerate polygon ab, Pn is
a triangulation of P , and Pj−1 ⊆ Pj . To obtain Pj , Pj−1 is expanded to include the
endpoints vj and v′j of ej . Assume vj is above the line through ab and v′j is below it.
If both vj and v′j already lie on the boundary of Pj−1, then Pj = Pj−1. Otherwise,
at least one of them will not be on the boundary of Pj−1. Assume without loss of
generality that vj is not on the boundary of Pj−1 (if v′j is also outside Pj−1, it will be
dealt with similarly).

Since vj is not on the boundary of Pj−1, edge ej intersects a boundary edge
vivk of Pj−1. Consider the sequence δ of vertices on the path from a to b on the
boundary of P (there are two such paths, but the one above the line through ab is
intended). On the sequence δ, vertex vi is the last vertex before vj that belongs to
Pj−1, and vk is the first vertex after vj that belongs to Pj−1. This observation allows
us to clearly define vivk in the fractional setting because in that setting, polygon P
may be self-intersecting and ej may intersect more than one boundary edge of Pj−1

in the half-space above ab. In general, the triangle �vivjvk contains a subsequence
δ1 of vertices on δ from vi to vj and another subsequence δ2 from vj to vk. The
polygon viδ1vjδ2vk is then triangulated arbitrarily, and Pj is the union of Pj−1 and
the triangulated polygon viδ1vjδ2vk—and possibly another triangulated polygon—to
include v′j if v′j is not on the boundary of Pj−1.

This construction is shown in Figure 9. The polygon with dashed boundary is P ,
and Pj−1 is a triangulation of the dark gray polygon. The union of Pj−1 and arbitrary
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triangulations of the light gray polygons is Pj , which includes the endpoints vj and
v′j of ej. The light gray polygon above ab is viδ1vjδ2vk. The white vertices inside
triangle �vivjvk are δ1, and the black vertices inside the triangle are δ2.

In [21, 7] it is shown by induction on j that for every j all edges in the triangulation
of Pj are shorter than ej . By induction all the edges of Pj−1 are shorter than ej−1

and |ej−1| ≤ |ej|. Thus it remains to show that all the new edges that are added
to Pj−1 to form Pj are shorter than ej. The new edges triangulate the polygon
viδ1vjδ2vk and are all contained in triangle �vivjvk, so each new edge is shorter than
max{|vivj |, |vjvk|, |vivk|}. Since vivk ∈ Pj−1, |vivk| < |ej−1| ≤ |ej |. It remains to
show that |vivj | < |ej|. The argument for vjvk is similar. The following two facts are
used for this part of the argument.

Fact 3.2.1 (see [21, Lemma 2]). Let ab be an edge in the β-skeleton (where
β ≈ 1/ sin(π/3.1)). For any edge pq, if pq intersects ab, then it has length |pq| greater
than max{|ab|, |ap|, |aq|, |bp|, |bq|}.

Fact 3.2.2 (see [7, Remote Length Lemma]). Let ab be an edge in the β-skeleton
(where β ≈ 1/ sin(π/3.1)). Let p, q, r, and s be four other distinct points of the point
set such that pq intersects ab, rs intersects ab, pq does not intersect rs, and p and s
lie on the same side of the line through ab. Then |qr| < max{|pq|, |rs|}.

The argument to show |vivj | < |ej | is as follows. If vi lies in triangle �avjb,
then |vivj | ≤ max{|avj |, |vjb|, |ab|} < |ej |. The second inequality holds based on
Fact 3.2.1. If vi is outside �avjb, consider the convex hull of the path from a to
vj on Pj . Vertex vi must lie in some triangle �vcvdvj , where vc and vd are hull
vertices. Thus, |vivj | ≤ max{|vcvj |, |vcvd|, |vdvj |}. Since vc and vd are hull vertices,
they were added in the growth process in the past. Thus, the edges ec and ed with
endpoints vc and vd were processed before ej , so neither ec nor ed is longer than ej .
Combining this observation with Fact 3.2.2 gives |vcvj | < max{|ec|, |ej|} ≤ |ej |. Using
a similar argument, one can show that vcvd and vdvj are both shorter than ej . Thus,
|vivj | ≤ max{|vcvj |, |vcvd|, |vdvj |} < |ej |. This completes the proof that all the edges
of Pj are shorter than ej , and thus the new triangulation of P costs less.

