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Abstract

These notes cover the first eight lectures of the class Many Models
of Complexity taught by László Lovász at Princeton University in the
Fall of 1990. The first eight lectures were on evasiveness of graph prop-
erties and related topics; subsequent lectures were on communication
complexity and Kolmogorov complexity and are covered in other sets
of notes.

The fundamental question considered in these notes is, given a func-
tion, how many bits of the input an algorithm must check in the worst
case before it knows the value of the function. The algorithms consid-
ered are deterministic, randomized, and non-deterministic. The func-
tions considered are primarily graph properties — predicates on edge
sets of graphs invariant under relabeling of the edges.
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Figure 1: A Simple Decision Tree

1 Decision Trees and Evasive Properties

The goal of this course is to examine various ways of measuring the complex-
ity of computations. In this lecture, we discuss the decision tree complexity
of functions. We begin a characterization of which functions require that for
any deterministic algorithm for computing the function, there is some input
for which the algorithm checks all the bits of the input.

1.1 Decision Trees

A decision tree is a tree representing the logical structure of certain algo- decision tree

rithms on various inputs. The nodes of the tree represent branch points of
the computation — places where more than one outcome are possible based
on some predicate of the input — and the leaves represent possible out-
comes. Given a particular input, one starts at the root of the tree, performs
the test at that node, and descends accordingly into one of the subtrees of
the root. Continuing in this way, one reaches a leaf node which represents
the outcome of the computation.

Given a function f : {0, 1}n → {0, 1}, a simple decision tree for the simple decision tree

function is a binary tree whose internal nodes have labels from {1, 2, . . . , n}
and whose leaves have labels from {0, 1}. If a node has label i, then the test
performed at that node is to examine the ith bit of the input. If the result is
0, one descends into the left subtree, whereas if the result is 1, one descends
into the right subtree. The label of the leaf so reached is the value of the
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function on the input.

While it is clear that any such function f has a simple decision tree, we
will be interested in simple decision trees for f which have minimal depth
D(f). D(f) is called the decision tree complexity of f .decision tree complexity

of f It is clear that D(f) is at most the number of variables of f . A simple ex-
ample which achieves this upper bound is the parity function f(x1, . . . , xn) =
x1 + x2 + · · ·+ xn mod 2. For this function every leaf of any simple decision
tree for f has depth n, because if the value of some xi has not been examined
by the time a leaf is reached for an input x, the tree gives the same answer
when xi is flipped, so the function computed is not parity.

1.2 An Evasive Function

A function f with D(f) equal to the number of variables is said to be evasive.evasive

A less trivial example of an evasive function is

f(xij : i, j ∈ {1, . . . , n}) =
∧

i

∨

j

xij,

that is f is 1 iff every row of the matrix with entries xij has at least one 1.

To show f is evasive, we use an adversary argument. We simulate theadversary argument

computation of some decision tree, except instead of checking the bits of
the input directly, we ask the adversary. The adversary, when asked for the
value of xij, responds 0 as long as some other variable in the row remains
undetermined, and 1 otherwise. In this way the adversary maintains that the
value of the function is undetermined until all variables have been checked.
Note that in the case we show only that some leaf is of depth n2.

1.3 A Non-Evasive Function

Next we give a non-trivial example of a non-evasive function. Given players
1, 2, . . . , n, let xij : 1 ≤ i < j ≤ n be 1 if player i will beat player j if they
play each other and 0 if j will beat i. (No draws allowed. Note that this
is not necessarily a transitive relation.) The function is 1 iff there is some
player who will beat everyone.

The object is to determine f without playing all possible matches. To
do this, first play a “knockout tournament” — have 1 and 2 play, have the
winner play 3, have the winner play 4, etc. until every player but some player
i has lost to somebody. Now play i against everyone he hasn’t played. If
i wins all his matches, f is 1, otherwise f is 0. The number of matches
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played in the first stage is n − 1, and at most n − 2 are played in the
second, so D(f) ≤ 2n − 3. (How can one redesign the first stage to show
D(f) ≤ 2n − ⌊log2 n⌋?)

1.4 Non-Deterministic Complexity

The basic idea behind these two examples is that for most functions (what
are the two exceptions?) there are proper subsets of the variables whose
values can determine the value of the function irrespective of the values of
the other variables. The goal in minimizing decision tree depth is to discover
the partial assignments as quickly as possible, while the goal in showing large
decision tree complexity is to show this is not possible. Define

D1(f) = max
x:f(x)=1

min{k : ∃i1, . . . , ik, ǫ1, . . . , ǫk : f |xi1
=ǫ1,...,xik

=ǫk
≡ 1},

D0(f) = max
x:f(x)=0

min{k : ∃i1, . . . , ik, ǫ1, . . . , ǫk : f |xi1
=ǫ1,...,xik

=ǫk
≡ 0}.

That is, Di(f) is the least k so that from every assignment we can pick k
variables such that assigning only these k values already forces the function
to be i. Alternatively, Di(f) corresponds to the non-deterministic decision
tree complexity of verifying f(x) = i, and max{D0(f),D1(f)} is the non-
deterministic decision tree complexity of computing f . (A non-deterministic
computation may be considered as an ordinary computation augmented by
the power to to make lucky guesses.)

1.5 D(f) ≤ D0(f)D1(f)

For boolean x let xǫ denote x if ǫ = 0 and x̄ if ǫ = 1. The representation

f(x1, . . . , xn) =
∨

l

∧

i∈Sl

xǫil

i

of f in terms of the disjunction of a number of elementary conjunctions of
literals1 is called a disjunctive normal form (DNF) of f . literal

disjunctive normal formIf we can represent f in DNF so that every elementary conjunction has
at most k terms, then D1(f) ≤ k, because if any partial assignment of
variable forces f to be 1, it must force some elementary conjunction to be 1.
Conversely, there exists a DNF for f in which every elementary conjunction
has at most D1(f) terms: for ǫ : f(ǫ) = 1 let Sǫ be the indices of the

1A literal is a boolean variable or its negation.
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minimum set of (at most D1(f)) variables whose assignment xi = ǫi forces
f to 1. Then

f(x) =
∨

ǫ:f(ǫ)=1

∧

i∈Sǫ

x1−ǫi

i .

One can similarly correlate D0 and the conjunctive normal form CNF ofconjunctive normal form

f .

Next, we show the surprising relation D(f) ≤ D1(f)D0(f). Write f si-
multaneously in DNF and CNF so that the sizes of the elementary conjunc-
tions (disjunctions for CNF) do not exceed D1(f) (D0(f)). To determine
the value of f on an input x, we use the following strategy. We choose the
first variable xi in the first elementary conjunction of the DNF, and query
its value ǫi. We then substitute the value ǫi for the variable xi in the DNF
and the CNF and simplify, obtaining a DNF and CNF for f ′ = f |xi=ǫi

.
Since each elementary conjunction in the new DNF has size at most D1(f),
D1(f

′) ≤ D1(f). Similarly, D0(f
′) ≤ D0(f).

The crucial observation is that each elementary disjunction in the CNF
has a variable (in fact a literal) in common with each elementary conjunction
in the DNF. (Otherwise the variables in the elementary disjunction and the
elementary conjunction can be simultaneously set to force the function to 0
and 1.) Thus by continuing the above process, by the time we have queried
all of the at most D1(f) variables in the first elementary conjunction, we
have reduced the size of every elementary disjunction by at least 1. It
follows that we can query at most the variables in the first D0(f) elementary
conjunctions before we have determined the value of the function. Thus
D(f) ≤ D0(f)D1(f).

Recalling the earlier remark about non-determinism, D1(f), and D0(f),
one might say that the above shows that in this model NP ∩ co − NP = P.

1.6 The Aanderaa-Karp-Rosenberg Conjecture

We can represent functions on graphs by encoding the adjacency matrix in
the input to the function. For an undirected graph with n nodes, we let
xG

ij : 1 ≤ i < j ≤ n represent the presence or absence of the edge (i, j) by
taking the value 1 or 0 respectively.

In this way we can represent arbitrary functions on graphs. Generally,
however, we will restrict our attention to graph properties — boolean func-graph properties

tions whose values are independent of the labeling of the nodes of the graph.
Technically, f : {xij : 1 ≤ i < j ≤ n} → {0, 1} is a graph property if for any
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Π ∈ Sn,2 and for any x, Sn

f(. . . , xij, . . .) = f(. . . , xΠ(i)Π(j), . . .).

The Aanderaa-Karp-Rosenberg (AKR) Conjecture is that any mono-
tone3 , non-trivial graph property is evasive. It is known to be true for n a monotone

prime power, and counter-examples are known if the monotonicity require-
ment is dropped.

A generalization of this conjecture follows. F is weakly symmetric if there weakly symmetric

exists a transitive4 group G ⊆ Sn such that for all g ∈ G, f(. . . , xi, . . .) = transitive

f(. . . , xg(i), . . .). The generalized conjecture is that any monotone, non-
trivial, weakly symmetric boolean function is evasive.

For example, suppose f ≡ “graph G has no isolated node”. First, observe
that for general f , if #{x ∈ {0, 1}n : f(x) = 1} is odd, then f is evasive. To
see this, observe that for any xi the above property is maintained for either
f |xi=0 or f |xi=1, so that the adversary can answer queries so as to maintain
the property as f is restricted. As long as the number of unqueried variables
is at least 1, the size of the range of the restricted function is even, so the
property ensures that the function is not constant.

For the above choice of f , an inclusion/exclusion argument shows

#{G : G has no isolated vertex} ≡
n∑

k=0

(−1)k−1

(
n

k

)
2(

n−k

2 )(mod 2)

≡ (−1)n−1n + (−1)n(mod 2).

Thus provided n is even, an odd number of graphs have no isolated nodes,
and f is evasive.

Note for later that we can generalize the above condition. In particular,
an inductive argument in the same spirit shows:

Lemma 1.1

2n−D(f) |#{x : f(x) = 1}.

2Sn denotes the symmetric group on n elements, also known as the set of permutations
of size n

3A graph property is monotone if adding edges to the graph preserves the property.
4G is transitive if ∀i, j∃g ∈ G : g(i) = j.
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2 Evasiveness, continued

2.1 Connectivity is Evasive

If f ≡ “G is connected”, then f is evasive. To see this have the adversary an-
swer “no” unless that answer would imply that the graph was disconnected,
in which case she answers “yes”. In this way the adversary maintains that
a spanning tree exists among the “yes” and unqueried edges. If some edge
(i, j) has not been queried, can the answer be known? If it is known, it must
be “yes”, and the “yes” edges must contain a spanning tree, so a path of
“yes” edges connects i to j. Of the edges on this path, suppose the last edge
queried is (u, v). At this point, we have a contradiction, because the the ad-
versary could have answered “no” to the query of (u, v) while maintaining
the possible connectedness of the graph through the other “yes” edges and
edge (i, j).

Consideration shows this argument generalizes to any monotone f with
the property that for any x such that f(x) = 1, and any xi = 1, we can set
xi = 0, possibly setting some other xj = 1, without changing the value of
the function.

