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Greedy∆-Approximation Algorithm for
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Abstract. This paper describes a greedy∆-approximation algorithm forMONOTONE COVERING, a generalization
of many fundamental NP-hard covering problems. The approximation ratio∆ is the maximum number of variables
on which any constraint depends. (For example, for vertex cover, ∆ is 2.) The algorithm unifies, generalizes, and
improves many previous algorithms for fundamental covering problems such as vertex cover, set cover, facilities
location, and integer and mixed-integer covering linear programs with upper bound on the variables.
The algorithm is also the first∆-competitive algorithm foronlinemonotone covering, which generalizes online ver-
sions of the above-mentioned covering problems as well as many fundamental online paging and caching problems.
As such it also generalizes many classical online algorithms, includingLRU, FIFO, FWF, BALANCE , GREEDY-DUAL ,
GREEDY-DUAL SIZE (a.k.a.LANDLORD), and algorithms for connection caching, where∆ is the cache size. It also
gives new∆-competitive algorithms forupgradablevariants of these problems, which model choosing the caching
strategyandan appropriate hardware configuration (cache size, CPU, bus, network, etc.).

1 Introduction

The classification of general techniques is an important research program within the field of approximation algorithms.
What are the scopes of, and the relationships between, the various algorithm-design techniques such as the primal-dual
method, the local-ratio method [5], and randomized rounding? Within this research program, an important question is
which problems admit optimal and fastgreedyapproximation algorithms, and by what techniques [25,11]?

We give here a single online greedy∆-approximation algorithm for a combinatorially rich classof monotone
covering problems, including many classical covering problems as well as online paging and caching problems. The
approximation ratio,∆, is the maximum number of variables on which any constraint depends. (ForVERTEX COVER,
∆ = 2.)

For some problems in the class, no greedy (or other)∆-approximation algorithms were known. For others, previ-
ous greedy∆-approximation algorithms were known, but with non-trivial and seemingly problem-specific analyses.
For VERTEX COVER and SET COVER, in the early 1980’s, Hochbaum gave an algorithm that roundsa solution to the
standard LP relaxation [33]; Bar-Yehuda and Even gave a linear-time greedy algorithm [6]. A few years later, forSET

MULTICOVER, Hall and Hochbaum gave a quadratic-time primal-dual algorithm [26]. In the late 1990’s, Bertsimas and
Vohra generalized all of these results with a quadratic-time primal-dual algorithm for covering integer programs (CIP),
restricted to{0, 1}-variables and integer constraint matrixA, and with approximation ratiomaxi

∑
j Aij ≥ ∆ [10].

Most recently, in 2000, Carr et al. gave the first (and only previous)∆-approximation for generalCIP with {0, 1}
variables [15].1 They state (without details) that their result extends to allow general upper bounds on the variables
(restrictingxj ∈ {0, 1, 2, . . . , uj}). In 2009 (independently of this work), [46] gives details of an extension to CIP
with general upper bounds on the variables. Both [15] and [46] use exponentially many valid “Knapsack Cover” (KC)
inequalities to reduce the integrality gap to∆. Their algorithms solve the LP using the ellipsoid method, so the running
time is a high-degree polynomial.

Online paging and caching algorithms are also (online) monotone covering problems, as they can be formulated as
onlineSET COVER[2]. These problems also have a rich history (see Fig. 1, and [12]).

All of the classical covering problems above (vertex cover,set cover, mixed integer linear programs with variable
upper bounds (CMIP) and others (facility location, probabilistic variants of these problems, etc.), as well as online
variants (paging, weighted caching, file caching, (generalized) connection caching, etc.) are special cases of what we

⋆ Partially supported by NSF awards CNS-0626912, CCF-0729071.
1 The standard LP relaxation has an arbitrarily large integrality gap (e.g.min{x1 : 10x1 + 10x2 ≥ 11; x2 ≤ 1} has gap 10).
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problem approximation ratio method where comment
VERTEX COVER 2 − ln ln b∆/ ln b∆ local ratio [28] see also[32,7,44,27,29,21,37]

SET COVER ∆ greedy; LP [6]; [31,32] ∆ = maxi |{j : Aij > 0}| ⋆
CIP, 0/1-variables maxi

P

j
Aij greedy [10,26] ⋆

CIP ∆ ellipsoid [15,46] KC-ineq., high-degree-poly time ⋆

MONOTONE COVER ∆ greedy [our §2] min{c(x) : x ∈ S (∀S ∈ C)} new
CMIP ∆ greedy [our §3] near-linear-time implementation new
FACILITY LOCATION ∆ greedy [our §4] linear-time implementation new
PROBABILISTIC CMIP ∆ greedy [our §4] quadratic-time implementation new

online problem competitive ratio deterministic online
PAGING k = ∆ potential function [48,47] e.g. LRU, FIFO, FWF, Harmonic ⋆
CONNECTION CACHING O(k) reduction to paging [18,1] ⋆
WEIGHTED CACHING k primal-dual [52,47] e.g. Harmonic, Greedy-Dual ⋆
FILE CACHING k primal-dual [53,14] e.g. Greedy-Dual-Size, Landlord⋆
UNW. SET COVER O(log(∆) log(n/opt)) primal-dual [13] unweighted
CLP O(log n) fractional [13] min{c · x : Ax ≥ b; x ≤ u},

MONOTONE COVER ∆ potential function [our §2] includes the above and CMIP... new
UPGRADABLE CACHING d + k reduction to mono. cover[our §5] d components,k files in cache new

Fig. 1.Some∆-approximation covering algorithms and deterministic online algorithms. “⋆” = generalized or strength-
ened here.

call monotone covering. Formally, a monotone covering instance is specified by a collectionC ⊂ 2IR+ of constraints
and a non-negative, non-decreasing, submodular2 objective function,c : IR

n
+
→ IR+. The problem is to compute

min{c(x) : x ∈ IR
n
+
, (∀S ∈ C) x ∈ S}. Each constraintS ∈ C must be monotone (i.e., closed upwards), but can be

non-convex.