Next we extend the above arguments to any optimal fractional triangulation X∗.
If X∗ does not give ab weight 1, there is a triangle t with positive X∗

t that properly
intersects ab. For any side d of t that intersects ab there must be a triangle t′ with
positive X∗

t′ that has d as a side and lies on the other side of d from t. The existence
of a triangle t′ is a consequence of constraints (1.2). Repeating the same argument
for the new triangle(s) gives a set of triangles that cover ab.
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Let Γ = (t1, t2, . . . , tm) be the sequence of triangles in the order they intersect
ab in the direction from a to b. Triangle t1 is incident on a and tm is incident on b.
All triangles have a positive weight in X∗. The triangles in the sequence may or may
not cross each other, as shown in Figure 10. Let P (the shaded area in the figure)
be the polygon formed by the boundary edges of triangles in the sequence. As shown
in the right of the figure, polygon P is self-intersecting if some of the triangles in the
sequence cross. Next, we consider both cases and derive a contradiction in each case.

Case 1—no triangles in Γ cross. For this case we apply directly the technique
used in [21] and [7] to retriangulate the interior of P at lower cost. Lowering the
weight of those triangles in Γ by ε > 0 and raising the weight of new triangles by ε
gives a fractional triangulation of cost less than c(X∗).

Case 2—some triangles in Γ cross. In this case the technique of [21] and [7]
cannot be directly applied because, in that setting, the polygon P identified for retri-
angulation is the union of noncrossing triangles, whereas in this case, P is the union
of triangles that cross.

Let d1, . . . , dn be the set of edges of triangles in Γ that intersect ab indexed in the
order they intersect ab (in the direction from a to b). The only part of the argument
used in [21] and [7] that does not directly generalize to our case concerns Fact 3.2.2.
Fact 3.2.2 holds for any pair of edges pq and rs that intersect ab and do not intersect
each other. Recall that in the MWT setting the edges intersecting ab do not intersect
each other, so Fact 3.2.2 holds for any pair of those edges. However, in the current
case some edges in d1, . . . , dn may intersect each other. Thus, Fact 3.2.2 does not
automatically hold in this case. This issue is resolved by the following technical
lemma.

Fact 3.2.3. Let di = pq and dj = rs be two edges of triangles t1, t2, . . . , tm such
that pq intersects ab, rs intersects ab, pq intersects rs, and p and s lie on the same
side of the line through ab. Then ps and qr are both shorter than max{|pq|, |rs|}.

Proof. Assume that endpoints p and s are above the line through ab. Let � be
the intersection point of di and dj , and assume without loss of generality that point
� is also above the line through ab. Let ai and aj be the intersection points of di and
dj with ab. Assume i < j so that |aai| < |aaj |.

We first show that the triangle bounded by di, dj , and ab contains a vertex
from the boundary of polygon P (see Figure 11). Consider a maximal contiguous
subsequence of edges of d1, . . . , dn that starts with di and in which every edge in the
subsequence intersects dj . Let dh = uv be the last edge in this subsequence. Note
that such dh is well-defined. Let u and v be the endpoints of dh below and above ab,
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respectively, and let ah be the intersection point of dh and ab. Clearly ah is between
ai and aj . Based on the maximality of the subsequence di, . . . , dh, edge dh is the
last edge that intersects dj , so dh+1 does not intersect dj . Also dh+1 intersects ab at
a point between ah and aj and shares an endpoint with dh. Edge dh+1 cannot be
incident on v because any edge connecting v to a point on line segment ahaj intersects
dj . Therefore, dh+1 is incident on u. Also, dh+1 intersects ahaj, and does not intersect
dj or dh. Thus, the other endpoint of dh+1 must be in the triangle �ai�aj. Let x be
this endpoint.

