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K-Medians,  Facil i ty Location, and  the Chernoff-Wald Bound 

Neal E. Young* 

Abstract 

We study the general (non-metric) facility-location and 
weighted k-medians problems, as well as the fractional 
facility-location and k-medians problems. We describe a 
natural randomized rounding scheme and use it to derive 
approximation algorithms for all of these problems. 

For facility location and weighted k-medians, the re- 
spective algorithms are polynomial-time [HAk + d]- and 
[(1 + e)d; In(n + n/e)k]-approximation algorithms. These 
performance guarantees improve on the best previous per- 
formance guarantees, due respectively to Hochbaum (1982) 
and Lin and Vitter (1992). For fractional k-medians, the al- 
gorithm is a new, Lagrangian-relaxation, [(1 + e)d, (1 + e)k]- 
approximation algorithm. It runs in O(kln(n/e)/e 2) linear- 
time iterations. 

For fractional facilities-location (a generalization of frac- 
tional weighted set cover), the algorithm is a Lagrangian- 
relaxation, ~(1 + e)k]-approximation algorithm. It runs in 
O(nln(n)/e ~) linear-time iterations and is essentially the 
same as an unpublished Lagrangian-relaxation algorithm 
due to Garg (1998). By recasting his analysis probabilis- 
tically and abstracting it, we obtain an interesting (and as 
far as we know new) probabilistic bound that may be of 
independent interest. We call it the Chernoff- Wald bound. 

1 P r o b l e m  d e f i n i t i o n s  

The input to the w e i g h t e d  s e t  c o v e r  p r o b l e m  is 
a collection of sets, where each set s is given a cost 
cos t (s )  E ~+. The goal is to choose a cover (a collection 
of sets containing all elements) of minimum total cost. 

The (uncapacitated) f a c i l i t y - l o c a t i o n  p r o b l e m  is 
a generalization of weighted set cover in which each 
set f (called a "facility") and element c (called a 
"customer") are given a distance d i s t ( f ,  c) E ~+U{oo}. 
The goal is to choose a set of facilities F minimizing 
c o s t ( F )  + d i s t ( F ) ,  where c o s t ( F ) ,  the facility cost of 
F,  is ~"~.EF COSt(f)  and d i s t ( F ) ,  the assignment cost 
of F,  is )-:c r a i n i e r  d± s t ( f ,  c). 

Fig. 1 shows the standard integer programming 
formulation of the problem - -  the facility-location IP 
[12, p. 8]. The facility-location linear program (LP) is 
the same except without the constraint "x ( f )  E {0, 1}". 
A fractional solution is a feasible solution to the LP. 
Fractional facility location is the problem of solving the 
LP. 
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minimizez d + k 

cost(x) < k 
d i s t ( x )  S d 

subject to ~-~/x(f,c) = 1 
=(f,c) < x(f) 
x( f ,c)  >_ 0 

x( f )  E {0,1} 

(Vc) 
(vf, c) 
(vf, c) 
(vf) 

Figure 1: The facility-location IP. Above d, k, x ( f )  and 
x( f ,  c) are variables, d i s t ( x ) ,  the assignment cost of x, 
is ~-~Ic x(f ,  c )d i s z ( f ,  c), and cos t (x ) ,  the facility cost of 

The w e i g h t e d  k - m e d i a n s  p r o b l e m  is the same 
as the facility location problem except for the following: 
a positive real number k is given as input, and the goal 
is to choose a subset F of facilities minimizing d i s t ( F )  
subject to the constraint c o s t ( F )  < k. The standard 
integer programming formulation is the k-medians IP, 
which differs from the IP in Fig. 1 only in that  k is given, 
not a variable, and the objective function is d instead 
of d + k. The (unweighted) k-medians problem is the 
special case when each c o s t ( f )  = 1. For the fractional 
k-medians problem, the input is the same; the goal is 
to solve the linear program obtained by removing the 
constraint "x ( f )  E {0, 1}" from the k-medians IP. 

We take the "size" of each of the above problems to 
be the number of pairs (f ,  c) such that  d± s t ( f ,  c) < oo. 
We assume the size is at least the number of customers 
and facilities. 

By an In(d); f l ( k ) ] - a p p r o x i m a t i o n  a l g o r i t h m  for 
k-medians, we mean an algorithm that,  given a problem 
instance for which there exists a fractional solution of 
assignment cost d and facility cost k, produces a solution 
of assignment cost at most a(d)  and facility cost at most 
D(k). We use similar non-standard notations for facility 
location, set cover, and k-set cover. For instance, by 
a [d + 2k]-approximation algorithm for facility location, 
we mean an algorithm that,  given an instance for which 
there exists a fractional solution of assignment cost d 
and facility cost k, produces a solution for which the 
assignment cost plus the facility cost is at most d + 2k. 
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2 Background 
In the mid 1970's Johnson and Lovasz gave a greedy 
[HAk]-approximation algorithm for unweighted set 
cover [9, 11]. In 1979 Chvatal generalized it to a [HAk]- 
approximation algorithm for weighted set cover [3]. 

In 1982 Hochbaum gave a greedy [HA(d + k)]- 
approximation algorithm for the uncapacitated facility- 
location problem by an implicit reduction to the 
weighted set-cover problem [8]. 1 Above /x is at most 
the maximum, over all facilities f ,  of the number of 
customers c such that d i s t ( f ,  c) < oo. 

In 1992 Lin and Vitter gave a polynomial-time 
[(1 + e)d; (1 + 1/e) (lnn + 1) k]-approximation algorithm 
for the k-medians problem [10]. (Here c > 0 is an 
input parameter that tunes the tradeoff between the 
two criteria and n is the number of customers.) Their 
algorithm combines a greedy algorithm with a technique 
they call filtering. 

In 1994 Plotkin, Shmoys, and Tardos (PST) gave 
Lagrangian-relaxation algorithms for general packing 
and covering problems [13]. As a special case, their 
algorithms imply a [(1 + e)k]-approximation algorithm 
for fractional set cover that runs in O(k ln(n)/e 2) linear- 
time iterations. Here n is the number of elements. 