2.2 “Tree” Functions are Evasive

A general class of simple but evasive functions are tree functions — those tree functions

which have formulas using ∨ and ∧ in which every variable occurs exactly
once. The adversary has the following strategy. When asked for the value of
xi, if xi occurs in a conjunction (· · · ∧xi ∧ · · ·) in the formula, the adversary
claims xi = 1. Otherwise xi occurs in a disjunction and the adversary
responds that xi = 0. The adversary plugs the answered value into the
formula, simplifies it, and continues. In this way, the adversary maintains
that one variable is removed from the formula with each question, so the
result can not be known unless every variable has been queried. (Clearly
the same proof applies if the formula also contains negations.)

2.3 The AKR Conjecture is True for Prime n

Previously we proved that if the number of x with f(x) = 1 is odd, then f is
evasive, and noted that this can be generalized to show that 2n−D(f) divides
this number. Here is an alternate extension: let |x| denote the number of
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1’s in x. Define

µ(f) =
∑

f(x)=1

(−1)|x|.

Then we can use the property µ(f) = µ(f |xi=0) − µ(f |xi=1) to show that
if µ(f) 6= 0 then f is evasive. In particular, the adversary maintains that µ
applied to the restricted function (i.e. f restricted by the partial assignment
given by the adversary’s responses so far) is non-zero, so that the restricted
function is non-trivial unless all variables have been queried. (The reader
may want to check the base case of this argument.)

More generally, define pf (t) =
∑

x f(x)t|x|. Then for a constant function
c of k variables, pc(t) = (1 + t)k, and so an inductive argument similar to
the above shows

(t + 1)n−D(f) | pf (t).

Next we use the µ criterion to prove the generalization of the AKR
conjecture for prime n. A counter-example exists with n = 14 when n is not
required to be prime.

Theorem 2.1 If f : {0, 1}n → {0, 1} is weakly symmetric, f(0) 6= f(1),
and n is prime, then f is evasive.

Proof: We will show µ(f) =
∑

x f(x)(−1)|x| 6= 0. The first part of the
proof is to use the weak symmetry of f and the primality of n to show that
there is a permutation consisting of a single cycle leaving f invariant. The
second is to use this fact and the primality of n to group the inputs yielding
f(x) = 1 except 0 or 1 into equivalence classes of size n, thus showing that
µ(f) ≡ 1(mod n), so that µ(f) 6= 0.

Since f is weakly symmetric, there exists a transitive subgroup Γ of Sn

leaving f invariant. Consider the partition of Γ = U1∪· · ·∪Un where g ∈ Ui

iff g(1) = i. The transitivity of Γ ensures that each Ui is of the same size,
so n divides |Γ|. Since n is prime and n | |Γ|, Cauchy’s theorem implies that
Γ contains an element γ of order n. Since n is prime, such a permutation
necessarily consists of a single cycle.

Now (assuming WLOG that f(0) = 0) we partition the inputs x into
classes such that two elements are in the same class iff one is obtainable
from the other by rotation (i.e. application of γ). Since γ leaves f invariant,
and n is prime, it follows that unless every xi is the same, each of the n
possible rotations of x are distinct. Thus the values of x such that f(x) = 1
can be partitioned into classes of size n, except for x = 1. It follows that
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the number of such inputs modulo n is 1, so that the number of distinct
non-zero terms in the expression for µ is 1 modulo n, and µ is not zero.

[Here is a sketch of how to generalize the theorem for n = pa a prime
power. It is no longer necessarily true that Γ has a cyclic element, but now
Γ has a transitive (sylow) subgroup Γ′ of order pb, with pb but not pb+1

dividing |Γ|.
Again we group the terms of µ(f) so that two x’s are in the same group

if mapped by Γ′ to each other. We look at the orbits of Γ′ acting on {0, 1}n.
The number of elements in an orbit divides Γ′ = pb and is not equal to 1
unless x = 0 or x = 1, and all vectors in the same orbit give the same value
of f .

Using this grouping we show µ(f) ≡ (−1)n mod p, so µ(f) 6= 0.]
Before we observed that (t + 1)n−D(f) | pf (t) =

∑
x f(x)t|x|. We define

pf (t1, . . . , tn) =
∑

x f(x)tx1
1 · · · txn

n , and generalize this observation in the
next lemma.

Lemma 2.2 pf ∈
〈
(ti1 + 1) · · · (tin−D(f)

+ 1) : 1 ≤ i1 < · · · < in−D(f) ≤ n
〉

5 ideal

Proof: First, if f ≡ 0, pf = 0, and if f ≡ 1, pf =
∑

x tx1
1 · · · txn

n =
(t1 + 1) · · · (tn + 1). If f is not constant, fix a minimum depth decision tree
for f and use pf = p f |x1=0

+ t1p f |x1=1
to expand pf into a sum of terms,

each term corresponding to a “yes” leaf of the tree. Each such term is of the

form (Πi∈S1ti) ×
(
Πi∈S(ti + 1)

)
, where S1 is the set of indices of variables

queried and found to be 1, and S is the set of variables queried.

Here is another way to look at this result. Let zi = ti + 1, and

Qf (z1, . . . , zn) = pf (z1 − 1, . . . , zn − 1)

=
∑

x

f(x)(z1 − 1)x1 · · · (zn − 1)xn

=
∑

x

f(x)
∑

y≤x

zy1
1 · · · zyn

n × (−1)|x−y|

5〈· · ·〉 represents the ideal generated by · · · (the smallest set of polynomials closed under
subtraction and under multiplication by any polynomial). An equivalent formulation of
this lemma is

pf =
∑

1≤i1<···<in−D(f)≤n

Pi1,...,in−D(f)
× (ti1 + 1) · · · (tin−D(f)

+ 1),

where the P··· are integer coefficient polynomials of the ti.
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Figure 2: A term of Pf

=
∑

y


∑

x≥y

(−1)|x−y|f(x)


 zy1

1 · · · zyn
n

(Here the inequality y ≤ x means ∀i, yi ≤ xi.)
By the previous lemma, the terms in Qf have degree at least n − D(f)

in the zi. Thus if |y| < n − D(f), then
∑

x≥y(−1)|x−y|f(x) = 0. The left
hand side of this equality is known as the möbius transform Mf of f . Thusmöbius transform

we have:

Corollary 2.3 For |y| ≤ n − D(f), (Mf)(y) = 0.
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3 Non-Evasive Monotone Properties Give Contractable

Complexes

In the previous lecture, we showed that every non-trivial weakly symmetric
function on pk variables for prime p is evasive.

In this lecture we continue our study of evasiveness, introducing some
topological concepts related to simplicial complexes. We show that the
simplicial complex associated with a non-evasive monotone function is con-
tractable. This is the first part of a technique due to Kahn, Saks, and
Sturtevant; our goal is to prove that all non-trivial, monotone, bipartite
graph properties6 and non-trivial, monotone graph properties of graphs with
a prime power number of nodes are evasive.

3.1 Simplicial Complexes

A simplicial complex is a finite collection K of sets such that simplicial complex

1. ∀X ∈ K, Y ⊆ X ⇒ Y ∈ K, and

2. K 6= ∅.

V (K), the vertices of K, consists of the elements of the sets in K. V (K)

Corresponding to K one can construct a geometric realization K̂ ⊆
IRV(K). First, one defines the mapping ·̂ : V (K) → IRV(K) so that no ver-
tex is mapped into the affine hull7 of any other subset of the vertices (for affine{S}, conv{S}

instance, one maps the vertices to the unit vectors). Then one extends ·̂ to
any set X of vertices by X̂ = conv{v̂ : v ∈ X}, and to any collection C
(such as K) of sets by Ĉ = ∪X∈CX̂.

Note that for any X ∈ K, X̂ is a simplex — the convex hull of a set simplex

of vectors none of which lies in the affine hull of any subset of the others.
(Such a set of vectors is said to be affinely independent.) affinely independent

A collection K = {S1, . . . , Sm} of simplices in IRN is said to form a
geometric simplicial complex if: geometric simplicial

complex

1. ∀Si ∈ K, T a face8 of Si ⇒ T ∈ K, and face

6 A bipartite graph property f(xij : i ∈ V, j ∈ W ) is a boolean function invariant under
permutations of the edges induced by permutations of V and W . See “graph property”.

7 affine{S} =
{∑

v∈S
αvv :

∑
αv = 1

}
;

conv{S} =
{∑

v∈S
αvv :

∑
αv = 1, αv ≥ 0

}
.

8A face of a simplex S = conv{V } is a set S′ = conv{V ′} : V ′ ⊆ V .
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2. ∀Si, Sj ∈ K, Si ∩ Sj 6= ∅ ⇒ Si ∩ Sj is a face of both Si and Sj .

A polyhedron is then defined as the union of the sets in any geomet-polyhedron

ric simplicial complex. Note that such an entity is not necessarily convex,
for instance the surface of an octahedron is a polyhedron formed by the
geometric simplicial complex consisting of its faces, edges, and vertices.

3.2 Contractability

Intuitively, a set T ⊆ IRN is contractable if it can be continuously shrunk to acontractable

single point, while never breaking through its original boundary. Technically,
T is contractable if there exists a continuous mapping Φ : T × [0, 1] → T
with ∀x ∈ T,Φ(x, 0) = x,Φ(x, 1) = p0 for some p0 ∈ T . One can show that
the choice of p0 is immaterial.

If T consists of 2 distinct points in IR1, no such mapping can exist because
at some time the mapping would have to switch from mapping a point to
itself to mapping the point to the other point.

If the underlying simplicial complex is a graph, if the graph is discon-
nected one can similarly show that the set is not contractable. Similarly,
if the graph has a cycle, at any time the cycle will be in the image of the
mapping, so a cyclic graph is not contractable.

Conversely, if the graph is a tree, then one can contract the graph by
repeatedly contracting the edges leading to leaves.

(Note that we consider contractability of a simplicial complex synony-
mous with the contractability of its geometric realizations.)

Generalizing the contraction of a tree described above, we will obtain
a useful sufficient condition for contractability. (Surprisingly, for a general
simplicial complex K, it is undecidable whether K is contractable.) For
v ∈ V (K), define

K\v = {X ∈ K : v 6∈ X}
K/v = {X ∈ K : v 6∈ X,X ∪ {v} ∈ K}.

The first is called K minus v; the second is called link of v in K.K minus v
link of v in K Considering the boundary of the 3 dimensional simplex, ∂∆3, which is

not contractable, one sees that ∂∆3\v ≡ ∆2 is contractable but ∂∆3/v, a
three node cycle, is not.

Lemma 3.1 If for some v, K/v and K\v are contractable, then K is con-
tractable.
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v 

Figure 3: ∂∆3,∂∆3\v, and ∂∆3/v.
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Figure 4: Contraction of Ĉ onto K̂/v.
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Proof: Let C denote {X ∈ K : v ∈ X}, so that K̂ = Ĉ ∪ K̂\v.
The first step in contracting K̂ is to use the contractability of K/v to

construct a mapping Ψ which contracts9 Ĉ onto K̂/v, leaving K̂\v fixed.