The argument so far shows the existence of a point x in the triangle bounded
by di, dj , and ab (see Figure 12). Thus, ∠ai�aj ≤ ∠axb < π/3. The first inequality
holds because x is in triangle �ai�aj , and the second inequality holds for the following
reason. From the definition of β-skeleton, edge ab is in the β-skeleton iff there does not
exist a point z in the point set such that ∠azb ≥ arcsin(1/β). For β = 1/ sin(π/3.1),
this implies that ∠awb ≤ π/3.1 for any point w in the point set.

In triangle �q�r the angle ∠q�r is less than π/3, so |qr| < max{|�q|, |�r|} <
max{|pq|, |rs|}, and a similar argument on triangle �p�s shows that |ps| <
max{|pq|, |rs|}. This completes the proof of Fact 3.2.3.

The remainder of the argument is similar to Case 1, where triangles do not cross.
The interior of polygon P can be retriangulated at a lesser cost using the techniques
in the original β-skeleton arguments. Finally, lowering the weight of triangles in
t1, . . . , tm by ε > 0 and raising the weight of new triangles by ε gives a fractional
triangulation that costs less than c(X∗).
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Part 2 (Y XY -subgraph): The argument used above for the β-skeleton works for
the Y XY -subgraph as well. The only parts of the argument for the β-skeleton that
use geometric properties of edges in the β-skeleton are Facts 3.2.1 and 3.2.2. Thus, it
suffices to show that these two facts hold for the edges of the Y XY -subgraph too.

Let ab be an edge of the Y XY -subgraph and pq be any edge that intersects ab.
By definition of the Y XY -subgraph, |ab| ≤ min{|pa|, |pb|, |qa|, |qb|}, so the union of
two disks centered at a and b with radius |ab| does not contain p or q (see Figure
13). If the angle ∠paq in triangle �apq and the angle ∠pbq in triangle �bpq are
both greater than 90◦, we have |pq| > max{|pa|, |pb|, |qa|, |qb|, |ab|}, and the proof of
Fact 3.2.1 is complete. To show that ∠pbq > 90◦, let s and t be the intersections of
pq with the circle centered at a. We have ∠pbq > ∠sbt > 90◦. The second inequality
holds because ∠sbt is an inscribed angle (i.e., is an angle formed by two chords with
a common endpoint in the circle centered at a) and its intercepted arc (i.e., the part
of the circle which is “inside” the angle) is greater than 180◦. The argument to show
∠paq > 90◦ is similar.

We next show that Fact 3.2.2 also holds for any edge ab of the Y XY -subgraph.
Let p, q, r, and s be four other distinct points of the point set such that pq and rs
both intersect ab. We first consider the case that pq and rs do not intersect. Let
h(q) and h(r), respectively, denote the distance of q and r from the line through ab.
Lemma 2 in [38] states that if h(q) ≤ h(r), then |qr| < |rs|. Similarly, if h(r) ≤ h(q),
then |qr| < |pq|. Hence |qr| < max{|pq|, |rs|}, which proves Fact 3.2.2 in this case.
If, on the other hand, pq and rs intersect, we use Fact 3.2.3. The proof of Fact 3.2.3
is almost the same whether ab is an edge of the Y XY -subgraph or an edge of the
β-skeleton.

Lemma 3.3. If any of the following conditions hold for a potential edge e of G
(not on the boundary of the region to be triangulated), the LP forces e to 0:

1. independence: The LP forces a potential edge that crosses e to 1.
2. diamond: The diamond condition holds for e.
3. LMT-skeleton: For every two triangles t and t′ for which e is locally minimal,

the LP forces one of the edges of t or t′ to 0.
Proof idea. Part 1 is straightforward: if potential edges e and e′ cross, then the

LP covering constraint for a point near the intersection of e′ and e implies that the
total weight of potential triangles that have e or e′ as sides is at most 1.