In 1998 Garg generalized and simplified the PST 
set cover algorithm to obtain a [(1 + e)k]-approximation 
algorithm for fractional weighted set cover [6]. Garg's 
algorithm runs in O(nln(n)/e 2) linear-time iterations. 
By Hochbaum's reduction, one can use Garg's algorithm 
as a [(1 + e)k]-approximation algorithm for fractional 
/acility location. The running time is the same, where 
n is the number of customers. 

Recent work has focused on metric k-medians and 
facility location problems. In the metric versions, the 
distance function is assumed to satisfy the triangle in- 
equality. For example, [O(d + k)]-approximation algo- 
rithms have recently been shown for the metric facility- 
location problem [7, 15]. Charikar, Guha, Tardos and 
Shmoys [2] recently gave an [O(d); k]-approximation al- 
gorithm for metric k-medians. Many of these algorithm 
first solve the fractional problems and then round the 
fractional solutions. 

rHHochbaum's reduct ion  is easy  to adap t  in order  to reduce  
unweighted  k - m e d i a n s  to a var iant  of  set  cover t ha t  we call k- 
set  cover. The  reduct ion  also ex tends  na tu ra l l y  to the  f rac t ional  
problems.  (See append i x  for detai ls .)  T h i s  shows  a loose 
equivalence between facility location and  weighted se t  cover,  
and  between k - m e d i a n s  and  k-set  cover. However,  H o c h b a u m ' s  
reduct ion  does not  preserve the  d is t inc t ion  be tween facil i ty costs  
and  a s s ignmen t  costs .  For th is  reason,  we work wi th  t he  facil i ty 
locat ion and  k - m e d i a n s  representa t ions .  T h e  a l g o r i t h m s  and  
ana lyses  we give for facility location easi ly imp ly  co r r e spond ing  
resul ts  for weighted set  cover, and  the  resul ts  for k - m e d i a n s  are 
s t ra igh t forward  to adap t  to k-set  cover. 

3 Results  
Fig. 2 shows the simple randomized rounding scheme 
at the center of all our results. With minor variations 
(e.g. Fig. 4), this rounding scheme can be used as 
the basis for approximation algorithms for set cover, 
weighted set cover, facility location, and k-medians, and 
as the basis for Lagrangian-relaxation algorithms for the 
fractional variants of these problems. 

Although essentially the same rounding scheme suf- 
rices for each of these problems, the respective proba- 
bilistic analyses require different (albeit standard) tech- 
niques in each case. For set cover, a simple direct 
analysis suffices [16]. For weighted set cover, facility 
location, and k-medians, a basic probabilistic lemma 
called Wald's inequality is necessary. For fractional set 
cover and k-medians, the analysis rests on the Chernoff 
bound. For fractional weighted set cover and facility lo- 
cation, the analysis is a simple application of what we 
call the Chernoff- Wald bound. 

For each problem, we apply the method of condi- 
tional probabilities to the rounding scheme in order to 
derive a corresponding approximation algorithm. The 
structure of each resulting algorithm, being closely tied 
to the underlying probabilistic analysis, ends up differ- 
ing substantially from problem to problem. 

For facility location, the resulting algorithm (Fig. 2) 
is a randomized rounding, polynomial-time [d + H~xk]- 
approximation algorithm. The performance guarantee 
improves over Hochbaum's algorithm with respect to 
the assignment costs. 

For weighted k-medians, the resulting algorithm 
(Fig. 3) is a greedy [(1 + e)d; ln(n +n/e)k]-apprordmation 
algorithm. In comparison to Lin and Vitter's algorithm, 
the performance ratio with respect to the facility costs 
is better by a factor of roughly 1/e. 

For fractional k-medians, the algorithm (Fig. 5) 
is a [(1 + e)d, (1 + e)k]-approximation algorithm. It 
is a Lagrangian-relaxation algorithm and runs in 
O(k ln(n/e)/e 2) linear-time iterations. This is a factor 
of n faster than the best bound we can show by applying 
the general algorithm of Plotkin, Shmoys and Tardos. 

Finally, for fractional facility location, the algo- 
rithm (see Fig. 6) is a [(1 + e)(d + k)]-approximation, 
Lagrangian-relaxation algorithm. It runs in at most 
O(nln(n)/e 2) iterations, where each iteration requires 
time linear in the input size times Inn. This algorithm 
is the same as the unpublished fractional weighted set- 
cover algorithm due to Garg [6]. 

The main interest of this last result is not that 
we improve Garg's algorithm (we don't!), but that 
we recast and abstract Garg's analysis to obtain an 
apparently new (?) probabilistic bound - -  we callit the 
Chernoff-Wald bound - -  that may be of general interest 
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for probabilistic applications. 2 
A basic contribution of this work is to identify 

and abstract out (using the probabilistic method) com- 
mon techniques underlying the design and analysis of 
Lagrangian-relaxation and greedy approximation algo- 
rithms. 

4 W a l d ' s  i n e q u a l i t y  a n d  C h e r n o f f - W a l d  b o u n d  
Before we state and prove Wald's inequality and the 
Chernoff-Wald bound, we give some simple examples. 
Suppose we perform repeated trials of a random ex- 
periment in which we roll a 6-sided die and flip a fair 
coin. We stop as soon as the total  of the numbers 
rolled exceeds 3494. Let T be the number of trials. 
Let D _< 3500 be the total  of the numbers rolled. Let 
H be the number of flips that  come up heads. Since the 
expectation of the number in each roll is 3.5, Wald's 
implies E[D l = 3.5EFT], which implies EfT] < 1000. 
Since the probability of a head in each coin flip is 0.5, 
Wald's implies E[H] = 0.5EFT]. Thus we can conclude 
E[H] <. 500. 

Now modify the experiment so that  in each trial, 
each person in a group of 50 flips their own fair coin. Let 
M be the maximum number of heads any person gets. 
Then Chernoff-Wald states that  E[M] < (1 + e)500 for 
e ~ 0.128 (so (1 + e)500 ~-. 564). 