Once this is accomplished, all of the points have been contracted into K̂\v,

so applying the contraction of K̂\v completes the contraction of K̂.

Suppose K̂/v is contracted by Φ to p0. Denote a point p in Ĉ by (p′, λ),

where p′ ∈ K̂/v and λ ∈ [0, 1] such that p = λp′ + (1 − λ)v. (Note that this
denotation is continuous and invertible except at v.)

Let Ĉλ = {(p′, λ) : p′ ∈ K/v}, so Ĉ1 = K/v and Ĉ0 = {v}.
The contraction can be envisioned as flattening Ĉ. At time t, each Ĉλ

for λ < t will have been flattened into Ĉt, until all of Ĉ is flattened into K̂/v.
Once Ĉλ is mapped onto Ĉt, as t grows, instead of letting the image of Ĉλ

grow with Ĉt (which would lead to a discontinuity at v), we contract it using
Φ to counteract the growth.

Ψ(p, t) =

{
(Φ(p′, 1 − λ/t), t) if t ≥ λ, and
p if t ≤ λ.

If t = 0 or λ = 1 then Ψ is the identity. If t = 1 all points are mapped
into K̂/v. We leave it to the reader to verify the continuity of Ψ, remarking
only that as p → v, λ → 0, so Φ(p′, λ) → p0, independent of p′.

3.3 Monotone Functions

A monotone boolean function f 6≡ 1 gives a simplicial complex

Kf =
{
S ⊆ {1, . . . , n} : f(xS) = 0

}

in a natural way, and vice versa.10 Also,

Kf |xi=0
= {S ⊆ {1, . . . , i − 1, i + 1, . . . , n} : S ∈ Kf} = Kf\i,

Kf |xi=1
= {S ⊆ {1, . . . , i − 1, i + 1, . . . , n} : S ∪ {i} ∈ Kf} = Kf/i.

By now we may begin to suspect a relation between non-evasiveness and
contractability. We prove such a relation in the next lemma.

9 We generalize the notion of contraction to a point in the natural way to allow con-
traction to arbitrary contractable subsets.

10
(
xS
)

i
=
{

1 i ∈ S,
0 i 6∈ S.
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Lemma 3.2 (Kahn-Saks-Sturtevant) If f 6≡ 1 is non-evasive, then Kf

is contractable.

Proof: Assume f : {0, 1}n → {0, 1} is non-evasive, with f 6≡ 1.
If n > 1, then there exists an i such that f |xi=0 and f |xi=1 are non-

evasive. Provided f |xi=1 6≡ 1, we can assume by induction that Kf |xi=0
and

Kf |xi=1
are contractable. By the preceding lemma and remarks, it follows

that Kf is contractable.
If n > 1 and f |xi=1 ≡ 1, then Kf = Kf |xi=0

, and f |xi=0 is non-evasive,

so again by induction Kf is contractible.
Otherwise n = 1, so f ≡ 0 and Kf = {∅, {1}}, which is contractible.

We have now established a link between evasiveness of monotone func-
tions and the contractability of the associated simplicial complex. In the
next lecture, we will use the symmetry properties of monotone graph prop-
erties and some more topology to show in some cases that the associated
complexes are not contractable, and thus that the original functions are
evasive.
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4 Fixed Points of Simplicial Maps Show Evasive-

ness

In the previous lecture we showed that the simplicial complex associated
with a monotone non-evasive function is contractable. In this lecture we
present the following argument.

Standard fixed point theorems in topology tell us that a continuous func-
tion mapping a contractable polyhedron into itself has a fixed point. On the
other hand, the invariance of a monotone function f under a permutation π
of the inputs implies that the geometric realization of the permutation maps
K̂f into itself, and thus has a fixed point if f is non-evasive. For f a mono-
tone bipartite graph property or a monotone graph property on graphs with
a prime power number of nodes, we characterize the possible fixed point sets
of such mappings to show that if f is non-trivial, no fixed point can exist,
so that f is evasive.

4.1 Fixed Points of Simplicial Mappings

Suppose K and K′ are (abstract) simplicial complexes. Then ϕ : V (K) →
V (K′) is a simplicial map provided ∀X ∈ K ⇒ ϕ(X) ∈ K′, that is, provided simplicial map

ϕ preserves the property of being in the complex when applied to sets. Such
a map yields a continuous linear map ϕ̂ : K̂ → K̂′ by mapping the vertices
of K̂ in correspondence with ϕ, and mapping convex combinations of the
vertices to the corresponding convex combinations of their images:

ϕ̂

(∑

v∈K
αv v̂

)
=
∑

v∈K
αvϕ̂(v).

Note that for x ∈ K̂, the representation x =
∑

v∈K αv v̂ :
∑

v αv = 1 is
unique. The set ∆x = {v : αv 6= 0}, a simplex of K, is called the support
simplex of x, and is, of course, also unique. support simplex

So given a simplicial map ϕ : K → K, which for our purposes we will
assume is one-to-one, what are the fixed points? Suppose x is a fixed point
with support simplex ∆. Then ϕ̂(∆) contains x, and hence contains ∆̂.
Since ϕ(∆) and ∆ are the same size, it follows that ϕ(∆) = ∆, that is ϕ
permutes the vertices in ∆. This in turn implies that the center of gravity11 center of gravity

of ∆̂ is also fixed by ϕ.

11The center of gravity of a face Ĥ is
∑

v∈H
v/|H |.
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Figure 5: Fixed Points of Simplicial Maps of ∆3

What are the other fixed points in ∆̂? If the orbits12 of the permutationorbit

induced by ϕ on ∆ are H1, . . . ,Hk, then Ĥi is a face of ∆̂, with the center
of gravity a fixed point. Also, any convex combinations of these centers of
gravity is a fixed point.

Conversely, if x =
∑

v∈∆ αv v̂ is a fixed point, then x = ϕ̂(x) =
∑

v∈∆ αvϕ̂(v)
is also a representation of x, and because the representation of x in this
way is unique, there exists a permutation π of the vertices in ∆ such that
απ(v)π̂(v) = αvϕ̂(v), that is, ϕ(v) = π(v) and αv = απ(v). It follows that
αv = αϕ(v), so that for each orbit Hi of ϕ on ∆, we can choose βi so that
u ∈ Hi ⇒ αu = βi. Thus we have

x =
∑

v∈∆

αv v̂ =
∑

i

∑

v∈Hi

βiv̂ =
∑

i

βi|Hi|wi.

In other words, x is a convex combination of the centers of mass of the faces
corresponding to the orbits.

To view this from a more combinatorial perspective, suppose the orbits
of ϕ on the vertices of K are H1, . . . ,HN , and assume that the first t of
these are those which are also simplices of K. Let wi : 1 ≤ i ≤ t denote the
center of gravity of Ĥi. Then each wi is a fixed point, and any proper convex
combination x of a subset {wi1 , . . . , wir} ⊆ {w1, . . . , wt} is also a fixed point,
provided only that the x is in fact in K̂, that is, provided Hi1 ∪· · ·∪Hir ∈ K.

In sum, if fix(ϕ) denotes the fixed points of ϕ̂, then fix(ϕ) = Ĥ, where

H = {{i1, . . . , ir} : Hi1 ∪ · · · ∪ Hir ∈ K} ,

and the vertices V (H) of the simplicial complex H are {1, . . . , t}, with î
taken to be the center of gravity of the face Ĥi.

12The orbits, or cycles, of a permutation are the minimal sets of elements such that the
permutation takes no element out of its set.
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4.2 Fixed Point Theorems

Next we give some theorems which give sufficient conditions for the existence
of fixed points, and which characterize some useful properties of the fixed
point sets. The first is Brouwer’s fixed point theorem.

Theorem 4.1 (Brouwer) Any continuous map of a simplex to itself has
a fixed point.

An alternate formulation of this theorem follows.

Theorem 4.2 There does not exist a continuous map from a simplex to its
boundary leaving the boundary fixed.

If there were a continuous function f : S → S with no fixed point, we
could construct a function g : S → ∂S leaving ∂S fixed as follows. Given
x ∈ S, obtain g(x) by projecting a ray from the point f(x) through the
point x to the boundary ∂S.

Note that for any polyhedron S, if ∂S is not contractable, then there can
not exist a continuous map from S to its boundary leaving the boundary
fixed.

[Also recall our earlier claim that a set is contractable iff the cone13 cone

formed by the set with an affinely independent point v can be mapped
continuously to the set.]

Theorem 4.3 (Lefshetz) If K̂ is contractable, then any continuous map
from K̂ to itself has a fixed point.

4.3 Application to Graph Properties

We are finally in a position to apply these techniques to show evasiveness.
Recall the previous result that a function f : {0, 1}n → {0, 1} invariant
under some cyclic permutation of its inputs and with f(0) 6= f(1), is evasive,
provided the number of inputs is prime. To start, we show that any non-
trivial monotone function invariant under a cyclic permutation of the inputs
is evasive.

Lemma 4.4 Suppose f : {0, 1}n → {0, 1} is a monotone, non-trivial func-
tion invariant under a cyclic permutation of its inputs. Then f is evasive.

13The cone of a set with a vertex consists of the convex combinations of v with points
in the set.
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Proof: Assume without loss of generality that f is invariant under the
permutation ϕ(i) = i+1 mod n, and assume f is non-evasive. Consider Kf .

As shown in the previous lecture, K̂f is contractable. Since f is invariant
under ϕ, ϕ is a simplicial map of Kf , so that ϕ̂ has a fixed point (by Lefshetz’
theorem).

As discussed in the beginning of this lecture, the fixed points correspond
to orbits of ϕ contained in Kf . Since the only orbit of ϕ is {1, 2, . . . , n}, this
set must be in Kf . Thus f(1, 1, . . . , 1) = 0, a contradiction.

The success of this technique hinges on our being able to characterize
the orbits, and hence the fixed point set, of a permutation under which the
function is invariant. The proof of the next theorem is essentially the same
as the previous, except that the characterization of the orbits is trickier.
Before we give the theorem, we give the Hopf index formula, an extension
of Lefshetz’ fixed point theorem which we need for the proof.

Theorem 4.5 (Hopf Index Formula) For ϕ a simplicial one-to-one map-
ping of K a contractable simplicial complex, the Euler characteristic14 of theEuler characteristic

fixed point set Ĥ of ϕ̂ is -1.

Theorem 4.6 (Yao) Non-trivial monotone bipartite graph properties are
evasive.

Proof: Let f(xij : i ∈ U, j ∈ W ) be a non-evasive monotone bipartite
graph property. Let ϕ be a permutation of the edges corresponding to a
cyclic permutation of the vertices of W while leaving U fixed.

The fixed point set of ϕ̂ on K̂f is characterized by:

fix(ϕ) = Ĥ, {ui1 , . . . , uir} ∈ H ⇔ f(x{ui1
,...,uir}×W ) = 0

with the vertices of Ĥ being the centers of gravity of the faces corresponding
to the orbits of ϕ.