Part 3, the LMT-skeleton, is straightforward. If an optimal fractional triangula-
tion X∗ gives e positive weight, then (by constraint (1.2) implied by the LP) there
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must be two triangles t and t′ with positive X∗
t and X∗

t′ whose intersection is e. Edge
e must be locally minimal for t and t′ (otherwise X∗ could be improved by reducing
X∗

t and X∗
t′ and raising the weights of the other two triangles that triangulate t∪ t′).

Part 2, the diamond condition, is handled as the β-skeleton and Y XY -subgraph
are handled in the proof idea of Lemma 3.2.

Full proof. As discussed in the proof idea, part 1 (independence) and part 3
(LMT-skeleton) are straightforward. We give the detailed proof of part 2 (diamond).

Part 2 (diamond): Like the β-skeleton and the Y XY -subgraph, the original dia-
mond heuristic for MWT is proved by local-improvement arguments: if the condition
holds for an edge e that is in the MWT, then a polygon covering e within the MWT
can be retriangulated at lesser cost, contradicting the optimality of the MWT [9, 15].
We first give a summary of the results in [15] and then explain how to extend those
results to any optimal fractional triangulation X∗.

Suppose e is horizontal, p and q are its endpoints, and p is on the left of q. Let
�pqw and �pqu be the two isosceles triangles with base angle π/4.6 above and below
pq and C be the disk with diameter e, as shown in Figure 14. Suppose that �pqw
contains a point a′ and �pqu contains a point b′. If e is in the MWT, a′b′ is not in
the MWT, and there is a set of triangles in the MWT that intersect a′b′. Consider
the sequence of triangles encountered when tracing a′b′ toward a′, starting from edge
e and stopping with the first triangle that has a vertex inside disk C, and let P1 be
the polygon formed by the boundary edges of triangles in the sequence. Let a be
the vertex found inside C—if all else fails, then a = a′. In Figure 14, P1 is the dark
gray area above e. Similarly, consider the sequence of triangles encountered when
tracing a′b′ toward b′, starting from edge e and stopping with the first triangle that
has a vertex inside disk C, and let P2 be the polygon formed by the boundary edges
of triangles in the sequence. In Figure 14, P2 is the dark gray area below e. The
boundary edges of P1 are grouped naturally into two chains, one from p to a and one
from q to a. Vertex a does not belong to any of the two chains. P1 is a fan on p (or
q) if all triangles in P1 are incident on p (or q). Similarly P2 can be a fan on p (or q).

Drysdale, McElfresh, and Snoeyink [15] prove the following two facts to show how
P1 or P2 or their union can be triangulated at lesser cost.8

Fact 3.3.1 (following [15, Lemma 8]). If P1 (or P2) is not a fan, it can be
retriangulated at lower cost.

8In summarizing the result of [15], we use the same notation and names. The only exception is
that [15] uses A and B instead of P1 and P2.
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Fact 3.3.2 (see [15, Lemma 9]). When both P1 and P2 are fans, then their union
can be retriangulated at lower cost.

The above facts contradict the optimality of the MWT. Thus, e cannot be in any
MWT. Next we extend the above arguments to any optimal fractional triangulation
X∗. We find polygons P ′

1 and P ′
2 corresponding to P1 and P2 in the above argument

and show that if X∗ does not give e weight zero, then P ′
1 ∪ P ′

2 can be retriangulated
at lesser cost. Lowering the weight of those triangles by ε > 0 and raising the weight
of other triangles by ε gives a fractional triangulation that costs less than X∗. The
details of the argument follow.