If we were to modify the experiment so that  the 
number of trials T was set at 1000, the Chernoff-Wald 
bound would g ive the  same conclusion, but in that  case 
the Chernoff bound would also imply (for the same e) 
that  Pr[M > (1 + e)500] < 1 

LEMMA 4.1. ( W a l d ' s  i n e q u a l i t y )  Let T E Iq+ be a 
random variable with EfT] < oo and let X1, X2 , . . .  be a 
sequence of random variables. Let it, c E ~. If 

E [ X t I T > t ]  < # ( f o r t >  1) 

and Xt < e (for t = 1 , . . . ,  T), then 

E(X1 + X2 + . "  + XT) <~ #E(T).  

The claim also holds if each "<" is replaced by '~_ ". 

The condition "Xt < c" is necessary. Consider 
choosing each Xt randomly to be 4"2 t and letting T = 
min{t : Xt > 0}. Then E[XtlT > t] = 0, so taking 
It = 0, all conditions for the theorem except "Xt < c" 

~The Chernoff-Wald bound also plays a central role in 
the randomized-rounding interpretation of the Garg and Kone- 
mann's recent multicommodity-flow algorithm [5]. This and 
the general connection between randomized rounding and 
greedy/Lagrangian-relaxation algorithms are explored in depth 
in the journal version of [16], which as of October 1999 is still 
being written. 

are met.  But  the conclusion E[X1 + X2 +. ."  + XT] <_ 0 
does not  hold, because )(1 + X2 + -.- + XT ---- 1. 

The  proof  is just an adaptation of the proof of 
Wald's equation [1, p. 370]. The reader can skip it on 
first reading. 

Proof. W.l.o.g. assume It -- 0, otherwise apply the 
change of variables X~ = Xt - tt before proceeding. 
Define Yt - X1 + X2 + - . .  + Xt. If E(YT) = --oo then 
the claim clearlyholds.  Otherwise, 

E(YT) = E P r ( T  = t)E(Yt [T = t) 
t = l  

o o  t 

= E E P r ( T  = t)E(X8 IT = t). 
t : l  s : l  

The  sum of the positive terms above is at most 
~ t  ~-~s<t Pr(T = t)c = ~ t  Pr(T = t)ct = E[cT] < oo. 
Thus, tim double sum is absolutely convergent so 

= E E P r ( T = t ) E ( X s I T = t )  
$ = 1  t = s  

o o  

-- E P r ( T  :> s)Z(Xs ]T > s) 
s-----1 

This establishes the claim because E(X8 IT >_ s) < O. 
The claim with "<_"'s replaced by ">_" 's follows via the 
change of variables X~ - - X t ,  #'  = - # ,  and c' - - e .  
[] 

In many  applications of Wald's, the random vari- 
ables X1, X 2 , . . .  will be independent, and T will be 
a stopping time for {Xt} - -  a random variable in 
i~1+ such tha t  the event "T = t" is independent of 
{Xt+l,  X t+2 , . . . } .  In this case the following companion 
lemma facilitates the application of Wald's inequality: 

LEMMA 4.2.  Let X I , X 2 , . . .  be a sequence of indepen- 
dent random variables and let T be a stopping time for 
the sequence. Then E[Xt [ T > t] = E[Xt]. 

Proof. Because Xt is independent of XI,  X 2 , . . . ,  X t - i ,  
and the event "T > t" (i.e. T • { 1 , 2 , . . . , t -  1}) is 
determined by the values of X1, X2, . . . ,  Xt-1,  it follows 
that  Xt is independent of the event "T _> t". [] 

Here is a s tatement of a standard Chernoff bound. 
For a proof  see e.g. [14, 16]. 
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Let ch(e) a (1 + e) ln(1 + e) - e > e ln(1 + e)/2. 
For e < 1, ch(e) > e2/3 and c h ( - e )  > e~/2. 

LEMMA 4.3. (Chernoff Bound [14]) 
Let X1, X 2 , . . . ,  Xk be a sequence of independent random 
variables in [0, 1] with E ( ~  i Xi)  >_ It > O. Let e > O. 
Then Pr  [Y~4 Xi > It(1 + e)] < exp(-ch(e)I t ) .  
For e < 1, Pr  [~"~'~i Xi  < It(1 - e)] < e x p ( - c h ( - e ) I t ) .  

THEOREM 4.1. (Chernoff-Wald Bound) 
For each i = 1 , 2 , . . . , m ,  let Xil,Xi2,... be a sequence 
of random variables such that 0 < Xit <_ 1. 
Let T 6 N+ be a random variable with EfT] < oo. 
Let M = max['=1 Xil  + Xi2 + ""  + X i r .  Suppose 

E[X. IT >__ t; {Xy~ : j < t, 1 < i < m}] < u 

for all i, t for some It E IR. Let e > 0 satisfy 

e--Ch(e) max{#E[T] ,  E[M]/(1 + e)} _< 1/m. 

T h e n  
E[M l <_ (1 + e)pE[T]. 

The claim also holds with the following replace- 
ments: '%nini" for '%naxi "; ">_ #"  for "< It'; 
"E[M] >" for "E[M] <_ "; and, for each "e ", " -e"  (ex- 
cept in "e >_ 0 "). 

In the case when T is constant, the Chernoff bound 
implies Pr[M _> (1 + e)#T] < I for e as above. 

The first-time reader can skip the following proof. 

Proof. For t = 0 , . . . ,  T,  let Yit - Xil + Xi2 + "" " "~ Xit  
(i = 1 , . . . , m )  and 

m 

Zt - log1+, E ( 1  + e) Y" • 
i=1 

Note that  for each i, Z T > log l+e( l+e)  Y'r = Y/T- Thus 
M <_ ZT. We use Wald's inequality to bound E[ZT]. 
Fix any t > 0. Let Yu = (1 + e) Y~,'-~ . Then 

Zt - Z t - t  
~ i  yit(1 + e) x ' '  

= l°gl+e ~ i Y i t  

< iogl+ ~ ~ iYi t (1  + eXit) 
-- ~ i  Yit 
= lOgl+~ [ l + e  ~-~iyitzit] 

~"~i Yit 
e ~-~i yitXit  < 

ln(1 + e) Y'~i Yit 

The first inequality follows from (1 + e) z < 1 + ez 
for 0 < z < 1. The last inequality follows from 
logl+ ~1 + z  = ln(1 + z ) / l n ( l + e )  < z / In(1  + e )  for 

z ~ 0. Thus, conditioned on the event T > t and the 
values of Yi,t-i (1 < i < m), 

E[Z ,  - Z~_~] < 
ln(1 + e) ~'~i yit 

This implies tha t  E[Zt - Zt_IIT >_ t] < Ite/In(1 + e). 
Using Z0 -- lOgl+~ m and Wald's inequality, 

E[M] < E[ZT] < logl+~ m + E[T]#e/ln(1 + e). 