Monotone covering allows each variable to take values throughoutIR+, but can still model problems with restricted
variable domains. For example, formulate vertex cover asmin{

∑
v cvxv : x ∈ IR

V
+

, (∀(u, w) ∈ E) ⌊xu⌋+⌊xw⌋ ≥ 1}.
Given any 2-approximate solutionx to this formulation (which allowsxu ∈ IR+), rounding eachxu down to its floor
gives a 2-approximate integer solution. Generally, to model problems where each variablexj should take values in
some closed setUj ⊂ IR+ (e.g.Uj = {0, 1} or Uj = ZZ+), one allowsx ∈ IR

n
+

but replaces each monotone constraint
x ∈ S by the monotone constraintx ∈ µ−1(S), whereµ−1(S) = {x : µ(x) ∈ S} andµj(x) = max{z ∈ Uj, z ≤
xj}. If x ∈ IR

n
+

is any∆-approximate solution to the modified problem, thenµ(x) will be a ∆-approximate solution
respecting the variable domains. (For vertex cover eachUj = ZZ+ soµj(x) = ⌊xj⌋.)3

Section 2 describes our greedy∆-approximation algorithm (Alg. 1) for monotone covering. It is roughly the fol-
lowing:consider the constraints in any order; to satisfy a constraint, raise each variable in the constraint continuously
and simultaneously, at rate inversely proportional to its cost. At termination, roundx down toµ(x) if appropriate.

The proof of the approximation ratio is relatively simple: with each step, the cost incurred by the algorithm is at
most∆ times the reduction in theresidual cost— the minimum possible cost to augment the currentx to feasibility.
The algorithm is online (as described below), and admits distributed implementations (see [39]).

The running time depends on the implementation, which is problem specific, but can be fast. Section 2 describes
linear-time implementations for vertex cover, set cover, and (non-metric) facility location. Section 3 describes a nearly
linear-time implementation for covering mixed integer linear programs with variable upper bounds (CMIP). (In con-
trast, the only previous∆-approximation algorithm (for CIP, a slight restriction ofCMIP) uses the ellipsoid method;
its running time is a high-degree polynomial [15].) Section4 describes an extension to aprobabilistic (two-stage)
variant of monotone covering, which naturally has submodular cost. The implementation for this case takes time

2 Formally,c(x)+c(y) ≥ c(x∧y)+c(x∨y), wherex∧y (andx∨y) are the component-wise minimum (and maximum) ofx and
y. Intuitively, there is no positive synergy between the variables: let∂jc(x) denote the rate at which increasingxj would increase
c(x); then, increasingxi (for i 6= j) does not increase∂jc(x). Any separable functionc(x) =

P

j
cj(xj) is submodular, the

productc(x) =
Q

j
xj is not. The maximumc(x) = maxj xj is submodular, the minimumc(x) = minj xj is not.

3 In this setting, if the cost is defined only on the restricted domain, it should be extended toIRn
+ for the algorithm. One way is to

take the cost ofx ∈ IRn
+ to be the expected cost ofx̂, wherex̂j is rounded up or down to its nearest elementsa, b in Uj such that

a ≤ xj ≤ b: takex̂j = b with probability
b−xj

b−a
, otherwise takêxj = a. If a or b doesn’t exist, let̂xj be the one that does.



O(N∆̂ log ∆), whereN is the number of non-zeros in the constraint matrix and∆̂ is the maximum number of con-
straints in which any variable appears. (For comparison, [30] gives aln(n)-approximation algorithm for the special
case of probabilistic set cover; the algorithm is based on submodular-function minimization [45], resulting in high-
degree-polynomial run-time.4)

Section 5 discussesonline monotone covering. Following [13], an online algorithm must maintain a currentx;
as constraintsS ∈ C are revealed one by one, the algorithm must increase coordinates ofx to satisfyx ∈ S. The
algorithm can’t decrease coordinates ofx. An algorithm is∆-competitive ifc(x) is at most∆ times the minimum cost
of any solutionx∗ that meets all the constraints.

The greedy algorithm (Alg. 1) is an online algorithm. Thus, it gives∆-competitive algorithms for online ver-
sions of all of the covering problems mentioned above. It also generalizes many classical deterministic online algo-
rithms for paging and caching, including LRU, FIFO, FWF for paging [48], Balance and Greedy Dual for weighted
caching [16,52], Landlord [53], a.k.a. Greedy Dual Size [14], for file caching, and algorithms for connection caching
[18,19,20,1]. The competitive ratio∆ is the cache size, commonly denotedk, or, in the case of file caching, the maxi-
mum number of files ever held in cache — at mostk or k +1, depending on the specification. This is the best possible
competitive ratio for deterministic online algorithms forthese problems.

Section 5 also illustrates the generality of online monotone covering by describing a(k+d)-competitive algorithm
for a new class ofupgradablecaching problems. In upgradable caching, the online algorithm chooses not only which
pages to evict, but also how to configure and upgrade the relevant hardware components (determining such parameters
as the cache size, CPU, bus, and network speeds, etc.) In the competitive ratio,d is the number of configurable
hardware parameters. We know of no previous results for upgradable caching, although the classical online rent-or-
buy (a.k.a. ski rental) problem [36] and its “multislope” generalization [41] have the basic characteristic (paying a
fixed cost now can reduce many later costs; these are special cases of online monotone covering with∆ = 2).

Section 6 describes a natural randomized generalization ofAlg. 1, with more flexibility in incrementing the vari-
ables. This yields astatelessonline algorithm, generalizing the Harmonick-server algorithm (as it specializes for
paging and weighted caching [47]) and Pitt’s weighted vertex-cover algorithm [4].

Section 7 concludes by discussing the relation of the analysis here to the primal-dual and local-ratio methods. As a
rule of thumb, greedy approximation algorithms can generally be analysed naturally via the primal-dual method, and
sometimes even more naturally via the local-ratio method. The results here extend many primal-dual and local-ratio
results. We conjecture that it is possible, but unwieldy, torecast the analysis here via primal-dual. It can be recast asa
local-ratio analysis, but in a non-traditional form.

For distributed implementations of Alg. 1 running inO(log2 n) rounds (orO(log n) for ∆ = 2), see [39].