If X∗ does not give pq weight 0, there is a triangle t with positive X∗
t that has

pq as a side. Triangle t intersects a′b′. For any side d of t that intersects a′b′ there
must be a triangle t′ with positive X∗

t′ that has d as a side and lies on the other
side of d from t. By repeating the same argument for the new triangle(s), a sequence
Γ of triangles can be obtained that completely covers a′b′. As shown in Figure 15
triangles in the sequence Γ may or may not cross each other. The left figure shows the
case that no triangles cross, while the right figure shows the case that some triangles
cross. If triangles in the sequence do not cross, the original arguments from [15] apply.
However, if triangles in the sequence cross, additional analysis is needed.

q
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b′
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u
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Fig. 15.

Consider the set of triangles in Γ encountered when tracing a′b′ toward a′, starting
from edge e and stopping with the first triangle that has a vertex inside disk C, and
let P ′

1 be the polygon formed by the boundary edges of these triangles. Also let a
be the vertex found inside C—if all else fails, then a = a′. Similarly, define P ′

2 to be
the polygon formed by the boundary edges of the set of triangles encountered when
tracing a′b′ from e toward b′ until a vertex is inside C. Figure 16 shows P ′

1 and P ′
2 (the

dark shaded regions) in two cases. In the left figure there are no crossing triangles,
while in the right figure some triangles in P ′

1 cross.
We consider the following cases and show how in each case P ′

1 ∪ P ′
2 can be retri-

angulated at lower cost.
Case 1—P ′

1 is not a fan and some triangles in P ′
1 overlap. This case is shown in

Figure 17 and its magnified version in Figure 18. In the sequence of triangles in P ′
1

encountered when tracing a′b′ toward a′, let t′ be the first triangle that crosses some
of the previous triangles in the sequence (the light gray triangle labeled in Figure 17).
Let P ′′ be the polygon that covers the set of all triangles before t′ (the dark gray
polygon labeled P ′′ in Figure 17). Polygon P ′′ and triangle t′ share an edge. Let p′q′

be this edge such that p′ is to left of q′ (see Figure 18). The boundary edges of P ′′

can be grouped naturally into two chains, one from p to p′ and one from q to q′. We
use the following additional facts from [15] to show that P ′′ can be retriangulated
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at lower cost. Note that the following facts can be applied to P ′′ because P ′′ is the
union of triangles that do not cross.

Fact 3.3.3 (see [15, Lemma 7]). If the chain of boundary vertices from p to p′

has three consecutive vertices x, y, and z with |yq| ≥ |zq| and the internal angle ∠xyz
is less than π, then P ′′ can be retriangulated to decrease its cost. (The same is true
with q and q′ exchanging roles with p and p′, respectively.)

We say the clockwise limit9 on the directions of the boundary edges on the chain
(from p to p′) is perpendicular to qw if for every two consecutive vertices pi and pi+1

on the chain, pi+1 is above or on the line through pi that is perpendicular to qw.
Fact 3.3.4 (see [15, Lemma 6]). If the chain of boundary vertices from p to p′

has no three consecutive vertices x, y, and z with |yq| ≥ |zq| that form an internal
angle (∠xyz) of less than π, then the clockwise limit on the directions of the boundary

9We use the term clockwise limit to be consistent with the terminology of the original paper [15].
The word limit in this context has nothing to do with the well-known mathematical limit.
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edges is perpendicular to qw. (The same is true with q and q′ exchanging roles with
p and p′, respectively, and “counterclockwise” replacing “clockwise”).

Facts 3.3.4 implies that if the clockwise limit on the direction of boundary edges
(on the chain from p to p′) is not perpendicular to the line through qw, then there
are three consecutive vertices x, y, and z with |yq| > |zq| that form an internal angle
(∠xyz) of less than π, and the existence of such vertices by Fact 3.3.3 implies that
P ′′ can be retriangulated to decrease its cost. The remainder of the proof for Case 1
shows that one of the edges on the boundary of P ′′ violates the mentioned limit on
the direction of boundary edges, and thus P ′′ can be retriangulated at lower cost.