The orbits of ϕ correspond to the nodes of U : each orbit contains all of
the edges touching a single node of U , so we identify each vertex of H with
a node of U . Since Kf is contractable, there are fixed points, so some edge

14The Euler characteristic χ(K̂) of a polyhedron K̂ is defined by χ(K̂) =∑
x∈K,x 6=∅(−1)|x|. (Recall µ(f).) The Euler characteristic is invariant under topolog-

ical deformation, and is thus useful for classifying topological types. For instance, a
contractable set has Euler characteristic -1.



4—Fixed Points of Simplicial Maps Show Evasiveness 25

set {u} × W has f(x{u}×W ) = 0.15 By the symmetry of f , therefore, any
choice of u yields f(x{u}×W ) = 0. The sets in H correspond to edge sets
{ui1 , . . . , uir} × W , and again by symmetry either all or none of these sets
for any given r are in H. By monotonicity, then, H is characterized by

{ui1 , . . . , uir} ∈ H ⇔ r ≤ r0

for some r0. The Euler characteristic of H is thus

−
(
|U |
1

)
+

(
|U |
2

)
− · · · + (−1)r0

(
|U |
r0

)

= −
(
|U | − 1

0

)
−
(
|U | − 1

1

)
+

(
|U | − 1

1

)
+

(
|U | − 1

2

)
− · · ·

= −
(
|U | − 1

0

)
+ (−1)r0

(
|U | − 1

r0

)
.

By the Hopf formula, this equals -1, which implies that r0 = |U |, i.e. U ∈ H,
so U × W ∈ Kf , and f(xU×W ) = 0. Thus f ≡ 0.

One might expect the proof to be simpler for a general graph property,
which is invariant under a larger class of permutations. Unfortunately, since
a general graph has more edges, the orbits of any given permutation are
generally more complicated. However, when the number of nodes is a prime
power, we can still characterize the orbits, and thus show evasiveness. Before
we show this, we give a more general fixed point theorem.

Theorem 4.7 Let Γ be a group of mappings of a contractable geometric
complex K̂ onto itself. Let Γ1 be a normal subgroup16 of Γ with |Γ1| = pk, normal subgroup

for a prime p, and with Γ/Γ1 cyclic. Then there exists an x ∈ K̂ such that
∀ϕ ∈ Γ, x = ϕ̂(x).

Note that we are no longer talking about the fixed points of a single
simplicial mapping, but rather the fixed points of a group of simplicial map-
pings. If the orbits17 of Γ are H1, . . . ,HN , with the first t of these in K, and
wi : 1 ≤ i ≤ t is the center of gravity of Ĥi, then fix(Γ) = Ĥ, where:

{i1, . . . , ir} ∈ H ⇔ Hi1 ∪ · · · ∪ Hir ∈ K,
15Considered as acting on the complete simplex ∆|U|×|W |, ϕ̂ necessarily has fixed points.

The question is whether any of these fixed points are in K̂f .
16A subgroup Γ1 of Γ is normal if ∀x ∈ Γ, xΓ1x

−1 = Γ1.
17The orbits of a collection of permutations are the minimal sets invariant under every

permutation.
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and V (H) = {1, . . . , t}, with î = wi.
To see this, note first that for any ϕ ∈ Γ, an orbit of Γ is expressible as a

disjoint union of orbits of ϕ, so any wi is expressible as a convex combination
of centers of mass of the faces corresponding to orbits of ϕ, so wi is fixed by
ϕ. Thus any convex combination of the wi is fixed by each ϕ.

Conversely, if x =
∑

v∈∆ αv v̂ is a fixed point of Γ, for any u,w in an orbit

Hi of Γ there is a ϕ such that ϕ(u) = w and x = ϕ̂(x) =
∑

v∈∆ αvϕ̂(v), so
the uniqueness of the representation of x implies αu = αw. Consequently
we can choose β1, . . . , βt such that ∀i, u ∈ Hi ⇒ αu = βi, and

x =
∑

v∈∆

αv v̂ =
∑

Hi⊆∆

∑

v∈Hi

βiv̂ =
∑

Hi⊆∆

βi|Hi|wi.

Thus the previous techniques continue to apply when we have a group
of simplicial mappings. The previous theorem is exactly what we need for
the proof of the next theorem:

Theorem 4.8 Suppose f is a non-trivial monotone graph property on graphs
with a prime power pk number of nodes. Then f is evasive.

Proof: Think of the nodes of our graph G as identified with GF(pk).18GF(pk)

Consider the linear mappings x 7→ ax + b : GF(pk) → GF(pk) as a group
Γ. Let Γ1 be the mappings x 7→ x + b, so |Γ1| = pk. The normality of Γ1

follows from (((ax + b) + b′) − b)/a = x + b/a. The factor group Γ/Γ1 is
isomorphic to the group of mappings x 7→ ax : a 6= 0, i.e. the multiplicative
group19 of GF(pk) − {0}, which is known to be cyclic. Thus the precedingmultiplicative group

theorem applies, and every action of Γ has a fixed point on K̂f . Since Γ is
transitive on the edges, the only orbit of Γ consists of all of the edges. Thus
if f is non-evasive, so that Kf is contractable and Γ has a fixed point, then
Kf must have as an element the set of all edges, and f ≡ 0.

18GF(pk) is the Galois field of order pk. For k = 1 this is the field of integers 0, 1, . . . , p−1
under arithmetic modulo p. For larger k, it is the field of polynomials over GF(p) modulo
an irreducible polynomial of order k.

19The multiplicative group of a field is the group formed on the elements other than 0
under multiplication.
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5 Non-Deterministic and Randomized Decision Trees

In this lecture we use previous results to show a Θ(n2) lower bound on the
decision tree complexity of a general non-trivial monotone graph property,
and we begin discussion of decision trees for probabilistic algorithms.

5.1 Near Evasiveness of Monotone Graph Properties

The key lemma in our study so far of the decision tree complexity of mono-
tone Boolean functions has been :

If f : {0, 1}n → {0, 1} is a non-evasive, monotone function, with f(0) =
0, then Kf is contractible.

We also noted that :

If Kf is contractible then χ(Kf ) = −1 (i.e.
∑

S:f(S)=0(−1)|S| = 0).

We would like to extend this theory to general (non-monotone) functions
as well. However, Kf , as defined, is not a simplicial complex in the case of
a non-monotone function f . Although the AKR conjecture is known to be
false for non-monotone functions, if f is weakly symmetric, f(0) 6= f(1) = 1,
and the number of variables of f is prime, we have shown that f is evasive.
(Theorem 2.1).

We have seen that monotone graph properties on graphs with a prime
power number of nodes (theorem 4.8), or on bipartite graphs (theorem 4.6),
are evasive. Next we show that for any non-trivial monotone graph prop-
erty, by restricting the property to some Ω(n) size subgraph, we can obtain
one of these two kinds of properties. Since D(f) is at least D(f |R) for
any restriction R, this will imply that any non-trivial monotone property f
D(f) = Ω(n).

Theorem 5.1 Let f be a monotone, non-trivial graph property, then D(f) ≥
cn2 for some positive constant c.

Proof: Let G be a graph on n nodes. Choose a prime p such that n/2 <
p < 2n/3 (it follows from number theoretic arguments that such a prime
exists). Let S be a subset of the nodes of G such that |S| = p. Let KS

denote the complete graph on S, with all other (n−p) nodes being isolated.
Since f is monotone, and non-trivial, f(0) = 0. Now, there are several cases:

Case 1, f(KS) = 1. 20 Let R be the restriction xi,j = 0 : (i, j) 6∈ S. Then f(G)

20f(G) for a graph G = (E, V ) is shorthand for f(XE).
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f |R is a monotone, non-trivial graph property on a graph with a prime
number of nodes, and

D(f) ≥ D(f |R) =

(
p

2

)
≥ (n2 − n)/8.

Case 2, f(KS) = 0. In this case f(KV \S) = 0, since KV \S is a complete
graph that is smaller than KS (n/2 ≤ p), and f is monotone.

Let H = KV \S ∪{S × (V \S)} (Note the abuse of notation here, as we
are really interested in unordered pairs).

Case 2.1, f(H) = 1. Let R = {xi,j = 0 : i, j ∈ S}∪{xi,j = 1 : (i, j) ∈
S\V }. Then f |R(0) = f(V \S) = 0, and f |R(1) = f(H) = 1,
and f |R is a monotone bipartite graph property on a graph with
p(n − p) edges. Thus D(f) ≥ D(f |R) = p(n − p) ≥ 2n2/9.

Case 2.2, f(H) = 0. Let R = {xi,j = 1 : (i, j) ∈ H}. Then f |R(0) =
f(H) = 0, f |R1 = f(1), and f |R is a monotone graph property
on the subgraph induced by the vertices in S, so as in case 1
D(f) ≥ (n2 − n)/8.

5.2 Non-Deterministic Decision Trees

Recall that we defined D0(f), and D1(f), and showed that D(f) ≤ D0(f)D1(f).

Theorem 5.2 (Babai or Nisan?) Suppose f is weakly symmetric (invari-
ant under a transitive group Γ), then D0(f)D1(f) ≥ n.

Proof: Recall D0(f) = min{k : f = E1∧E2 . . .∧EN , Ei = x
ǫi1
i1

∨ . . .∨x
ǫik

ik
}.

Similarly, D1(f) = min{k : f = F1∨F2 . . .∨FM , Fi = x
ǫi1
i1

∧. . .∧x
ǫik

ik
}. Recall;

there must be a variable, xi, that occurs in both E1 and F1 (otherwise, we
can force the function value to be 0, and 1, at the same time). Let γ ∈ Γ.
Let Eγ

i be Ei after the action of γ. Since f is invariant under Γ, we can
rewritef = Eγ

1 . . . Eγ
N . Therefore Eγ

1 must have a variable in common with
F1.

The crucial observation at this point is that for a transitive group Γ of
mappings on a set S, the quantity q = #{γ ∈ Γ : γ(x) = y} is independent of
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x and y. This is because for any x, y, and y′ we can map {γ ∈ Γ : γ(x) = y}
1-1 into {γ ∈ Γ : γ(x) = y′} by composing any fixed map γ′ : γ(y) = y′

with the maps in the first set. This shows independence of y and a similar
argument shows independence of x.

In fact, we can determine q by the equation (for fixed x0)

qn =
∑

y

#{γ ∈ Γ : γ(x0) = y} = |Γ|,

so q = |Γ|/n.

Returning to the original argument, that Eγ
1 has a variable in common

with F1 for every γ means that every γ maps something from E1 to some-
thing in F1, i.e. there are |Γ| γ mapping some x from E1 to some y from
F1. Since any given pair x ∈ E1 and y ∈ F1 (again abusing notation) has
at most q = |Γ|/n γ’s mapping x to y, it follows that there are at least
|Γ|/q = n pairs (x, y) with x ∈ E1 and y ∈ F1, i.e. |E1||F1| ≥ n.