By algebra, the above together with the assumption on 
e imply that  E[M] < (1 + e)/~E[T]. 

The proof of the claim for the minimum is essen- 
tially the same, with each "e" replaced by " - e "  and 
reversals of appropriate inequalities. In verifying this, 
note that log1_ ~ is a decreasing function. [] 

In many applications of Chernoff-Wald, each Xit 
will be independent of {Xj l  : ~ < t, 1 <_ j < m}, and T 
will be a stopping time for {)(it} - -  a random variable 
in N + such for any t the event "T = t" is independent of 
{Xi~ : g > t, 1 < i < m}. Then by an argument similar 
to the proof of Lemma 4.2, we have: 

LEMMA4.4. For 1 < i <_ m, let X n , X i 2 , . . .  be 
a sequence of random variables such that each Xit is 
independent of {X j t  : g < t, 1 < j <_ m}.  Let T be a 
stopping time for { Xit  }. Then 
E[Xi, IT >_ t; {Xj,  : j < t, 1 < i < m}] = E[X~t]. 

5 R a n d o m i z e d  r o u n d i n g  for  fac i l i ty  l o ca t i on .  
We use Wald's inequality to analyze a natural random- 
ized rounding scheme for facility location. 

GUARANTEE 5.1. Let F be the output of the facility- 
location rounding scheme in Fig. 2 given input x. Let 
AIz  be the number of customers c such that x ( f ,  c) > O. 
Then E F [ d i s t ( g )  + cos t (F ) ]  is at most d i s t ( x )  + 
E I c o s t ( f ) x ( f ) g A  t,  . 

Proof. Observe the following basic facts about  each 
iteration of the outer loop: 

1. The probability that  a given customer c is as- 
signed to a particular facility f in this i t e r a t i o n  
is x( f ,  c)/[x I. 

2. The probability that  c is assigned to some facility 
is E I  z(f,  c)/Izf > x/Ixl. 

3. Given that  c is assigned, the probabilitY of it being 
assigned to a particular f is x( f ,  c). 
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input: fractional facility location solution x .  

output: random solution F C jz s.t. EF[d i s t (F )  + cosz(F)]  < d i s t ( x )  + Hzxcost(x) .  

1. Repeat  until all customers are assigned: 
2. Choose a single facility f at random so that  P r ( f  chosen) = x ( f ) / I x  I. 
3. For each customer c independently with probability x(s, e)/x(s): 
4. Assign (or, if c was previously assigned, reassign) c to f .  
5. Return the set containing those facilities having customers assigned to them. 

Figure 2: Facility-location rounding scheme. Note Ixl - ~']s x(s). 

To bound E [ d i s t ( F ) ] ,  it suffices to bound the ex- 
pected cost of the assignment chosen by the algo- 
rithm. For a given pair ( f ,c) ,  what is the prob- 
ability tha t  f is assigned to c? By the third 
fact above, this is x( f ,c ) .  Thus, E [ d i s t ( F ) ]  < 
~"]~f,c Pr(c assigned to f ) d i s t ( f ,  c) = d i s t ( x ) .  

To finish, we show P r ( f  6 F)  < Has  z ( f ) .  
This suffices because it implies that  E [cos t (F ) ]  equals 
~[~f P r ( f  6 F ) c o s t ( f )  < ~-~y H A / X ( f ) c o s t ( f ) .  

Fix a facility f .  Call the customers c such that  
x( f ,  c) > 0 the "fractional customers of f " .  Let random 
variable T be the number of iterations before all these 
customers are assigned. 
c l a im  1: P r ( f  e F) < E[T]x(f) / Ixl .  
proo f :  Define Xi to be the indicator variable for the 
event " f  is first chosen in iteration t". 

As E[Xt lT  >_ t] < x ( f ) / Ix l ,  by Wald's inequality 
P r ( f  6 F) = E[X1 + X2 + " "  + XT] < E[T]x(f) /Ix[.  
This proves the claim. 

Recall tha t  Alz is the number of fractional cus- 
tomers of f .  To finish the proof, it suffices to show: 
c l a im  2: EfT] < ]xlHA/. 
proof: Define ut to be the number of fractional cus- 
tomers of f not yet assigned after iteration t (0 < t < 
T).  (Recall Ho - 0 and Hi ~ 1 + 1/2 + - - -  + 1/i.) Then 
provided t < T,  H,,, - H,,,+ I is 

1 1 1 ut - Ut+l - - + ~  + . . . + - -  > 
Ut  U t  - - ~  U t + l  - -  1 - -  U t 

The expectation of the right-hand side is at least 1/Izl 
because each customer is assigned in "each iteration with 
probability at least 1/Izl. Since H~, is H~x~. when 
t = 0 and decreases by at least 1/Izl in expectation 
each iteration, by Wald's inequality, it follows that 
E[Ha, ,  - H,,r] >_ E[T]/Ixl. Since H~, r = 0, the claim 
follows. [] 

The randomized scheme can easily be derandomized. 

COROLLARY 5.1. There is a polynomial-time [d+ HAk]- 
approximation algorithm for uncap, facility location. 

6 G r e e d y  a l g o r i t h m  for w e i g h t e d  k - m e d i a n s .  
The k-medians rounding scheme takes a fractional k- 
medians solution (x, k,d) and an e > 0 and outputs  
a random solution F.  The scheme is the same as 
the facility-location rounding scheme in Fig. 2 except 
for the termination condition. The modified algorithm 
terminates after the first iteration in which the facility 
cost exceeds k[ln(n +n/e)] or  all customers are assigned 
with assignment cost less than d(1 + e). We analyze 
this rounding scheme using Wald's inequality and then 
derandomize it to obtain a greedy algorithm (Fig. 3). 