We assume throughout that the reader is familiar with classical covering problems [51,34] as well as classical
online paging and caching problems and algorithms [12].

Alternatives to ∆-Approximation: log-Approximations, Randomized Online Algorithms. In spite of extensive
work, no(2 − ε)-approximation algorithm for constantε > 0 is yet known for vertex cover [28,32,7,44,27,29,21,37].
For small∆, it seems that∆-approximation may be the best possible in polynomial time.

As an alternative when∆ is large, many covering problems considered here also admitO(log ∆̂)-approximation
algorithms, wherê∆ is the maximum number of constraints in which any variable occurs. Examples include a greedy
algorithm for set cover [35,42,17] (1975) and greedyO(log maxj

∑
i Aij)-approximation algorithms for CIP with

{0, 1}-variables and integerA [22,24] (1982). Srinivasan gaveO(log ∆̂)-approximation algorithms for general CIP
without variable upper bounds [49,50] (2000); these were extended to CIP with variable upper bounds by Kolliopoulos
et al. [38] (2005). (The latter algorithm solves the CIP relaxation with KC inequalities, then randomly rounds the solu-
tion.) The class ofO(log(∆̂))-approximation algorithms for general CIP is not yet fully understood; these algorithms
could yet be subsumed by a single fast greedy algorithm.

For most online problems here, nodeterministiconline algorithm can be better than∆-competitive. But many on-
line problems admit better-than-∆-competitiverandomizedalgorithms. Examples include rent-or-buy [36,40], paging
[23,43], weighted caching [2,14], connection caching [18], and file caching [3]. Some cases of online monotone cov-
ering (e.g. vertex cover) are unlikely to have better-than-∆-competitive randomized algorithms. It would interestingto
classify which cases admit better-than-∆-competitive randomized online algorithms.

4 [30] also mentions a 2-approximation for probabilistic vertex cover, without details.



greedy algorithm for monotone covering(monotone constraintsC, submodular objectivec) alg. 1
output: feasiblex ∈ S (∀S ∈ C), ∆-approximately minimizingc(x) (see Thm. 1)
1. Letx← 0. . . . ∆ = maxS∈C |vars(S)| is the max # of vars any constraint depends on
2. While∃ S ∈ C such thatx 6∈ S, dostep(x, S) for anyS such thatx 6∈ S.
3. Returnx. . . . or µ(x) in the case of restricted variable domains; see the introduction.

subroutine stepc(x, S): . . . makes progress towards satisfyingx ∈ S.
1. Choose a scalarstep sizeβ ≥ 0. . . . chooseβ subject to restriction in Thm. 1.
2. Forj ∈ vars(S), let x′

j ∈ IR+ ∪ {∞} be the maximum such that raisingxj to x′
j would raisec(x) by at mostβ.

3. Forj ∈ vars(S), let xj ← x′
j . . . . if c is linear, thenx′

j = xj + β/cj for j ∈ vars(S).

2 The Greedy Algorithm for Monotone Covering (Alg. 1)

Fix an instance of monotone covering. Letvars(S) denote the variables inx that constraintx ∈ S depends on, so that
∆ = maxS∈C |vars(S)|.

The algorithm (Alg. 1) starts withx = 0, then repeats the following step until all constraints are satisfied:choose
any unmet constraint and astep sizeβ > 0; for each variablexj that the constraint depends on (j ∈ vars(S)), raise
that variable so as to increase the costc(x) by at mostβ. (The step increases the total cost by at most∆β.)

The algorithm returnsx (or, if variable domains are restricted as described in the introduction,µ(x)).
The algorithm returns a∆-approximation, as long as each step sizeβ is at mostthe minimum cost to optimally

augmentx to satisfyS, that is,min{c(x̂) − c(x) : x̂ ∈ S, x̂ ≥ x}. Denote this costdistancec(x, S). Also, let
residualc(x) be theresidual costof x — the minimum cost to augmentx to full feasibility, i.e.,distancec(x,∩S∈CS).

Theorem 1. For monotone covering, the greedy algorithm (Alg. 1) returns a ∆-approximate solution as long as it
chooses step sizeβ ≤ distancec(x, S) in each step (and eventually terminates).

Proof. First, a rough intuition. Each step starts withx 6∈ S. Since the optimal solutionx∗ is in S andS is monotone,
there must beat least onek ∈ vars(S) such thatxk < x∗

k. By raising allxj for j ∈ vars(S), the algorithm makes
progress “covering” at least that coordinatex∗

k of x∗. Provided the step increasesxk to x′
k ≤ x∗

k, the cost incurred can
be charged to a corresponding portion of the cost ofx∗

k (intuitively, to the cost of the part ofx∗
k in the interval[xk, x′

k];
formally, to thedecrease in the residual costfrom increasingxk, provably at leastβ). Since the step increasesc(x) by
at mostβ∆, and results in a charge toc(x∗) of at leastβ, this proves the∆-approximation.

Here is the formal proof. By inspection (using thatc is submodular) each step of the algorithm increasesc(x) by at
mostβ|vars(S)| ≤ β∆. We show thatresidual(x) decreases by at leastβ, so the invariantc(x)/∆+ residual(x) ≤ opt

holds, proving the theorem.
Let x andx′, respectively, bex before and after a given step. Let feasiblex∗ ≥ x be an optimal augmentation

of x to full feasibility, soc(x∗) − c(x) = residual(x). Let x ∧ y (resp.x ∨ y) denote the component-wise minimum
(resp. maximum) ofx andy. By the submodularity ofc, c(x′) + c(x∗) ≥ c(x′ ∨ x∗) + c(x′ ∧ x∗). (Equality holds ifc
is separable (e.g. linear).)

Rewriting gives[c(x∗)− c(x)]− [c(x′ ∨ x∗)− c(x′)] ≥ c(x′ ∧ x∗)− c(x).
The first bracketed term isresidual(x). The second is at leastresidual(x′), becausex∗ ∨ x′ ≥ x′ is feasible. Thus,

residual(x) − residual(x′) ≥ c(x′ ∧ x∗)− c(x). (1)

To complete the proof, we show the right-hand side of (1) is atleastβ.
Case 1.Supposex′

k < x∗
k for somek ∈ vars(S). (In this case it must be that increasingxk to x′

k costsβ.)
Let y bex with justxk raised tox′

k. Thenc(x′ ∧ x∗) ≥ c(y) = c(x) + β.
Case 2.Otherwisex′ ∧ x∗ ∈ S, becausex∗ ∈ S andx′

j ≥ x∗
j for all j ∈ vars(S). Also x′ ∧ x∗ ≥ x.