Recalling that |E1| ≤ D0(f) and |F1| ≤ D1(f) finishes the argument.

5.3 Randomized Decision Trees

The general question in complexity of randomized algorithms is “Does the
ability to flip a coin add computational power?” Over the past twenty years
we have learned that the answer is a definitive yes. Generally, randomization
may give an algorithm the ability to avoid a few bad computation paths,
and thus better its worst case behavior.

From the decision tree model, there are a number of ways to model ran-
domized algorithms. One is that at each node, rather than definitely query-
ing some variable, we choose which variable to query randomly according to
a probability distribution dependent on the node and the previous results of
random choices. For a given input the number of input bits queried is then
a random variable, and the decision tree complexity is the maximum over
all inputs of the expected value of the number of input bits queried.

An alternate model is that the algorithm makes all random choices in
advance, and from that point on is deterministic. In this model an algorithm
for deciding a property is specified as a probability distribution over all
possible decision trees for the property. For a given tree T , if δ(x, T ) denotes
the number of input bits queried for a given input x ∈ {0, 1}n, and pT

denotes the probability the algorithm choosing T , then the decision tree
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Figure 6: A Function with Randomized Complexity o(n).

complexity of the algorithm is

max
x

∑

T

pT δ(x, T ).

This will be made more concrete by the following example. The example
is due to Saks, Snir, and Wigderson, and gives a tree formula which has
randomized decision tree complexity o(n). (We have seen previously that
all tree formulae have (deterministic) decision tree complexity n.)

The function fk : {0, 1}n → {0, 1}, n = 2k, is a tree formula. (I.e. it is
defined by a formula in which each variable occurs exactly once.) We may
define fk inductively by

f0(x1) = x1

fk+1(x1, ..., xn) =

{
fk(x1, ..., xn/2) ∧ fk(xn/2+1, ..., xn) k odd,
fk(x1, ..., xn/2) ∨ fk(xn/2+1, ..., xn) k even.

That is, we take a balanced binary tree and construct a formula by labeling
the leaves with the variables and labeling internal nodes of the tree alter-
nately with “and” and “or” gates as we go up the tree.

We saw previously that tree formulae are evasive. The evasiveness of f
also follows by the weak symmetry of f and the fact that the number of
variables is a prime power. Our task is to construct a randomized algorithm
for f with expected decision tree complexity o(n).

First, for convenience, we get rid of the asymmetry at different levels
by replacing the and-gates and or-gates by nand-gates (negated and-gates).
Specifically, we use (f1 ∨ f2) ∧ (f3 ∨ f4) = (f1∧f2)∧(f3∧f4) to replace all
gates except possibly the gate at the root with nand-gates. If the gate at the
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root does not become a nand-gate, it is an and-gate, and we simply negate
it. This complements f , but doesn’t change the complexity of the function.

Now that we have nand-gates at all the nodes, consider the evaluation
of the function. If for some nand-gate, we know one input is 0, we know
the gate outputs 1, independent of the other input. Thus our randomized
strategy will be to start at the root, choose one of the two inputs uniformly
at random to evaluate, and recursively evaluate it. If it returns 0 we return
1, otherwise we evaluate the other input recursively, returning 1 if the other
input returns 0, and 1 otherwise.

Let ak denote the expected number of variables checked to compute f if
f(x) = 0, and let bk denote the expected number if f(x) = 1.

If f(x) = 0, then both inputs must be evaluated and are 1. If f(x) = 1,
then either both inputs are 0, in which case we definitely only evaluate one
input, or one input is 0, in which case we have at least a one in two chance
to evaluate only one input. This yields

bk = 2ak−1,

ak ≤ max{bk−1,
1

2
bk−1 +

1

2
(ak−1 + bk−1)}

=
1

2
bk−1 +

1

2
(ak−1 + bk−1).

We can write this as
(

a0

b0

)
=

(
1
1

)
,

(
ak

bk

)
=

(
1
2 1
2 0

)(
ak−1

bk−1

)

=

(
1
2 1
2 0

)k (
1
1

)
.

To estimate ak and bk from such a recurrence relation, we can examine
the eigenvalues of the matrix. The action of the matrix on an eigenvector
(by definition) is just to stretch the vector by the corresponding eigenvalue.
Thus on repeated application of the matrix, the norm of the eigenvector
with largest eigenvalue will grow most rapidly. For a vector which is not
an eigenvector, we can consider it as a convex combination of eigenvectors
and similarly show that with repeated application of the matrix, its norm
grows no faster than that of the eigenvector with largest eigenvalue. These
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considerations show that if there is a single largest eigenvector λ, then after k
applications of the matrix the resulting vector has norm λk +o(λk) times the
norm of the original vector. Thus ak and bk are approximately λk. For the

above matrix, the eigenvalues are 1
4 (1 ±

√
33), so that ak, bk ≈

(
(1±

√
33)

4

)k
.

For our randomized algorithm, k = log2 n, so we have

ak, bk ≈
(

(1 +
√

33)

4

)log2 n

= n
log2

(
(1+

√
33)

4

)
≈ n0.754 = o(n),

and we are done. (See the end of this lecture for details of the calculation.)
One might suspect that one could improve this algorithm by sampling

the inputs randomly and using the result to bias the choice of which input
to evaluate first towards the input with more 1’s in the subtree. It turns
out this doesn’t help; in fact the above algorithm is essentially optimal.
(Although we don’t give the proof.)

In the next lecture we will begin to study the probabilistic version of the
AKR-conjecture, which is that for a graph of n nodes the expected decision
tree complexity of a randomized algorithm for a non-trivial graph property
is Θ(n2). A lower bound of n follows from DR(f) ≥ D0(f)D1(f) ≥ n. Yao
improved this lower bound to n log n and introduced some techniques which
we will study. Valerie King improved the bound to Θ(n5/4) in her thesis,
and subsequently Hajnal improved the bound to Θ(n4/3).

One question which arises is the complexity of probabilistic algorithms
which are allowed a small probability of error. (Called a Las Vegas algo-
rithm.) One can gain a little bit, for instance consider the majority function,Las Vegas algorithm

which is 1 provided a majority of its inputs are 1. By random sampling half
the inputs, say, one can compute the majority function with a small proba-
bility of error. On the other hand, there is a lower bound on the complexity
of
√

D(f), which leaves a large gap.

5.3.1 Details of Calculating ak and bk

Following are the calculations of ak and bk in more detail; they may be

skipped by anyone familiar with linear algebra. Let M =

(
1
2 1
2 0

)
. The

eigenvalues of M are the values λ 6= 0 such that there exists a correspondingeigenvalues

eigenvector x with Mx = λx. Rewriting this as (M − λI)x = 0, we seeeigenvector

that the eigenvalues are those values for which M − λI is singular, i.e. has
determinant |M − λI| = 0.
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∣∣∣∣∣
1
2 − λ 1

2 −λ

∣∣∣∣∣ = 0,

λ2 − 1

2
λ − 2 = 0,

λ =
1

4
(1 ±

√
33).

Once we have the eigenvalues λ1 and λ2, let x1 and x2 be corresponding
eigenvectors, and define the matrices

D =

(
λ1 0
0 λ2

)
,

X =
(

x1 x2

)
.

It is easy to verify that MX = XD, so M = XDX−1, M2 = XD2X−1,
..., and Mk = XDkX−1. Since

Dk =

(
λk

1 0
0 λk

2

)
,

we have (
ak

bk

)
= Mk

(
1
1

)
= XDkX−1

(
1
1

)
.

After one determines the eigenvectors x1 and x2, it is an easy matter to
complete this and give a closed form for ak and bk.

(Notes by Sigal Ar and Neal Young.)
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6 Lower Bounds on Randomized Decision Trees

We begin this lecture with a proof of a basic result, Farkas’ lemma. The
lemma gives a necessary and sufficient condition for the existence of a so-
lution to a set of linear inequalities. We then discuss (and prove) von Neu-
mann’s min-max theorem. The theorem gives some insight into the advan-
tages of randomization. We then present some techniques developed by Yao
applying the min-max theorem to give lower bounds on randomized decision
tree complexity.

6.1 Farkas’ Lemma

For a system of linear equalities, everyone knows necessary and sufficient
conditions for solvability. Farkas’ lemma is the analogue for systems of linear
inequalities. Consider the problem “Does a system of linear inequalities

m∑

j=1

aijxj ≤ bi (i = 1, ..., n) (1)

have a solution?” Roughly, we expect this problem to be in NP, since we
can exhibit an easy proof (an assignment of x) if it is. Farkas’ lemma implies
that it is also in co-NP, that is, if it is not solvable there is also an easy proof
that it isn’t.

If the system is not solvable, we will prove it by exhibiting λi satisfying∑
i λiaij = 0 (j = 1, ...,m),

∑
i λibi < 0, and λi ≥ 0 (i = 1, ..., n). This

provides a proof that no x satisfies (1), because if such an x existed we
would have

0 =
∑

j

xj

∑

i

λiaij =
∑

i

λi

∑

j

aijxj ≤
∑

i

λibi < 0.

Lemma 6.1 (Farkas) For any aij and bi, (j = 1, ...,m, i = 1, ..., n)
∑

j

aijxj ≤ bi (i = 1, ..., n) (2)

has a solution x if and only if
∑

i

λiaij = 0 (j = 1, ...,m)

∑

i

λibi < 0 (3)

λi ≥ 0 (i = 1, ..., n)
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has no solution λ.

Proof: Consider the vectors (ai,1, ..., ai,m, bi), (i = 1, ..., n). Consider the
cone of these vectors. (3) says exactly that y∗ = (0, ..., 0,−1) is in this
cone. Suppose that (3) has no solution, so y∗ is not in the cone. Then
there exists a separating hyperplane H = {y :

∑
j yjhj = 0} such that y∗

is on one side of H and the cone is on the other, i.e.
∑

j y∗j hj < 0 and
ai1h1 + · · · + ainhn + bihn+1 ≥ 0 (i = 1, ...,m). The first condition says
that hn+1 ≥ 0, and the second says that

∑
j aijhj/hn+1 ≥ −bi (i = 1, ..., n).

Thus letting xj = − hj

hn+1
, we have a solution to 2.

6.2 Von Neumann’s Min-Max Theorem

Recall our second characterization of a randomized algorithm via decision
trees. For a function f : {0, 1}n → {0, 1}, on an input x, an algorithm
A chooses a deterministic algorithm for f with decision tree T according
to some probability distribution p (independent of x!), and then runs the
deterministic algorithm on x.

On a given input x, having chosen a particular tree T , A (deterministi-
cally) takes some complexity δ(T, x) to compute f(x). The expected com-
plexity for A on x is given by

∑
T pT δ(T, x). We are interested in the worst

case expected complexity for A (j.e. the adversary chooses x to maximize
the complexity): maxx

∑
T pT δ(T, x). Finally, if A is optimal, it minimizes

this worst-case complexity, and thus takes complexity

DR(f) = min
p

max
x

∑

T

pT δ(T, x).