GUARANTEE 6.1. Let F be the output of the weighted 
k-medians rounding scheme given input x. Then 
c o s t ( F )  < k ln(n  + n/~) + maxf  c o s t ( f )  and with pos- 
itive probability d i s t ( F )  < d(1 + e). 

Proof. The bound on c o s t ( F )  always holds due to the 
termination condition of the algorithm. 

Let random variable T be the number of iterations 
of the rounding scheme. Let random variable ut be 
the number of not-yet-assigned customers at the end 
of round t (0 < t < T). By fact 2 in the proof of 
Guarantee 5.1, E[utlut_l A T > t] = (1 - 1/Ixl)ut_l.  

Define random variable dt to be the total  cost of the 
current (partial) assignment of customers to facilities at 
the end of round t. Because each customer is reassigned 
with probability 1fix I in each round, it is not to hard to 
show that  E[dt [ dt-1 A T > t] = (1 - 1/[x])dt_l +d / Ix  [. 

Define random variable ct to be the total  cost of 
the facilities chosen so far at the end of round t. In each 
iteration, E [ c o s t ( f ) ]  -- k/Ix], so that  E[ct I ct_l A T > 
t] = ~ _ ~  + k / M .  

Define ¢~ - ~</k + ln[~, + ( d , / d  - 1 ) / ( 1  + ~)]. 
Then using In z < z - 1 and the two facts established 
in the preceding three paragraphs, a calculation shows 
E[¢t - Ct- l ldt-1,  ut-1,  ce-1] <_ 0. By Wald's inequality, 
this implies E[OT] _< ¢o ( l n n .  Thus, with positive 
probability, CT < Inn. Assuming this event occurs, we 
will show that  at the end all elements are covered and 
the assignment cost is not too high. 
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input:  d iEt0 ,  cost() ,  e, d, n. 
o u t p u t :  Set  F of  facili t ies s.t. cos t (F )  < k ln (n  + n / e )  + max! cos t ( J )  and d iE t (F )  < (1 + e)d. 

1. Define ¢(c, f )  - diEt(C, f ) / d ( 1  + e) . . . .  c's contrib, to f t  + dr~d(1 + e) if c assigned to f . 
2. For each customer c do: fc +-- none . . . .  f¢ is the facility c is currently assigned to 
3. Define ¢(c, none) - 1 . . . .  contribution is I if c is unassigned 
4. Repeat until all customers are assigned with assignment cost _< d(1 + e): 
5. For each facility f define Cf - {c : ¢(c, f~) > ¢(c, f)}.  
6. Choose a facility f to maximize [~-~-~Ecl ~(c,  fc)  - ~p(c, f)] / cos t ( J ) .  
7. For each c E C I do: fc  +- f . . . .  Assign c to f . : 
8. Return the set of chosen facilities. 

Figure 3: The greedy k-medians algorithm. 

If the rounding scheme terminates because all ele- 
ments are covered and the assignment cost is less than 
(1 + e)d, then clearly the performance guarantee holds. 
Otherwise the algorithm terminates because the facility 
cost CT exceeds ln(n + n / e ) k .  This lower bound on the 
size and the occurrence of the event "qiT < In n" imply 
that  UT < 1 and dT < (1 + e)d. [] 

Next we apply the method of conditional probabil- 
ities. Let T,  dr, ut,  ct, and ~bt (0 < t < T) be defined as 
in the proof of Guarantee 6.1 for the k-medians rounding 
scheme. That  proof showed that E[¢T] < In n, and that  
if qiT < In n then F meets the performance guarantee. 

To obtain the greedy algorithm, in each iteration 
we replace the random choices by deterministic choices. 
Let dr, fit, and 5t denote, respectively, the assignment 
cost, number of unassigned elements, and facility cost 
at the end of the tth iteration of the greedy algorithm 
(analogous to dr, ut, and ct for the randomized algo- 
rithm). The greedy algorithm will make its choices in a 
way that  maintains the invariant 

I dt = Jt  ^ u t  = ^ c ,  = < In n. 

Note that  the expectation above is with respect to the 
random experiment. Tha t  is, the invariant says that  if, 
starting from the current configuration, the remaining  
choices were to be made randomly, then (in expectation) 
gb would end up less than Inn. 

Define Ct - 6 t / k  + In[ft + ( d r ~ d - 1 )  / (1 + e)] (anal- 
ogous to Ct for the randomized algorithm). The proof 
of Guarantee 6.1 easily generalizes to show E[¢T ]dr = 
d~ A ut = f~ A c~ = fit] _< ~t. Thus, it suffices to main- 
tain the invariant Ct < inn.  Since ¢o = 6o < In n, the 
invariant holds initially. 

During each iteration t, the algorithm chooses a 
facility f and assigns it a set of customers C so that  
qit < 4t-1- A calculation shows Ct - ¢t-1 is less than 

cos t ( f )  f t - I  - fit + ( d t - I / d  - d t / d ) l ( 1  + e) 
k + ( d t _ i / d  - 1) / (1  + e) 

It suffices to choose f and C so that  the above is non- 
positive. Whatever f t - 1 ,  5t-1, and dr-1 are, if f and C 
are chosen randomly, then the expectation of the above 
is zero. Thus, there is some choice of f and C which 
makes it non-positive. Thus it suffices to choose f and 
F to maximize 

f t - 1  - f t  + ( d t _ i / d  - d j d ) / ( 1  + e) 
c o s t ( J )  

The algorithm considers each facility f ;  for each f ,  it 
determines the best set C of customers to assign. The 
algorithm is shown in Fig. 3. 

The termination condition in the algorithm differs 
from the one in the rounding scheme, but the modified 
termination condition suffices because it foUows from 
the analysis that  whatever k is, the algorithm will 
terminate no later than the first iteration such that  the 
facility cost exceeds k In(n + ne). By the derivation, 

GUARANTEE 6.2. Given E, and d such that a fract ional  
solution of cost k and ass ignment  cost at mos t  d ex- 
ists, the greedy weighted k-medians  algorithm (Fig. 3) 
re turns  a solution F such that d iE t (F )  < (1 + e)d and 
c o s t ( F )  _ k ln(n + n / e )  + m a x f  cos t ( f ) .  