Thus, the right-hand side of (1) is at leastdistancec(x, S). By assumption this is at leastβ. ⊓⊔

Choosing the step size,β. In a sense, the algorithm reduces the given problem to a sequence of subproblems, each
of which requires computing a lower bound ondistance(x, S) for the currentx and a given unmet constraintS. To
completely specify the algorithm, one must specify how to chooseβ in each step.

Thm. 1 allowsβ to be small. At a minimum,distance(x, S) > 0 whenx 6∈ S, so one can takeβ to be infinitesimal.
Then Alg. 1 raisesxj for j ∈ vars(S) continuously at rate inversely proportional to∂c(x)/∂xj (at most untilx ∈ S).

Another, generic, choice is to takeβ just large enough to satisfyx ∈ S. This also satisfies the theorem:



subroutine stepsizec(x, S(I, Ai, u, bi)) (for CMIP) alg. 2
1. OrderI = (j1, j2, . . . , jk) by decreasingAij . . . . SoAij1 ≥ Aij2 ≥ · · · ≥ Aijk

.
Let J = J(x, S) contain the minimal prefix ofI such thatx 6∈ S(J, Ai, u, bi).
Let S′ denote the relaxed constraintS(J, Ai, u, bi).

2. LetU = U(x, S) = {j : xj ≥ uj; Aij > 0} contain the variables that have hit their upper bounds.
3. LetβJ = minj∈J−U (1 − xj + ⌊xj⌋)cj be the minimum cost to increase any floored term inS′.
4. LetβJ = minj∈J−U cjb

′
i/Aij , whereb′i is the slack (bi minus the value of the left-hand side ofS′),

be the minimum cost to increase the sum of fractional terms inS′ to satisfyS′.
5. Returnβ = min{βJ , βJ}.

Observation 1 Letβ be the minimum step size so thatstep(x, S) bringsx into S. Thenβ ≤ distancec(x, S).

Thm. 1 can also allowβ to bemorethan large enough to satisfy the constraint. Considermin{x1 + 2x2 : x ∈ S}
whereS = {x : x1 + x2 ≥ 1}. Start withx = 0. Thendistance(x, S) = 1. The theorem allowsβ = 1. A single step
with β = 1 givesx1 = 1 andx2 = 1/2, so thatx1 + x2 = 3/2 > 1.

Generally, one has to chooseβ small enough to satisfy the theorem, but large enough so thatthe algorithm doesn’t
take too many steps. The computational complexity of doing this has to be addressed on a per-application basis.
Consider a simple subset-sum example:min{c · x : x ∈ S} where the single constraintS containsx ≥ 0 such that∑

j cj min(1, ⌊xj⌋) ≥ 1. Computingdistance(0, S) is NP-hard, but it is easy to compute a usefulβ, for example
β = minj:xj<1 cj(1− xj). With this choice, the algorithm will satisfyS within ∆ steps.

As a warm-up, here are linear-time implementations for facility location, set cover, and vertex cover.

Theorem 2. For (non-metric) facility location, set cover, and vertex cover, the greedy∆-approximation algorithm
(Alg. 1) has a linear-time implementation. For facility location∆ is the maximum number of facilities that might serve
any given customer.

Proof. Formulate facility location as minimizing the submodular objective
∑

j fj maxi xij +
∑

ij dijxij subject to,
for each customeri,

∑
j∈N(i)⌊xij⌋ ≥ 1 (wherej ∈ N(i) if customeri can use facilityj).5

The implementation starts with allxij = 0. It considers the customersi in any order. For each it does the following:
let β = minj∈N(i)[dij + fj(1 − maxi′ xi′j)] (the minimum cost to raisexij to 1 for anyj ∈ N(i)). Then, for
eachj ∈ N(i), raisexij by min[β/dij , (β + fj maxi′ xi′j)/(dij + fj)] (just enough to increase the cost byβ). By
maintaining, for each facilityj, maxi′ xi′j , the above can be done in linear time,O(

∑
i |N(i)|).

Vertex cover and set cover are the special cases whendij = 0. ⊓⊔

3 Nearly Linear-Time Implementation for Covering Mixed Int eger Linear Programs

Theorem 3. For CMIP (covering mixed integer linear programs with upperbounds), the greedy algorithm (Alg. 1)
can be implemented to return a∆-approximation inO(N log ∆) time, where∆ is the maximum number of non-zeroes
in any constraint andN is the total number of non-zeroes in the constraint matrix.

Proof (sketch).Fix any CMIP instancemin{c · x : x ∈ IR
n
+
; Ax ≥ b; x ≤ u; xj ∈ ZZ (j ∈ I)}.

Model each constraintAix ≥ bi using a monotone constraintS ∈ C of the form
∑

j∈I

Aij⌊min(xj , uj)⌋+
∑

j∈I

Aij min(xj , uj) ≥ bi S(I, Ai, u, bi)

where setI contains the indexes of the integer variables.
Given such a constraintS and anx 6∈ S, the subroutinestepsize(x, S) (Alg. 2) computes a step sizeβ satisfying

Thm. 1 as follows. LetS′, J , U , βJ , βJ , andβ be as in Alg. 2. That is,S′ = S(J, Ai, u, bi) is the relaxation of
S(I, Ai, u, bi) obtained by relaxing the floors inS (in order of increasingAij ) as much as possible, while maintaining
x 6∈ S′; J ⊆ I contains the indicesj of variables whose floors are not relaxed. Increasingx to satisfyS′ requires (at
least) either: (i) increasing

∑
j∈J−U Aij⌊xj⌋, at cost at leastβJ , or (ii) increasing

∑
j∈J−U Aijxj by at least the slack

b′i of the constraintS′, at cost at leastβJ . Thus,distance(x, S) ≥ distance(x, S′) ≥ min{βJ , βJ} = β. This choice
satisfies Thm. 1, so the algorithm returns a∆-approximate solution.