We can view this process as a game, in which we choose p (determining
A), and then the adversary, knowing our choice, chooses x. To play the
game, we run A on x. Our goal is to minimize the expected complexity; the
adversary’s goal is to maximize it.

For this situation (called a zero-sum game, since we lose exactly whatzero-sum game

our opponent gains), there is a general theorem, von Neumann’s min-max
theorem. We have a game, defined by a matrix M , for two players — the
row player and the column player. The game is played as follows. The
column player chooses a column c and the row player chooses a row r. The
column player then pays Mrc to the row player.
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0 

0 

1 

1 
Row 
Player 

Column Player 

r=1 

r=2 

c=1 c=2 

Figure 7: A Simple Zero-Sum Game

The column player wants to minimize Mrc, and the row player wishes to
maximize it.

To make this concrete, assume we are playing a game (see figure 6.2)
where each player chooses either 1 or 2. If we choose the same as the
adversary, we pay her 1. Otherwise we pay nothing. What should our
strategy be? Suppose our strategy is to choose 1. After playing the game
several times, with the adversary beating us every time, we begin to suspect
that the adversary knows our strategy and has used that knowledge to beat
us. What can we do, given that the adversary may know our strategy and
use that information to try to beat us?

Von Neumman’s key observation is that we can use randomization to
negate the adversary’s advantage in knowing our strategy. For our simple
game, if our strategy is to choose 1 or 2 randomly, each with probability
1/2, then no matter what strategy the adversary picks, we have an expected
loss of at most 1/2.

More generally, in any zero-sum game we have a randomized (also called
a mixed) strategy which negates the adversary’s advantage in knowing our
strategy. To make precise the notion of “negating the advantage,” we con-
sider turning the tables, so that she chooses her strategy first, and then we
choose ours. Then provided we choose the randomized strategy that negates
her advantage in the first situation, and she chooses the randomized strategy
which negates our advantage in the second situation, we will expect to do
just as well in the first situation as the second. Formally,

Theorem 6.2 (Von Neumann’s min-max theorem) For any zero-sum
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game M ,
min

p
max

q
qTMp = max

q
min

p
qTMp.

(Note that p and q range over all probability distributions of columns and
rows, respectively.)

We start with some observations. In the min-max theorem, in the inner
max and min, randomization is not important. That is, (if ej denotes the
jth unit vector in a vector space implicit in the context)

∀p,max
q

pTMp = max
j

eT
j Mp,

and similarly for the inner term on the right hand side. This is because, for
a fixed p, qTMp is a linear function of q, and thus is maximized at one of
the vertices ej of the probability space.
Proof: Obviously,

∀q0, p0,max
q

qTMp0 ≥ qT
0 Mp0 ≥ min

p
qT
0 Mp.

Thus
min
p0

max
q

qTMp0 ≥ max
q0

min
p

qT
0 Mp.

The other direction is not so easy. We suppose that ∃t :

∀p : (p ≥ 0,
∑

j

pj = 1) max
j

eT
j Mp ≥ t

and we want to show that

∃q : q ≥ 0,
∑

j

qj = 1,∀i, qTMei ≥ t.

This will follow almost immediately from Farkas’ lemma.
Suppose that 6 ∃q : q ≥ 0,

∑
j qj = 1,∀i, qTMei ≥ t. Farkas’ lemma

implies that there exists λ = (λ1, .., λn), µ = (µ1, ..., µm), and α such that:

λTM + µ + α




1
...
1


 =




0
...
0


 , (4)

∑

i

λit + α > 0, (5)

λi, µj ≥ 0.
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Note that α is not constrained to be non-negative and that in (5) the expres-
sion is constrained to be positive, rather than negative. These are essentially
trivial variations from the standard form of Farkas’ lemma. The first is be-
cause the inequality corresponding to α is in fact an equality, and the second
is because the unsatisfiable constraints are of the form · · · ≥ t, rather than
· · · ≤ t.

Letting p = λ/
∑

i λi, (4) and (5) imply

pTM ≤ − α∑
i λi




1
...
1


 ≤ t




1
...
1


 ,

which contradicts our assumption.

6.3 Lower Bounds

The discussion before the proof, in our original context, means that once we
choose p, determining A, the adversary can choose a specific input x, rather
than a distribution of inputs, to give the worst case expected behavior for A.
Alternatively, if the adversary chooses an input distribution first, then we
can do our best by subsequently choosing the best deterministic algorithm,
rather than a randomized algorithm, for this input distribution. Thus the
min-max theorem implies that if the adversary can choose a distribution
for which she can force any deterministic algorithm to have an expected
complexity of at least t, then for every randomized algorithm there is an
input such that the expected complexity of the algorithm on that input is
at least t.

To show a lower bound on the decision tree complexity of any randomized
algorithm, then, it suffices to show the same bound on the complexity of
all deterministic algorithms for some fixed input distribution. This is the
technique we will use.

As a starting point, recall that DR(f) denotes the minimum expected
decision tree complexity of a randomized algorithm for f . An almost trivial
observation is

DR(f) ≥ max{D0(f),D1(f)}. (6)

This follows because when f(x) = i, any algorithm must look at at least
Di(f) bits of x before it can be sure f(x) = i. Last lecture we showed that
for (non-trivial) weakly symmetric f , D0(f)D1(f) ≥ n. Thus DR(f) ≥ √

n.
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Next we give a lemma which uses the min-max theorem to give a better
lower bound for certain types of functions.

Lemma 6.3 (Yao) Let f : {0, 1}n → {0, 1}. Suppose we can partition
{1, ..., n} into S1, ..., Sr so that |Si| ≥ t and

f(x) =

{
0 if ∀i |{j : xj = 0} ∩ Si| ≥ t,
1 if ∃i |{j : xj = 0} ∩ Si| = 0.

Then DR(f) ≥ Ω
(

n
t

)
.

(Note that the condition on f leaves some values of f unspecified. Also note
that this bound doesn’t follow immediately from (6).)

Proof: We give an input distribution on x and give a lower bound on the
expected complexity of any deterministic algorithm on this input distribu-
tion.

To generate x, choose t indices j uniformly at random from each Si and
set xj = 0. Set the remaining xj′ = 1. Then f(x) = 0, and for an algorithm
to verify this it must query an xj with the value 0 from each Si. How many
queries must the algorithm expect to make before finding such an xj in a
given Si? Since the t xj with value 0 were chosen randomly, we can view the
algorithm as sampling randomly (without replacement) from a set of size k
until it finds one of the t xj chosen to be 0. The expected time for this is
Ω(k/t). By linearity of expectation, the expected time to find a 0 in each Si

is thus at least n
k Ω

(
k
t

)
= Ω(n/k).

We will apply this lemma to lower bound the randomized complexity
of monotone bipartite graph properties on 2n nodes (n in each part). The
complexity of such properties is not quite solved. The trivial bound DR(f) ≥√

#inputs gives a lower bound of n. This was first improved to n log n by
Yao, who introduced the general techniques for the problem. Valerie King
improved the bound to n5/4, and subsequently Hajnal improved the bound
to n4/3.

6.3.1 Graph Packing

Our problem is closely related to the problem of graph packing. Two graphsgraph packing

G1 and G2 on n nodes can be packed if (possibly after relabeling the vertices)
the edge sets of the graphs don’t overlap. If G1 and G2 pack, then G1 ⊆ G2.
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Suppose G1 is a minimal G in a graph property Pf = {G : f(G) = 1},
and G2 is a minimal G such that G ∈ P. Observe that G1 and G2 don’t pack.
Furthermore, if any two G1 and G2 don’t pack, we have |E(G1)| |E(G2)| ≥
n2 by essentially the same argument that showed D(f) ≥ D0(f)D1(f). More
interestingly, one can show

dmax(G1)dmax(G2) ≥ n/2.

An instance of this is that if a graph G has dmin(G) > n/2, then there exists
a hamiltonian cycle C. That is, if dmax(G) < n/2, then G and any cycle C
pack.

6.3.2 Yao’s dmax/d Lemma

Next we will in some sense specialize lemma 6.3 to the case of a monotone
bipartite graph property. We will choose a minimal graph G for the property,
and show how to construct a containing graph G′ such that we can partition
a large subset of the edges of G′ into disjoint sets such that if we remove
edges from the subsets, the property holds if we leave any set untouched,
but fails if we remove at least a small number from each set. Lemma 6.3
will apply to show essentially that any randomized algorithm has to check
many edges in each set.

Lemma 6.4 (Yao) Let f be a (non-trivial) monotone bipartite graph prop-
erty on bipartite graphs with 2n nodes, the two parts U and W each having
n nodes, and let P = {G : f(G) = 1}.

If G is a graph in P with minimum dU
max(G) (i.e. minimum maximum

degree over vertices in U) and d
U
(G) is the average degree of vertices of G

in U , then

DR(f) ≥ Ω(1)
dU
max(G)

d
U
(G)

.

Proof: Of the G ∈ P with minimum dmax, choose one with the fewest
number of maximum degree vertices, so that if any graph has fewer vertices
of degree dmax (and no higher degree vertices) it is not in P.

Assume dmax ≥ 4d, otherwise the bound is trivial. Assume also that the
vertices are labeled so that vertex 0 is a maximal degree vertex in U , and
vertices 1, ..., n/2 are in U and have degree at most h = 2d.

We form the containing graph G′ by adding edges from vertex i to the
neighbors of vertex 0 and vertex i+1. G′ has two essential properties. First,
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if we delete any 2h + 1 edges out of each vertex 0, 1, ..., n/2, we destroy the
property P, because we reduce the number of vertices in U with degree dmax

by 1.
Second, if for some i (possibly 0), for each vertex j = 0, 1, ..., i − 1, i +

1, ..., n/2, we delete the edges from j into Γ0 − Γi − Γi+1, we preserve P.
This is because we can permute the vertices of U so that the permuted graph
contains the original graph G. We do this as follows: shift vertex 0 to vertex
1, vertex 1 to vertex 2, ..., and vertex i to vertex 0.

To apply lemma 6.3, we define Si = {i} × (Γ0 − Γi − Γi+1) (for i =
1, ..., n/2), S0 = {0} × (Γ0 − Γ1), and S = ∪iSi.

Then if we obtain f ′ by restricting the domain of f to graphs which agree
with G′ on edges not in S, f ′ is a function of |S| ≥ n (dmax − 2h) variables.
If we start with G′ and within each partition Si delete 2h + 1 edges, f ′

becomes 0, but if we start with G′ and delete edges within S leaving at least
one partition complete the function stays 1. Thus lemma 6.3 implies that

DR(f) ≥ DR(f ′) ≥ Ω

(
n (dmax − 2h)

2h + 1

)
≥ Ω

(
n

dmax

d

)
.
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7 Randomized Decision Tree Complexity, contin-

ued

In this lecture we continue giving lower bounds on randomized decision tree
complexity, combining the various bounds we have developed to show a
lower bound of Ω(n5/4) on the randomized decision tree complexity of any
non-trivial, monotone, bipartite graph property.