Without  loss of generality (since we are approximately 
solving the IP) maxf  cos t ( J )  < k. For the unweighted 
problem, the number of iterations is O ( k l n ( n / e ) ) .  No 
facility is chosen twice, so the number of iterations is 
always at most m, the number of facilities. 

COROLLARY 6.1. Let  0 < e < 1. The weighted k-  
medians  problem has a [(1 + e)d; (1 + ln(n + n / e ) k ) ] -  
approximation algorithm that runs in O ( m )  l inear- t ime 
iterations, or O ( k In(n/e)) i terations for  the unweighted 
problem. 
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inpu t :  fractional k-medians solution (x*, k, d), 0 < e < 1. 
o u t p u t :  random fractional solution ~ s.t. cost(~)  = (1 - e ) - lk  and E[dist(&)] _< (1 - e)-2d. 

1. Choose N > l n ( n / e ) / c h ( - e )  s.t. N k  is an integer . . . .  Recall oh(e) _> eln(1 + e). 
2. For each f , c  do: x ( f )  6- x ( f ,  c) 6- x(c) 6- 0. 
3. Repeat N k times: 
4. Choose a single facility f at random so that  P r ( f  chosen) = x * ( f ) / k .  
5. Increment x ( f ) .  
6. For each customer c, with probability x* (f,  c)/x* ( f )  do: 
7. Increment x ( f ,  c) and x(c). 
8. Return ~, where ~ - x / ( 1  - e)N. 

Figure 4: Fractional k-medians rounding scheme. 

7 L a g r a n g i a n  r e l a x a t i o n  for  k -med ians .  
In this section we derive and analyze a Lagrangian- 
relaxation, [(1 + e)2d; (1 + e)k]-approximation algorithm 
for the fractional unweighted k-medians problem. The 
rounding scheme is shown in Fig. 4. We use the Chernoff 
and Markov bounds to bound the probability of failure. 

GUARANTEE 7.1. Let ~ be the output of the fractional 
k-medians rounding scheme. Then with positive prob- 
ability ~ has cost(~) _< ( 1 -  e ) - lk  and dis t (~ )  
(1 - e)-2d. 

Proof. Recall k = cost(x*) = [x*[ and d = dis t (x*) .  
The bound on the cost always holds, because each of 
the k N  iterations adds i to cos t (x) .  It remains to show 
that with positive probability, after the final iteration, 
d i s t (x )  _< (1 -- e ) - l N d  and each x(c) > (1 - e)N. 

Since each iteration increases d i s t (x )  by d/k  in 
expectation, finally E[d i s t (x ) ]  < ( N k ) d / k  = dN. By 
the Markov bound, P r [d i s t (x )  >_ dN/ (1  - e)] < 1 - e. 

For any customer c, x(c) is the sum of k N  indepen- 
dent 0-1 random variables each with expectation at least 
l / k ,  so by the Chernoff bound, Pr[x(c) _< (1 - e)N] < 
e x p ( - c h ( - e ) N ) ,  which is at  most e/n by the choice of 
N. 

By the naive union bound, Pr[d is t (x)  > dN/ (1  - 
e) V minex(c) < (1 - e)N] < (1 - e) + n ( e / n )  = 1. [] 

Next we sketch how the method of conditional 
expectations yields the algorithm shown in Fig. 5. The 
proof of Guarantee 7.1 implicitly bounds the probability 
of failure by the expectation of 

dist(x) ~ (1 - e)z(c) 

+ Z. o 
and it shows that the expectation is less than 1. An 
upper bound (called a "pessimistic estimator" [14]) of 

the conditional expectation of the final value of the 
above, given the current value of x and the number t 
of remaining iterations, is 

d i s t ( x )  + t d / k  (1 - e)=(¢)e - t ' / k  
~ (x , t )  -- dN/ (1  - e) + Z (1 - e)(1-') g 

c 

The algorithm chooses f and C in each iteration in order 
to minimize the increase in the above quantity, which 
consequently stays less than  1. 

GUARANTEE 7.2. The fractional k-medians algorithm 
in Fig. 5 returns a fractional solution ~ having 
cost(~) ~ (I- e)-Ik and dist(~) ~ (I -e)-2d. 

Proof. (Sketch.) Let $ be as defined above. The 
algorithm maintains the invariant that  with t iterations 
remaining, ~(x, t) < 1. It is straightforward to verify 
that  the invariant is initially true, and that  if is true 
at the end, then the performance guarantee is met. We 
verify that  the invariant is maintained at each step. The 
increase in ~ in a single iteration is proportional to 

dist(f, e)- 
cEC c c 

where y(c) = a (1 - e) ~(c) before the iteration for 
suitably chosen scalar a > 0. If f and C were chosen 
randomly as in the rounding scheme, the expectation of 
the above would be at  most 0. The choice made by the 
algorithm minimizes the above quantity, therefore the 
algorithm maintains the invariant. [] 

COROLLARY 7.1. Let 0 < e < 1. The fractional k- 
medians problem has a [(1 + e )d, (14- e ) k]-approximation 
algorithm that runs in O(k  ln(n/e) /e  ~) linear-time iter- 
ations. 



93 

i n p u t :  fractional k-medians instance, 0 < e < 1, k, d. 
o u t p u t :  fractional solution ~ s.t. cos t (~)  < (1 - e ) - l k  and d i s t ( $ )  < (1 - e)-2d. 

1. Choose N > ln (n /e ) /ch( -~)  such that  N k is an integer . . . .  Recall ch(--e) > e2/2. 
2. For each f ,c do: x ( f )  +-- x ( f , c )  +-- x(c) +-- 0; y(c) = ~(1 - e)-I NdeCh(-~)lv. 
3. Repeat N k times: 
4. For each c do: set y(c) +- y(c) d /k .  
5. Choose a single facility f and a set of customers C to maximize ~-~ec y(c) - d i s t ( f ,  c). 
6. Increment x ( f ) .  
7. For each c E C do: Increment x( f ,  c) and x(c), and set y(c) e- (1 - ~)y(c). 
8. Return ~, where & = x / (1 - c)N. 