5 The standard ILP is not a covering ILP due to constraintsxij ≤ yj . The standard reduction to set cover increases∆ exponentially.



Lemma 1. For anyS, Alg. 1 callsstep(x, S) with β = stepsize(x, S) (from Alg. 2) at most2|vars(S)| times.

Proof (sketch).Let j be the index of the variablexj that determinesβ in the algorithm (βJ in case (i) of the previous
proof, orβJ in case (ii)). The step increasesxj by β/cj . This may bringxj to (or above) its upper bounduj . If not,
then, in case (i), the left-hand side ofS′ increases by at leastAij , which, by the minimality ofJ(x) and the ordering
of I, is enough to satisfyS′. Or, in case (ii), the left-hand side increases by the slackb′i (also enough to satisfyS′).
Thus the step either the increases the setU(x) or satisfiesS′, increasing the setJ(x). ⊓⊔

The naive implementations ofstepsize() and step() run in timeO(|vars(S)|) (after theAij ’s within each con-
straint are sorted in preprocessing). By the lemma, with this implementation, the total time for the algorithm is
O(

∑
S |vars(S)|2) ≤ O(N∆). By a careful heap-based implementation, this time can be reduced toO(N log ∆)

(proof omitted). ⊓⊔

4 (Two-Stage) Probabilistic Monotone Covering

An instance ofprobabilisticmonotone covering is specified by an instance(c, C) of monotone covering, along with
activationprobabilitiespS for each constraintS ∈ C and a non-decreasing, submodularfirst-stageobjectiveW . The
first stage requires the algorithm to commit to a vectorxS ∈ S for eachS ∈ C. In the second stage, the algorithm must
pay to satisfy the activated constraints, where each constraint S is independently activated with probabilitypS . The
algorithm paysc(x̂), wherex̂ is the minimal vector such that̂x ≥ xS for each activeS (x̂j = max{xS

j : S active}).
The problem is to choose the first-stage vectors to minimize the first-stage costW (xS : S ∈ C) plus theexpected
second-stage cost,E[c(x̂)]. This (expected) cost is submodular as long asc is.

Observation 2 Probabilistic monotone covering reduces to monotone covering.

Probabilistic CMIP is the special case whereW is linear and the pair(c, C) define a CMIP.
For example, consider a two-stage probabilistic facilities location problem specified by first-stage costsf1, d1, an

activation probabilitypi for each customeri, and second-stage costsf2, c2. The algorithm assigns to each customer
i a facility j(i) ∈ N(i) (those that can servei), by settingxij(i) = 1 (satisfying constraints

∑
j∈N(i)⌊xij⌋ ≥ 1),

then paying the first-stage cost
∑

j f1
j maxi xij +

∑
ij d1

ijxij . Then, each customeri is activated with probabilitypi.
Facilities assigned to activated customers are opened by setting x̂ij = 1 if xij = 1 andi is active. The algorithm then
pays the second-stage cost

∑
j f2

j maxi x̂ij +
∑

ij d2
ij x̂ij . The algorithm should minimize its total expected payment.

The degree∆ = maxi |N(i)| is the maximum number of facilities that any given customer is eligible to use.

Theorem 4. For probabilistic CMIP,
(a) The greedy∆-approximation algorithm can be implemented to run inO(N∆̂ log ∆) time, where∆̂ is the

maximum number of constraints per variable andN =
∑

S∈C |vars(S)| is the input size.
(b) Whenp = 1, it can be implemented to run in timeO(N log ∆) (generalizes CMIP and facilities location).

Proof (sketch).Let X = (xS)S∈C be the matrix formed by the first-stage vectors. Let random variable x̂ be as
described in the problem definition (x̂j = max{x̂S

j : S active}), so the problem is to chooseX subject toxS ∈ S for
eachS to minimizeC(X) = W ·X + E[c · x̂]. This function is submodular, increasing, and continuous in X .

To satisfy Thm. 1, the subroutinestep(X, S) must compute the step sizeβ to be at mostdistance(X, S) (the
minimum possible increase inC(X) required to satisfyS). For a givenX andS, havestep(X, S) computeβ as
follows. For a givenX , the rate at which increasingxS

j would increaseC(X) is

c′j = wS
j + cj Pr[xS

j = x̂j ] = wS
j + cjpS

∏
{1− pR : xR

j > xS
j , j ∈ vars(R)}.

This rate does not change untilxS
j reachestj = min{xR

j : xR
j > xS

j , j ∈ vars(R)}.
Takeβ = min(βt, stepsizec′(x

S , S)), whereβt = min{(tj − xS
j )c′j : j ∈ vars(S)} is the minimum cost to bring

anyxS
j to its threshold, andstepsize() is the subroutine from Section 3, using the (linear) cost vector c′ defined above.

This β is a valid lower bound ondistance(X, S), becauseβt is a lower bound on the cost to bring anyxS
j to its next

threshold, whilestepsizec′(x
S , S) is a lower bound on the cost to satisfyS without bringing anyxS

j to its threshold.

If step(X, S) uses thisβ, the number of steps to satisfyS is at mostO(|vars(S)|∆̂). Each step either (i) makes
somexS

j reach its next threshold (and eachxS
j crosses at most̂∆ thresholds), or (ii) increases the number of “floored”



variables or increases the number of variables at their upper bounds (which by the analysis ofstepsize() from Sec-
tion 3, can happen at most2|vars(S)| times). Thus, the total number of steps isO(

∑
S |vars(S)|∆̂), that is,O(N∆̂).

(Implementation details needed to achieve amortized timeO(log ∆) per step are omitted.) This completes the proof
sketch for part (a).