The general method is to choose both a minimal graph with the property
and a graph whose complement is minimal in the complementary property,
and then to use the fact that the two graphs don’t pack to get constraints
on the maximum and average degrees of the two graphs, and finally to apply
Yao’s lemma from last lecture to bound the randomized complexity via the
constraints on the degrees.

7.1 More Graph Packing

Recall that graphs G1 and G2 pack if after some relabeling of the nodes of
G1 the two graphs have no common edges. That is, ∃G′

1, G
′
1
∼= G1, G

′
1 ⊆ G2.

Recall that dU
max(G), for a bipartite graph G = (U,W,E), denotes the

maximum degree of a vertex in U in G, and d(G) denotes |E|/n, the average
degree of a vertex in G. For this lecture, we will restrict our attention to
bipartite graphs G1 = (U,W,E1) and G2 = (U,W,E2) with equal size parts,
i.e. |U | = |W | = n, so that the average degree in each part is the same.

We will show the following lemma.

Lemma 7.1 (Bollobas-Eldridge) If

dU
max(G1)d

W
max(G2) + dU

max(G2)d
W
max(G1) ≤ n

then G1 and G2 pack.

There is also a non-bipartite version of this lemma:

Lemma 7.2 For two graphs G1 and G2, if

dmax(G1)dmax(G2) ≤ n/2

then G1 and G2 pack.

The proof of the second lemma, which we omit, is similar to that of
the first lemma, which we give. While there is no gap in the n/2 term; the
conjecture is that (dmax(G1)+1)(dmax(G2)+1) < n also gaurantees packing.
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Figure 8: Swapping the Labels of u and u′: Two Cases.

Proof: (Lemma 7.1.) Suppose G1 and G2 don’t pack, and we have
relabeled the vertices of G1 so as to minimize the number of overlapping
edges. There is some overlapping edge (u,w). Consider swapping the labels
of u and a vertex u′ ∈ U in G1. With the current labeling, there is at least
one overlapping edge out of u and u′, so after the swap this must also be
the case.

This entails that either an edge (u,w′) ∈ E1 will be mapped on to an
edge (u′, w′) ∈ E2 by the swap, or that an edge (u′, w′) ∈ E1 will be mapped
onto an edge (u,w′) ∈ E2 by the swap. This means that every u′ 6= u is
reachable from u either by following an edge in G1 and then an edge in G2

or by following an edge in G2 and then an edge in G1.
There are at most dU

max(G1)d
W
max(G2)− 1 paths of the first kind, (one of

the candidates leads back to u), and similarly at most dU
max(G2)d

W
max(G1)−1

of the second kind. Thus

dU
max(G1)d

W
max(G2) + dU

max(G2)d
W
max(G1) ≥ n + 1.

Graph packing captures many graph theoretic notions, for instance if G1

is a Kd (a graph with a d-clique and n − d isolated nodes), and G2 consists
of d n/d cliques, then G1 and G2 pack, and this is equivalent to saying the
vertices of G1 are d-colorable21 with each color coloring n/d nodes. In factd-colorable

it can be proved22 that if G1 is of maximal degree d − 1, then G1 and G2

pack.
On the other hand, if G1 instead consisted of a d+1-clique and n−d−1

isolated nodes, then G1 and G2 would not pack, since G1 would not be d-
colorable. Since the product of the maximum degrees for this pair of graphs

21The vertices of a graph are d-colorable if one can color them with d colors so no edge
touches two vertices of the same color. The edges of a graph are d-colorable if one can
color them with d-colors so no vertex touches two edges of the same color.

22Hajnal and Steverédi?
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is d(n/d − 1) = n − d, which for d = n/2 is n/2, this gives a tight lower
bound for lemma 7.1 and the conjecture.

7.2 Application of Packing Lemma

So we have this packing lemma, which is fairly straightforward; how can we
use it?

Given a monotone bipartite graph property Pf on bipartite graphs G =
(U,W,E) with |U | = |W | = n, choose G1 to have the lexicographically
smallest degree sequence23 of vertices in U , so that G1 is minimal, no graph degree sequence

in P has lesser dU
max, and of those with equal dU

max, none has fewer vertices
of this degree. Similarly, choose G2 lexicographically smallest with G2 6∈ P.

We know G1 and G2 don’t pack, otherwise G2 ⊆ G1 ∈ P.

We have several bounds on DR(f):

DR(f) ≥ d(G1)n, (7)

DR(f) ≥ c
dU
max(G1)

d(G1)
n. (8)

Bound (7) says that DR is at least the number of edges in G1, which is
trivial since G1 is minimal. Bound (8) is Yao’s lemma, shown in the previous
lecture. It also holds if G2 replaces G1 and/or W replaces U , a fact we shall
use.

Bound (7) implies that d(G1) ≤ DR/n, and thus (8) implies

dU
max(G1) ≤

DR

cn
d(G1) ≤

1

c

(
DR

n

)2

,

and similarly for W and G2 possible replacing U and G1, respectively. Since
G1 and G2 don’t pack, lemma 7.1 implies that

2

c2

(
DR

n

)4

≥ dU
max(G1)d

W
max(G2) + dU

max(G2)d
W
max(G1) > n,

which in turn implies that DR ≥
(

c2n5

2

)1/4
= Ω(n5/4).

Thus any non-trivial bipartite graph property has DR = Ω(n5/4).

23The degree sequence of a graph is the list of degrees of the vertices of the graph, from
largest to smallest.
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7.3 An Improved Packing Lemma

To improve this result, we need an improved packing lemma:

Lemma 7.3 Let G1, G2 be bipartite graphs. If

dU
max(G1)d(G2) <

n

100
, (9)

dU
max(G2)d(G1) <

n

100
, (10)

and
dW
max(G1), d

W
max(G2) <

n

1000 log n
, (11)

then G1 and G2 pack.

(The condition (11) is a technical condition, needed for the proof but not
truly a restriction. In particular, if (11) is violated, we will see that Yao’s
lemma gives an immediate lower bound of Ω(n3/2/

√
log n) on DR.)

Proof: This proof is somewhat more complicated, we sketch the proof. In
particular, we omit some final computations.

We have G1 = (U1,W1, E1) and G2 = (U2,W2, E2). We will assume the
above conditions, and show that if we fix a random relabeling f of W1, with
non-zero probability there is a relabeling g of U1 so that G1 relabeled by f
and g shares no edges with G2.

In spirit the idea is initially similar to the previous packing lemma. There
we showed that from the standpoint of a given vertex u, if after ruling out
neighbors of neighbors of u there was a vertex left, we could swap the labels
of u and the vertex and possible reduce the number of edge overlaps. Thus we
showed roughly that the product of the maximum degree in U and maximum
degree in W was at least n.

Here, since the vertices of W1 have been randomly mapped onto the
vertices of W2, the neighbors of u in G1 are mapped onto an essentially
random set of size at most dmax(G1) in W2. Since the set in W2 is essentially
random, we will be able to show (using the technical condition) that the size
of its neighbor set is

c|W2|d(G2) = cdmax(G1)d(G2) = cn/100

with probability at most 1
2n . Thus with probability at least 1/2, for each u

there will be less than n/2 u′ ruled out as possible images under g. We will
also show that the existence of g is equivalent to the existence of a perfect
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matching connecting each u with a possible image u′, and thus the existence
of n/2 possible images of each u is sufficient to guarantee the existence of g.

So fix a relabeling f of W1 uniformly at random. When will there be a g
relabeling U1 so that no edges are shared? The constraint is that if an edge
(u, v) is in E1, then the edge (g(u), f(v)) is not in E2. Thus for each u ∈ U1

we must find a u′ ∈ U1 such that NG2(u
′) ∩ f(NG1(u)) is empty. (NG(v)

denotes the neighboring vertices of v in G.) The only additional constraint
is that each u have a unique such u′.

In other words, if we define a bipartite graph H = (U1, U1, F ), where

F = {(u, u′) : NG2(u
′) ∩ f(NG1(u)) = ∅},

then g exists iff F has a perfect matching.

The Frobenius-Konig-Hall theorem states that a bipartite graph G =
(U,W,E) has a perfect matching iff for every vertex set X ⊆ U we have
|N(X)| ≥ |X|. We don’t use this in full generality, rather we use a conse-
quence. Namely, if dmin(G) ≥ n/2, then G has a perfect matching. This
follows from the FKH theorem as follows: any set X violating is of size at
greater than n/2. But then any vertex in W has some edge into X, since
U − X is not big enough to contain all the edges out of any vertex in W .
Thus all vertices in W are neighbors of X.

(Just for fun, note that we can also use the previous lemma to show
this. Namely if dmin(G) ≥ n/2, then G (with dmax(G) ≤ n/2) and a perfect
matching (with dmax(G) = 1) pack.)

Now F is a random graph, but not in the usual sense. We will argue
that with non-zero probability the minimum degree of F is at least n/2, so
that it has a perfect matching, and g exists.

To bound the minimum degree of H from below, we ask how many edges
from a vertex u can be excluded. An edge (u, u′) is excluded if there is a
(u,w) ∈ E1 with (u′, f(w)) ∈ E2. The idea is that the the number of such
(u,w) is bounded by dU

max(G1), while for a given w the number of such
(u′, w) is around d(G2), so that for a given u, the number of excluded u′

(which must be at least n) is at most around the product of these two. (By
reversing the roles of G1 and G2, we can bound the number of edges (u, u′)
into a given u′ which are excluded, thus ensuring dH(u′) is also at least n/2
for vertices in the second part of H.)

By the definition of F ,

#{u′ : (u, u′) 6∈ H} ≤ |NG2 (f (NG1(u)))|
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≤
∑

u′∈f(NG1
(u))

dG2(u
′). (12)

Thus the probability that dH(u) < n/2 (for u in the first part of the
bipartite graph) is bounded by the probability that (12) is greater than
n/2. (The case for the second part is similar, and we omit it.) The point
is that f (NG1(u)) is essentially a random subset of W2 of size at most
dU
max(G1), so the sum of the degrees of vertices in W2 should be bounded

by O
(
d(G2)d

U
max

)
with high probability. In the full proof one shows that

for a given u the probability of DH(u) ≥ n/2 is at most 1
2n , so that the

probability of all u having degree less than n/2, and thus of a matching,
and the consequent g, existing, is at least 1/2.

Here we show exactly what computations we are leaving out: If we define

ωi =
dG2(wi)

nd(G2)
(wi ∈ W2)

then
∑

i ωi = 1, ωi ≥ 0, and we want to bound the probability that

∑

i∈S

ωi >
1

2δ
,

where δ = d(G2) and S is a set chosen uniformly at random from sets of
some size at most dU

max(G1), which is bounded by n
100δ by hypothesis.

The average value of the ωi is 1/n, so the expected value of the sum
is 1

100δ . Thus unless the ωi are highly concentrated, which the technical
condition dW

max(G1) < n
1000 log n prevents, the condition will hold. We omit

the details of the computation.