Figure 5: Lagrangian-relaxation algorithm for fractional k-medians. In step 4, it suffices to choose the best set of the 
form C = {c : y(c) > d i s t ( f ,  c)} for some f .  This can be clone in linear time. 

8 L a g r a n g i a n  r e l a x a t i o n  fo r  fac i l i ty  l o c a t i o n .  

The rounding scheme for fractional facility location 
is the same as the rounding scheme for fractional k- 
medians in Fig. 4, except for the termination condition. 
The modified algorithm terminates after the first itera- 
tion where each x(e) _> (1 - e)N,  where N is chosen to 
be at least ln(n) /ch(-e)  s.t. (1 -- c )N is an integer. We 
use the Chernoff-Wald bound to analyze the scheme. 

GUARANTEE 8.1. Let ~ be the output of the fractional 
facility-location rounding scheme as described above. 
Then ~ is a fractional solution to the facility location 
LP and E[cost(&) + dist(&)] < (1 - e ) - i ( d  + k). 

Proof. The termination condition ensures that  all cus- 
tomers are adequately covered. It remains to bound 
E[cosz(2)  + dis t (~)] .  

Let r.v. T denote the number  of iterations of the 
rounding scheme. In each iteration, the expected in- 
crease in c o s t ( x ) + d i s t ( x )  is k/]x*] +d/]x* I. By Wald's 
inequality, at termination, E [ c o s t ( x )  + disl;(x)] < 
S[T](k + d)/[x* I. It remains to show EfT] <_ N[x*[. 
(Recall that  ~ = x/(1 - e)N.) 

For any customer c, the probabili ty that  x(c) is 
incremented in a given i teration is at least 1/Ix*[, 
independently of the previous iterations. Let r.v. M - 
minc x(c) at the end. Note tl~at, by the choice of N, in 
fact M = (1 - e)N. 

By the Chernoff-Wald bound, (1 - e)N = E[M] >_ 
(1-e)E[T]/Ix* I (provided c h ( - e )  > l n ( m ) ( 1 - e ) / E [ M ] ,  
which indeed holds by the choice of N) .  Rewriting gives 
EfT] < Nix* I. [] 

Next we sketch how applying the method of con- 
ditional expectations gives the Lagrangian-relaxation 
algorithm shown in Fig. 6. Below we let x f  denote 

the value of x after the final iteration of the algo- 
r i thm and x denote the value at the "current" itera- 
tion. The analysis of the rounding scheme shows that  
E [ c o s t ( x l )  + d i s z (x / ) ]  ~ N (k + d). The conditional 
expectation of c o s t ( x / )  + d i s t ( x / )  at the end, given 
the current x, is c o s t ( z )  + d i s t ( x )  + E[tIx](k + d)/Ix* I, 
where random variable t is the number of iterations left. 

The proof of Chernoff-Wald, in this context, ar- 
gues that  the quanti ty 2tT/(x) - logl_~ ~-~c(1 - e) z(c) is 
logl_ ~ n initially, at most (1 - c ) N  finally, and decreases 
in expectation at least -e/(Ix*l  in(1 - ~)) in each iter- 
ation. An easy generalization of the argument shows 

(l--e)N--~/(x) E[tlx ] is at most "~](Iz'tln(1-~))" This gives us our pes- 
simistic estimator: E[cos t (x i )  + g i s t ( x / )  Ix] ~ ~(x)  
where 

~(x)  - cos t (x)  + d i s t ( x )  + (k + d) (1 - ~ )g  - M(x)  
- e / l n ( 1  - e) 

The algorithm chooses f and C to keep ~ from increas- 
ing (although not necessarily to minimize ~) at each 
round. 

GUARANTEE 8.2. Let ~ be the output of the algorithm 
shown in Fig. 6. Then & is a fractional solution to 
the facility location LP and cos t (~)  + d i s t (&)  < (1 - 
e ) - I  minx d i s t ( x )  + cos t (x ) ,  where x ranges over all 
fractional solutions. 

Proof. (Sketch) Define ~ as above. The a l g o r i t h m  
maintains the invariant ~(x)  < (k+d)N.  A calculation 3 
shows that  the invariant is initially true by the choice 
of N. Clearly if the invariant is true at the end the 

3This proof is an adaptation of part of the Chernoff-Wald proof 
to this context. For further details on parts marked with this 
footnote, see that proof. 
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input: fractional facility-location instance, 0 < e < 1. 
o u t p u t :  fractional solution ~ s.t. c o s t ( ~ ) +  d i s t ( ~ )  < ( 1 -  e) - l (d  + k). 

1. Choose N >_ ln(n) /ch(-e)  such that  N(1 - e) is an integer. 
2. For each f ,c do: x ( f )  ~ x ( f ,  c) e- x(c) +- 0; y(c) +-- 1. 
3. Repeat until each x(c) > (1 - e)N: 
4. Choose a single facility f and a set of customers C to maximize 
5. Increment x( f ) .  
6. For each c E C do: 
7. 
8. 

... Recall ch(-e) _> e2/2. 

EoecU(C) 
cost(f) + Ecec dist(f,  c)" 

Increment x( f ,  c) and z(c), and set y(c) +-- (1 - e)y(c). If x(c) > N set y(c) +-- O. 
Return ~, where ~ - x / (1 - e)N. 

Figure 6: tagrangian-relaxation algorithm for fractional facility location. In step 4, it suffices to choose the best set 
of the form C = {c : y ( c ) / d i s t ( f ,  c) _> ~} for some ~. 

performance guarantee holds. In a given iteration, the 
increase in ~ is at most 3 (k + d)e times 

cost(f) + ZcEc dist(f, c) _ Ec c y(c) 
k + d ~-~c y(c) 

where y(c) = ( l - c )  z(c). If f and C were chosen 
randomly as in the rounding scheme, the expectation 
of the above quantity would be non-positive. 3 Thus, 
to keep it non-positive, it suffices to choose f and c to 
maximize 

Eo c y(c) 
c o s t ( f )  + E e e c  d i s t ( f ,  c) 

which is what the algorithm does. [] 

In each iteration, at least one customer c with 
x(c) < N has x(c) incremented. Thus the number 
of iterations is O(nln(n)/e2). Each iteration can be 
implemented in linear times O(ln(n)) time. Thus, 

COROLLARY 8.1. Let 0 < e < 1. "Fractional facility 
location has a [(1 + e)(d + k)]-approximation algorithm 
that runs m O(nln(n)/E 9-) iterations, each requiring 
time linear in the input size times In n. 