For part (b) of the theorem, note that in this case the productin the equation forCS
j (X) is 1 if xS

j = maxR xR
j

and 0 otherwise. Each variable has at most one threshold to reach, so the number of calls tostep(X, S) is reduced to
O(|vars(S)|). This allows an implementation in total timeO(N log ∆). ⊓⊔

5 Online Monotone Covering and Caching with Upgradable Hardware

Recall that in online monotone covering, each constraintS ∈ C is revealed one at a time; an online algorithm must
raise variables inx to bringx into the givenS, without knowing the remaining constraints. Alg. 1 (with, say,step(x, S)
takingβ just large enough to bringx ∈ S; see Observation 1) can do this, so it yields a∆-competitive online algo-
rithm.6

Corollary 1. The greedy algorithm (Alg. 1) gives a∆-competitive online monotone covering algorithm.

Example: generalized connection caching.As discussed in the introduction (following the formulation of weighted
caching as online set cover from [2]) this result naturally generalizes a number of known results for paging, weighted
caching, file caching, connection caching, etc. To give justone example, consider connection caching. A request
sequencer is given online. Each requestrt = (ut, wt) activates the connection(ut, wt) (if not already activated)
between nodesut andwt. If either node has more thank active connections, then one of them other thanrt (sayrs)
must be closed at costcost(rs). Model this problem as follows. Let variablext indicate whether connectionrt is closed
before the next request tort after timet, so the total cost is

∑
t cost(rt)xt. For each nodeu and each timet, for any

(k + 1)-subsetQ ⊆ {rs : s ≤ t; u ∈ rs}, at least one connectionrs ∈ Q − {rt} (wheres is the time of the most
recent request tors) must have been closed, so the following constraint7 is met:

∑
rs∈Q−{rt}

⌊xs⌋ ≥ 1.
Corollary 1 gives the followingk-competitive algorithm for online connection caching. When a connection re-

quest(u, w) occurs at timet, the connection is activated andxt is set to 0. If a node, sayu, has more thank active
connections, the currentx violates the constraint above for the setQ containingu’s active connections. Nodeu ap-
plies thestep() subroutine for this constraint: it raisesxs for all the connectionsrs ∈ Q − {rt} at rate1/cost(rs)
simultaneously, until somexs reaches1. It closes any such connectionrs.
Remark on k/(k − h + 1)-competitiveness.The classic ratio ofk/(k − h + 1) (versusopt with cache sizeh ≤ k)
can be reproduced in such a setting as follows. For any setQ as described above,opt must meet the stronger constraint∑

rs∈Q−{rt}
⌊xs⌋ ≥ k − h + 1. In this scenario, the proof of Thm. 1 extends to show a ratio of k/(k − h + 1) (use

that the variables are{0, 1}, so there are at leastk − h + 1 variablesxj such thatxj < x∗
j ).

Upgradable online problems. Standard online caching problems model only the caching strategy. In practice other
parameters (e.g., the size of the cache, the speed of the CPU,bus, network, etc.) must also be chosen well. Inupgrad-
ablecaching, the algorithm chooses not only the caching strategy, but also the hardware configuration. The hardware
configuration is assumed to be determined by how much has beenspent on each of somed components. The configu-
ration is modeled by a vectory ∈ IR

d
+
, whereyi has been spent so far on componenti.

In response to each request, the algorithm can upgrade the hardware by increasing theyi’s. Then, if the requested
item rt is not in cache, it is brought in. Then items in cache must be selected for eviction until the setQ of items
remaining in cache is cachable, as determined by some specified predicatecachablet(Q, y). The cost of evicting an
itemrs is specified by a functioncost(rs, y).

The cachable() predicate andcost() function can be specified arbitrarily, subject to the following restrictions.
Predicatecachablet(Q, y) must be non-decreasing iny (upgrading the hardware doesn’t cause a cachable set to become
uncachable) and non-increasing withQ (any subset of a cachable set is cachable). The functioncost(rs, y) must be

6 If the cost function is linear, in responding toS this algorithm needs to knowS and the values of variables inS and their cost
coefficients. For general submodular costs, the algorithm may need to know not onlyS, but all variables’ values and the whole
cost function.

7 This presentation assumes that the last request must stay incache. If not, don’t subtract{rt} from Q in the constraints. The
competitive ratio goes fromk to k + 1.



non-increasing iny (upgrading the hardware doesn’t increase the eviction costof any item). To model (standard,
non-upgradable) file caching, takecachablet(Q, y) to be true if

∑
rs∈Q size(rs) ≤ k.

In general, the adversary is free to constrain the cache contents at each stept in anyway that depends ont and the
hardware configuration, as long as upgrading the cache or removing items does not make a cachable set uncachable.
Likewise, the cost of evicting any item can be determined by the adversary inanyway that depends on the item and
the hardware configuration, as long as upgrading the configuration does not increase any eviction cost. This gives a
great deal of flexibility in comparison to the standard model. For example, the adversary could insist (among other
constraints) that no set containing both of two (presumablyconflicting) files can be cached. Or, upgrading the hardware
could reduce the eviction cost of some items arbitrarily, even to zero.

The optimal cost is achieved by choosing an optimal hardwareconfiguration at the start, then handling all caching
decisions optimally. To be competitive, an algorithm must also choose a good hardware configuration: an algorithm
is ∆-competitive if its total cost (eviction cost plus final hardware configuration cost,

∑
i yi) is at most∆ times the

optimum. (Naturally, when the algorithm evicts an item, it pays the eviction cost in itscurrenthardware configuration.
Later upgrades do not reduce earlier costs.)

Next we describe how to model the upgradable problem via online monotone covering with degree∆ = k + d,
wherek is the maximum number of files ever held in cache andd is the number of hardware components. This gives
a simple(k + d)-competitive online algorithm for upgradable caching.

Theorem 5. Upgradable caching has a(d + k)-competitive online algorithm, whered is the number of upgradable
components andk is the maximum number of files that can be held in the cache.