With this improved packing lemma, and the conditions (as before)

DR

n
≥ d(G1), (13)

DR

n
≥ c

dU
max(G1)

d(G1)
(14)

(and the corresponding conditions with W and G2 possibly replacing U and
G1, respectively), we can show an improved bound. (Recall that the first
condition is essentially the trivial lower bound on DR, while the second is
Yao’s lemma.)
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Specifically, if the technical condition dW
max(G1) < n

1000 log n (or any of the
equivalent technical conditions) of the improved packing lemma are violated,

then by conditions (13) and (14)
D2

R

n2 > Ω
(

n
log n

)
, so DR = Ω(n3/2/

√
log n).

Otherwise (as G1 and G2 don’t pack) one of the other conditions is vio-
lated. We assume without loss of generality that it is (9): dU

max(G1)d(G2) <
n

100 . Together with the above two conditions, this gives

(
DR

n

)3

≥ cd(G2)d
U
max(G1) ≥

cn

100
.

Thus DR = Ω(n4/3).
It seems possible that this bound could be pushed a bit higher, perhaps

to n3/2. Currently this is the best lower bound known, and the best upper
bounds known are Ω(n2).
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8 Randomized Complexity of Tree Functions —

Lower Bounds

For any non-trivial monotone graph property Pf on graphs with n nodes we
have seen that D(f) = Ω(n2), DR(f) = Ω(n3/2).

In this lecture we discuss tree functions — functions with formulas in
which each variable occurs exactly once. We already know that for any tree
function f , D(f) = n, and we previously saw a tree function f0 (represented
by a complete binary tree with alternating and and or-gates) with DR(f0) =
O(n0.75...).

We show a lower bound on DR(f) for tree functions, which we use to
deduce that

• DR(f0) = Ω(n0.75...), and

• DR(f) = Ω(n0.51) for any tree fn. f .

8.1 Generalized Costs

The most natural thing to consider for proving a lower bound on the com-
plexity of a tree function f(x, y) = g(x)◦h(y) (with x ∈ {0, 1}n−i, y ∈ {0, 1}i,
and ◦ ∈ {∧,∨}) is a top-down induction. Unfortunately we don’t know how
to get this to work.

Instead, Saks and Wigderson have looked at a bottom-up induction, in
which a gate with two immediate inputs is replaced by a single input. First
f is expressed as f(x, y,w) = f ′(x ◦ y,w) (with x ∈ {0, 1}, y ∈ {0, 1},
w ∈ {0, 1}n−2, and ◦ ∈ {∧,∨}), and then a lower bound on f is given by a
corresponding lower bound on f ′(v,w).

For this technique to work, we need to keep track of the fact that dis-
covering v, which represents x ◦ y, is somehow more expensive than just
querying a bit. To do this, we generalize our notion of cost. We associate
two costs c0(xi) and c1(xi) with each variable xi which represents a bit of
the input to f . The cost c0 represents the cost to discover that xi is 0, while
the cost c1 represents the cost to discover that xi is 1. With such a cost
function c, we define

DR(f, c) = min
p

max
x

∑

T

pT δ(T, x, c),

where δ(T, x, c) =
∑

i∈S,xi=0 c0(xi)+
∑

i∈S,xi=1 c1(xi), with S the set of vari-
ables queried by T on input x.
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So we are given a function f with a set of costs c. To show a lower bound
on DR(f, c) we choose the function f ′ so f(x, y,w) = f ′(x ◦ y,w), and we
choose a set of costs c′ for the inputs of f ′ such that we can show DR(f, c) ≥
DR(f ′, c′), thus inductively generating a lower bound for DR(f, c). We will
assume that ◦ = ∧; the case ◦ = ∨ is symmetric.

So, leaving the choice of c′ unspecified as yet, we have f , c, f ′, and c′. We
want to show DR(f, c) ≥ DR(f ′, c′). The min-max theorem says DR(f, c) is
also equal to

max
q

min
T

∑

x

qxδ(T, x, c),

that is, we can also obtain DR(f, c) by choosing the worst input distribution,
and then the best deterministic algorithm for that distribution. Thus to
show DR(f ′, c′) is at most DR(f, c), we will assume a worst case distribution
q∗ of inputs to f ′, and we show that there exists a T ′ for f ′ such that∑

x q∗xδ(T
′, x, c′) ≤ DR(f, c).

So we have the worst case distribution q∗ for f ′, and we want to show
the existence of a T ′ that does well on q∗. We will map q∗ to a distribution
q on the inputs to f , so that there exists an algorithm T ∗ for f such that∑

x qxδ(T
∗, x, c) ≤ DR(f, c). We know such a T ∗ exists because q is at

worst the worst-case distribution for f , in which case there still exists an
algorithm with expected cost exactly DR(f, c). We will then construct T ′

based on T ∗, so that their expected costs on their respective distributions
can be correlated.

The basic idea will be that T ′(v,w) will mimic T ∗(x, y,w) for some choice
of x and y such that x ∧ y = v. When T ∗ checks a variable in w, T ′ will do
the same. When T ∗ checks x or y, T ′ may or may not check v.

What should the costs c′ be? For variables other than v, c′ will agree
with c. We will wait to determine c′0(v) and c′1(v), choosing them as large
as our proof techniques will allow.

What about the distribution q? We define q(1, 1, w) = q∗(1, w), q(0, 1, w) =
pxq∗(0, w), and q(1, 0, w) = pyq

∗(0, w), where py and px = 1− py will be de-
termined later.

What about T ′? Define T ′
y on input (v,w) to mimic T ∗ on (1, v, w) and

T ′
x on input (v,w) to mimic T ∗ on (v, 1, w). Define T ′ on input (v,w) to run

T ′
y with probability py and T ′

x with probability px. That T ′ is a randomized
strategy is no problem; since q∗ is fixed one of the two deterministic strategies
T ′

y or T ′
x will be at least as good.

We need to find the constraints on c′1(v) and c′0(v) which will allow us to
show that the expected cost of T ∗ is at least that of T ′. For this it suffices
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to show that the cost of T ∗(v,w) for any v and w is at most py times the
cost of T ∗(1, v, w) plus px times the cost of T ∗(v, 1, w).

8.2 The Saks-Wigderson Lower Bound

Now that we have the form of our argument, the rest is essentially a matter
of checking cases. We should note that although most of the choices we have
made above are straightforward, there is one choice which in fact anticipates
in a clever way what we will need in the remaining part of the proof. In
particular, we have chosen T ′ to run T ′

x or T ′
y with probability px or py,

respectively, and, not coincidentally, we have chosen the distribution q to
map (0, w) to (1, 0, w) or (0, 1, w) with probability px or py, respectively, as
well. This choice bears some consideration.

Returning to our argument, we want to find the conditions under which
the cost of T ′(v,w) is at most py times the cost of T ∗(1, v, w) plus px times
the cost of T ∗(v, 1, w). We consider the various cases for T ∗, v, x, and y.

If v = 1, this reduces to the cost of T ′(1, w) being at most the cost of
T ∗(x = 1, y = 1, w). If T ∗ queries neither x nor y, then this is clear, since
T ′

x, T ′
y, and T ∗ query exactly the same variables. Otherwise, if T ∗ queries

only x, then T ∗ pays c1(x) while T ′ pays an expected cost of pxc′1(v) (the
costs to query variables in w are again the same); if T ∗ queries only y, then
T ∗ pays c1(y) while T ′ pays an expected cost of pyc

′
1(v); if T ∗ queries both

x and y then T ∗ pays c1(x) + c1(y) while T ′ pays c′1(v). Thus T ∗ will pay
at least what T ′ pays provided

• pxc′1(v) ≤ c1(x), and

• pyc
′
1(v) ≤ c1(y).

The case v = 0 is a bit more complicated. In this case, we want the cost
of T ′(0, w) to be at most py times the cost of T ∗(1, 0, w) plus px times the
cost of T ∗(0, 1, w). If neither queries x or y for this w then this is clear.
Otherwise, both query x first or both query y first. We consider the case
when x is queried first, the other case being symmetric.

There are then two cases, depending on whether or not T ∗(1, 0, w) queries
y as well as x. (T ∗(0, 1, w) will not query y, since T ∗ is optimal and knows
the value of x ∧ y after querying x.) First assume that only x is queried by
T ∗(1, 0, w). Then with probability py the cost to T ′ is the cost to T ∗(1, 0, w)
minus c1(x), and with probability px the cost to T ′ is the cost to T ∗(0, 1, w)
minus c0(x) plus c′0(v). Thus we are fine provided
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• −pyc1(x) − pxc0(x) + pxc′0(v) ≤ 0.

Next assume that x and y are queried by T ∗(1, 0, w). Then with prob-
ability py the cost to T ′ is the cost to T ∗(1, 0, w) minus c1(x) minus c0(y)
plus c′0(v), and with probability px the cost to T ′ is the cost to T ∗(0, 1, w)
minus c0(x) plus c′0(v). Then we are fine provided

• py(−c1(x) − c0(y) + c′0(v)) + px(−c0(x) + c′0(v)) ≤ 0.

Collecting all of these inequalities, and the symmetric inequalities for y
queried first, we have that DR(f, c) ≥ DR(f ′, c′) provided that c′0(v) and
c′1(v) satisfy the constraints:

c′1(v) ≤ c1(x)/px,

c′1(v) ≤ c1(y)/py,

c′0(v) ≤ pyc1(x)/px + c0(x),

c′0(v) ≤ pxc1(y)/py + c0(y),

c′0(v) ≤ py(c1(x) + c0(y)) + pxc0(x),

c′0(v) ≤ px(c1(y) + c0(x)) + pyc0(y).

Choosing c′1(v) = c1(x)+c1(y) forces px = c1(x)
c1(x)+c1(y) and py = c1(y)

c1(x)+c1(y)
and yields

Theorem 8.1 (Saks-Wigderson) Let f be a tree function with binary ∧
and ∨ gates. Then DR(f) ≥ max{l0(f), l1(f)}, where

l0(xi) = l1(xi) = 1,

l1(g ∧ h) = l1(g) + l1(h),

l0(g ∧ h) = min{l0(g) + l1(h), l1(g) + l0(h),
l1(g)l0(g) + l0(h)l1(h) + l1(g)l1(h)

l1(g) + l1(h)
},

l0(g ∨ h) = l0(g) + l0(h),

l1(g ∨ h) = min{l1(g) + l0(h), l0(g) + l1(h),
l0(g)l1(g) + l1(h)l0(h) + l0(g)l0(h)

l0(g) + l0(h)
}.

Applying this to the function f0 (the alternating and/or function men-
tioned at the beginning of the lecture) shows that the upper bound for that
function is in fact tight.

Rafi Heiman and Avi Wigderson generalize this theorem to tree func-
tions with arbitrary fan-in gates to show a lower bound of Ω(n0.51) for the
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randomized decision tree complexity for an arbitrary tree function. See
Randomized vs. Deterministic Decision Trees — Complexity for Read Once
Boolean Functions by Rafi Heiman and Avi Wigderson.

(Lecture by Rafi Heiman.)
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