9 F u r t h e r  d i r ec t i ons  
Is there a greedy [d + H~k]-approximation algorithm 
for facility location? A [(1 + e)d; (1 + ln(n + n/e))k]- 
approximation algorithm for weighted k-medians? A 
[d, (1 + e)k]- or [(1 + e)d, k]-approximation algorithm 
for fractional k-medians? A Lagrangian-relaxation al- 
gorithm for fractional weighted k-medians? 

The running times of all of the algorithms here 
can probably be improved using techniques similar to 
the one that  Fleischer applied to improve Garg and 

Konemann's multicommodity flow algorithm [4], or 
(depending on the application) using standard data  
structures. 

In practice, changing the objective function of the 
LP relaxation of the IP to better reflect the performance 
guarantee might be worthwhile. For example, if one 
is going to randomly round a fractional solution x to 
the facility-location LP, it might be better to minimize 
d i s t ( x )  + ~']~f cos t ( f ) x ( f )H~x f  rather than d i s t ( x )  + 
cos t (x) .  This gives a performance guarantee that  is 
provably as good, and may allow the LP to compensate 
for the fact that  the difficulty of approximating the 
various components of the cost varies. 
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A K - m e d i a n s  v i a  k - s e t  c o v e r  v i a  P S T .  
For completeness, we discuss a relation between fractional 
k-medians and the mixed/packing covering framework of 
Plotkin, Shmoys, and Tardos (PST) [13]. First  we consider 
the k-set cover problem - -  a variant of weighted set cover in 
which each set s is given a "distance" d i s t ( s )  E R+, and the 
goal is to choose a cover (a collection of sets containing all 
elements) of size at  most k, minimizing the total  distance. 

We formulate the decision problem (given d, is there 
a set cover of size at most k and distance at most d?) 
as a mixed packing/covering problem. Let P -=- {x : 
~-~ x~ < g } .  For x E P define xe -- ~ - ~ x ~  and 
d i s t ( x )  -- ~'-~s x s d i s t ( s ) .  Then the fractional K-set  cover 
problem is the packing/covering problem 3?x E P : (Ve)x~ > 
1; d i s t ( x )  _~ d. 

We can solve this using the PST algorithm as follows. 

The input  to that  algori thm is (d is tO,k ,d ,e) .  We can 
use it to compute an approximate  solution x such that  
(Ve)xe >__ 1 -  e and d i s t ( x )  < (1 ÷ e ) d  (provided the original 
problem is feasible). We scale x, multiplying it by 1 + O(e), 
to get the final output .  

Wi th  care, we can show tha t  to implement the PST 
algorithm, it suffices to have a subroutine that,  given a vector 
a ,  returns x E P minimizing d i s t ( x ) - -  ~'~e c~ex¢. An optimal 
x can be found by enumerating the sets and choosing the set 
s that  minimizes d i s t ( s )  -- ~-~es ~ "  

The running time of the  PST algorithm is dominated by 
the t ime spent in this subroutine.  The subroutine is called 
O(pln(m)/e 2) times, where rn is the number of elements and 
p is the width of the problem instance, which in this case is 
k maxs(dis t (s ) /d ,  1}. Thus, 

COROLLARY A.1. The fractional k-set cover decision prob- 
lem reduces to a mixed packing/covering problem of width 
p = k maxs{dis t (s) /d ,  1}. I f  a problem instance is feasi- 
ble, the algorithm of [13] yields a fractional solution x with 
Ix] _< (1 ÷  ~)k and d i s t ( x )  < (1 + e)d in time linear in the 
input size times O(p ln (m) / J ) .  

In many cases, we can assume without loss of generality 
tha t  m a x s d i s t ( s )  ~ d, in which case the width is k. 
Except  for the fact that  this is a decision procedure, this is 
comparable to Corollary 7.1. (Although that  bound requires 
no assumption about d.) 

Next we sketch how weighted k-medians reduces to k- 
set cover. We adapt  Hochbaum's  facility-location-to-set- 
cover reduction. Fix a weighted k-medians instance with 
n facilities and m customers C. Construct  an (exponentially 
large) family of sets as follows. For each facility f and subset 
C of customers, define a set S f c  -- C, with d i s t ( S f c )  -- 
~"~ceC d i s t ( f , c )  and cos t (S f c )  -- c o s t ( f ) .  Then each k- 
medians solution corresponds to a k-set cover, and vice versa. 
The bijection preserves d i s t ,  and extends naturally to the 
fractional problems as well. 

Even though the resulting fractional k-set is exponen- 
tially large, we can still solve it efficiently using PST pro- 
vided we have a subroutine that ,  given a vector a ,  effi- 
ciently finds a facility f and set of customers C minimizing 
~"~cec d i s t ( f ,  c) - -ac .  This C and f can in fact be found by 
choosing the facility f minimizing ~-~¢ecf d i s t ( f ,  c) - - a c ,  
where Cf = {c : d i s t ( s )  < a t .} .  Thus, we have  

COROLLARY A.2. The fractional weighted k-medians deci- 
sion problem reduces to a mixed packing/covering problem 
of width p = k m a x f { ~ c d i s t ( f , c ) / d ,  1}. If  a problem in- 
stance is feasible, the algorithm of [13] yields a fractional 
solution x with Ixl < (1 + e)k and d i s t ( x )  _< (1 + e)d in time 
linear in the input size times O(pln(m)/e2). 

If each d i s t ( f ,  c) ~ d, then p < kin, where m is the number 
of customers. This bound on the running time is a factor of 
m worse than the bound in Corollary 7.1 (though a reduction 
yielding smaller width may be possible). 