In Figure 18, the darker shaded area is P ′′. Triangles in P ′′ do not overlap.
Triangle t′ = �p′q′v is the first triangle that overlaps some of the previous triangles.
Triangle t′ and polygon P ′′ share edge p′q′, and t′ crosses some triangles covered by
P ′′. Thus, t′ crosses some boundary edges of P ′′ either on the chain from p to p′ or
on the chain from q to q′. Assume without loss of generality that triangle t′ crosses
an edge on the chain from p to p′. Since edge p′q′ is a boundary edge of P ′′, the other
two sides of triangle t′ (p′v and q′v) should intersect P ′′. Let pipi+1 be the first edge
on the chain from p to p′ that is intersected by q′v when moving from q′ to v.

The line through q′v divides the plane into a half-space above it (the half-space
containing point w) and a half-space below it. It is easy to see that pi is in the
half-space above q′v and pi+1 is below it, so pi+1 cannot be above the line through
pi that is perpendicular to qw. This means that the clockwise limit on the direction
of the boundary edges is not perpendicular to qw. This, combined with Facts 3.3.3
and 3.3.4, implies that the interior of P ′′ can be retriangulated at lower cost.

Case 2—P ′
1 is not a fan and no two triangles in P ′

1 cross. Since triangles in P ′
1

do not overlap, Fact 3.3.1 directly implies that P ′
1 can be retriangulated at a lesser

cost.
The previous two cases show that if P ′

1 is not a fan, we can retriangulate some
triangles in P ′

1 to reduce the cost of triangulation. A similar argument applies to P ′
2,

so there remains the case where both P ′
1 and P ′

2 are fans. We consider this case next.
Case 3—P ′

1 and P ′
2 are both fans. P ′

1 is a fan on p (or q) if all triangles in P ′
1 are

incident on p (or q), and thus no two triangles in P ′
1 overlap. Similarly if P ′

2 is a fan,
no two triangles in P ′

2 overlap. Additionally, when both P ′
1 and P ′

2 are fans, triangles
in P ′

1 are all above the line through pq, triangles in P ′
2 are below the line through pq,

and no triangle in P ′
1 intersects a triangle in P ′

2. Hence, no two triangles in P ′
1 ∪ P ′

2

can cross, and by Fact 3.3.2 P ′
1 ∪ P ′

2 can be retriangulated at lower cost.
In all of the above cases, by lowering the weight of some triangles in P ′

1 ∪ P ′
2 by

ε > 0 and raising the weight of some other triangles in the new triangulation by ε,
a fractional triangulation costing less than X∗ can be obtained, which contradicts
the optimality of X∗. This completes the proof of part 2 (diamond property) and
Lemma 3.3.

Assume (as in the statement of Theorem 3.1) that the set E∗ of edges that can be
deduced to be in every MWT of G gives a partition of G in which every face is empty.
It follows from Lemmas 3.2 and 3.3 (by a simple inductive proof) that every edge that
can be deduced to be excluded from every MWT is forced to 0 by the LP, and every
edge that can be deduced to be in every MWT is forced to 1. Thus, in any optimal
fractional triangulation X∗, no potential triangle t that crosses an edge in E∗ has
positive weight X∗

t . Thus, the optimal fractional triangulations X∗ are exactly those
that, for each face f of the partition, induce an optimal fractional triangulation of the
simple polygon f . It is known (e.g., [8, Thm. 7], [10, Thm. 4.1(i)], [22, Cor. 3.6.2])
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that, for any simple polygon f , each basic optimal fractional triangulation is the
incidence vector of an actual triangulation of f . Thus, each optimal extreme point of
the LP for G is also the incidence vector of a triangulation of G, proving Theorem 3.1.

Acknowledgments. We thank the two anonymous referees for suggestions on
improving the presentation of the results.
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