Proof (sketch).Let variableyi for i = 1, . . . , d denote the amount invested in componenti, so that the vectory gives
the current hardware configuration. Letxt be the cost (if any) incurred for evicting thetth requested itemrt at any
time before its next request. The total final cost is

∑
i yi +

∑
t xt. At time t, if some subsetQ ⊆ {rs : s ≤ t} of the

items is not cachable, then at least one itemrs ∈ Q− {rt} (wheres is the time of the most recent request tors) must
have been evicted, so the following constraint is met:

cachablet(Q, y) or
∑

rs∈Q−{rt}
⌊xs/cost(rs, y)⌋ ≥ 1. St(Q)

The restrictions oncachable andcost ensure that this constraint is monotone inx andy.
The greedy algorithm initializesy = 0, x = 0 andQ = ∅. It caches the subsetQ of requested itemsrs with

xs < cost(rs, y). To respond to requestrt (which addsrt to the cache if not present), the algorithm raises eachyi

and eachxs for rs in Q− {rt} at unit rate. It evicts anyrs with xs ≥ cost(rs, y), until cachablet(Q, y) holds for the
cached setQ. The degree8 ∆ is the maximum size ofQ− {rt}, plusd for y. ⊓⊔

This result generalizes easily to “upgradable” monotone caching, where investing in somed components can relax
constraints or reduce costs.

Restricting groups of items (such as segments within files).Thehttp protocol allows retrieval of segments of
files. To model this in this setting, consider each filef as a group of arbitrary segments (e.g. bytes or pages). Letxt

be thenumber of segmentsof file rt evicted before its next request. Letc(xt) be the cost to retrieve the cheapestxt

segments of the file, so the total cost is
∑

t c(xt). Then, for example, to say that the cache can hold at mostk segments
total, add constraints of the form (for appropriate subsetsQ of requests)

∑
s∈Q size(rs) − ⌊xs⌋ ≤ k (wheresize(rs)

is the number of segments inrs). When the greedy algorithm increasesxs to x′
s, the online algorithm evicts segments

⌊xs⌋+ 1 through⌊x′
s⌋ of file rs (assuming segments are ordered by cheapest retrieval).

Generally, any monotone restriction that is a function of just thenumberof segments evicted from each file (as
opposed to which specific segments are evicted), can be modeled. (For example,“evict at least 3 segments ofrs or
at least 4 segments fromrt” : ⌊xs/3⌋ + ⌊xt/4⌋ ≥ 1.) Although the caching constraints constrain file segments,the
competitive ratio will be the maximum number of files (as opposed to segments) referred to in any constraint.

8 The algorithm enforces justsomeconstraintsSt(Q); ∆ is defined w.r.t. the problem defined by those constraints.



subroutine rstepc(x, S) alg. 3
1. Fix an arbitrary probabilitypj ∈ [0, 1] for eachj ∈ vars(S). . . . taking eachpj = 1 gives Alg. 1
2. Choose a scalar step sizeβ ≥ 0.
3. Forj ∈ vars(S) with pj > 0, let Xj be the max. s.t. raisingxj to Xj would raisec(x) by≤ β/pj.
4. Forj ∈ vars(S) with pj > 0, with probabilitypj, let xj ← Xj . . . . these events can be dependent if desired!

subroutine stateless-rstepc(x, S, U): · · · do rstep, and keep eachxj in its (countable) domainUj · · · alg. 4
1. Forj ∈ vars(S), let Xj = min{z ∈ Uj ; z > xj} (or Xj = xj if the minimum is undefined).
2. Letαj be the increase inc(x) that would result from increasing justxj to Xj .
3. Do rstepc(x, S), choosing anyβ ∈ (0, minj αj ] andpj = β/αj (or pj = 0 if Xj = xj).

6 Randomized Variant of Alg. 1 and Stateless Online Algorithm

This section describes a randomized, online generalization of Alg. 1. It has more flexibility than Alg. 1 in how it
increases variables. This can be useful, for example, in distributed settings, in dealing with numerical precision issues,
and in obtainingstatelessonline algorithms (an example follows).

The algorithm is Alg. 1, modified to call subroutinerstepc(x, S) (shown in Alg. 3) instead ofstepc(x, S). The
subroutine has more flexibility in incrementingx. Its step-size requirement is a bit more complicated.

Theorem 6. For monotone covering suppose the randomized greedy algorithm terminates, and, in each step,β is at
mostmin{E[c(x ↑p x̂)− c(x)] : x̂ ≥ x; x̂ ∈ S}, wherex ↑p x̂ is a random vector obtained fromx by raisingxj to x̂j

with probabilitypj for eachj ∈ vars(S). Then the algorithm returns a∆-approximate solution in expectation.

If the objectivec(x) is linear, the required upper bound onβ above simplifies todistancec′(x, S) wherec′j = pjcj .

Proof (sketch).We claim that, in each step, the expected increase inc(x) is at most∆ times the expected decrease in
residual(x). This implies (by the optional stopping theorem) thatE[c(xfinal)] ≤ ∆× residual(0), proving the theorem.

Fix any step starting with a givenx. Let (r.v.) x′ be x after the step. Fix feasiblex∗ ≥ x s.t. residual(x) =
c(x∗) − c(x). Inequality (1) holds; to prove the claim we showEx′ [c(x′ ∧ x∗) − c(x)] ≥ β. Sincex∗ ≥ x and
x′ = x ↑p X , this is equivalent toE[c(x ↑p X)− c(x)] ≥ β.
(Case 1.) SupposeXk < x∗

k for somek ∈ vars(S) with pk > 0. Let y be obtained fromx by raising justxk to Xk.
Then with probabilitypk or more,c(x ↑p X) ≥ c(y) ≥ c(x) + β/pk. Thus the expectation is at leastβ.
(Case 2.) Otherwise,Xj ≥ x∗

j for all j with pj > 0. ThenE[c(x ↑p X) − c(x)] ≥ E[c(x ↑p x∗) − c(x)]. Since
x∗ ≥ x andx∗ ∈ S, this is at leastβ by the assumption onβ. ⊓⊔

A stateless online algorithm.As described in the introduction, when the variables have restricted domains (xj ∈ Uj),
Alg. 1 constructsx and then “rounds”x down toµ(x). In the online setting, Alg. 1 maintainsx as constraints are
revealed; meanwhile, it usesµ(x) as its current online solution. In this sense, it is notstateless. A stateless algorithm
can maintain only one online solution, each variable of which should stay in its restricted domain.

Next we use Thm. 6 to give a stateless online algorithm. The algorithm generalizes the Harmonick-server algo-
rithm as it specializes for paging and caching [47], and Pitt’s weighted vertex cover algorithm [4]. Given an unsatisfied
constraintS, the algorithm increases eachxj for j ∈ vars(S) to its next largest allowed value, with probability in-
versely proportional to the resulting increase in cost. (The algorithm can be tuned to increase just one, or more than
one,xj . It repeats the step until the constraint is satisfied.)

Formally, the stateless algorithm is the randomized algorithm from Thm. 6, but with the subroutinerstepc(x, S)
replaced bystateless-rstepc(x, S, U) (in Alg. 4), which executesrstepc(x, S) in a particular way. (A¡ technicality: if
0 6∈ Uj , thenxj should be initialized tomin Uj instead of 0. This does not affect the approximation ratio.)

Theorem 7. For monotone covering with discrete variable domains as described above, there is a stateless random-
ized online∆-approximation algorithm.

Proof (sketch).By inspectionstateless-rstepc(x, S, U) maintains eachxj ∈ Uj .
We show thatstateless-rstepc(x, S, U) performsrstepc(x, S) in a way that satisfies the requirement onβ in

Thm. 6. Letx̂ be as in the proof of Thm. 6, with the added restriction that each x̂j ∈ Uj . Sincex̂ ∈ S butx 6∈ S, there
is ak ∈ vars(S) with x̂k > xk. Sincex̂k ∈ Uk, the choice ofXk ensureŝxk ≥ Xk. Let y be obtained fromx by
raisingxk to Xk. Then,E[c(x ↑p x̂)− c(x)] ≥ pk[c(y)− c(x)] = pkαk = β, satisfying Thm. 6. ⊓⊔



7 Relation to Primal-Dual and Local-Ratio Methods

Primal-Dual. Here we speculate about how Thm. 1 might be cast as a primal-dual analysis. Given a vectorv, consider
its “shadow”s(v) = {x : ∃jxj ≥ vj}. Any monotone setS is the intersection of the shadows of its boundary points:
S =

⋂
v∈∂S s(v). Thus, any monotone covering instance can be recast to use only shadow sets for constraints. Any

shadow sets(v) is of the forms(v) = {x :
∑

j⌊xj/vj⌋ ≥ 1}, a form similar to that of the CMIP constraints
S(I, Ai, u, bi, d) in Section 3. We conjecture that the Knapsack Cover (KC) inequalities from [15] for CIP can be
generalized to give valid inequalities with integrality gap ∆ for constraints of this form. (Indeed, the result in Section3
easily extends to handle such constraints.) This could yield an appropriate relaxation on which a primal-dual analysis
could be based.

For even simple instances, generating a∆-approximate primal-dual pair for the greedy algorithm here requires a
“tail-recursive” dual solution implicit in some local-ratio analyses [9], as opposed to the typical forward-greedy dual
solution.9 Even if the above program (extended to non-linear cost functions!) can be carried out, it seems likely to lead
to a less intuitive proof than that of Thm. 1.

Local-Ratio. The local-ratio method has most commonly been applied to problems with variablesxj taking values
in {0, 1} and with linear objective functionc · x (see [7,4,9,5]; for one exception, see [8]). In these cases,each step
of the algorithm is typically interpreted as modifying the problem by repeatedlyreducingselected objective function
weightscj by someβ. At the end, thex, wherexj is raised from 0 to 1 ifcj = 0, gives the solution. At each step, the
weights to lower are chosen so that the change must decrease OPT’s cost by at leastβ, while increasing the cost for
the algorithm’s solution by at most∆β. This guarantees a∆-approximate solution.

In contrast, recall that Alg. 1 raises selectedxj ’s fractionally byβ/cj . At the end,xj is rounded down to⌊xj⌋.
Each step costsβ∆, but reduces theresidual costby at leastβ.

For problems with variablesxj taking values in{0, 1} and with linear objective functionc · x, Alg. 1 can be given
the following straightforward local-ratio interpretation. Instead of raisingxj by β/cj , reducecj by β. At the end,
instead of settingxj to ⌊xj⌋, setxj = 1 if cj = 0. With this reinterpretation, a standard local-ratio analysis applies.

To understand the relation between the two interpretations, let c′ denote the modified weights in the above rein-
terpretation. The reinterpreted algorithm maintains the following invariants: Each modified weightc′j stays equal to
cj(1 − xj) (for c andx in the original interpretation; this is the cost to raisexj the rest of the way to 1). Also, the
residual costresidual(x) in the original interpretation equals (in the reinterpreted algorithm) the minimum cost to solve
the original problem but with weightsc′.

This local-ratio reinterpretation is straightforward andintuitive for problems with{0, 1} variables and a linear
objective. But for problems whose variables take values in more general domains, it does not extend cleanly. For
example, suppose a variablexj takes values in{0, 1, 2, . . . , u}. The algorithm cannot afford to reduce the weightcj ,
and then, at termination, setxj to u for j with cj = 0 (this can lose a factor ofu in the approximation). Instead, one has
to reinterpret the modified weightc′j as a vector of weightsc′j : {1, . . . , u} → IR+ wherec′j(i) is the cost to raisexj

from max{xj , i− 1} to min{xj , i} (initially c′j(i) = cj). When the original algorithm lowersxj by β/cj , reinterpret
this as leavingxj at zero, but lowering the non-zeroc′j(i) with minimumi by β. At the end, takexj to be the maximum
i such thatc′j(i) = 0. We show next that this approach is doable (if less intuitive) for monotone covering.

At a high level, the local-ratio method requires only that the objective be decomposed into “locally approximable”
objectives. The common weight-reduction presentation of local ratio described above gives one decomposition, but
others have been used. A local-ratio analysis for an integerprogramming problem with non-{0, 1} variable domains,
based on something likeresidual(x), is used in [8]. Here, the following decomposition (different than [8]) works:

Lemma 2. Any algorithm returns a∆-approximate solutionx provided there exist{ct} andr such that

(a) for anyx, c(x) = c(0) + r(x) +
∑T

t=1 ct(x),
(b) for all t, and anyx and feasiblex∗, ct(x) ≤ ct(x∗)∆,
(c) the algorithm returnsx such thatr(x) = 0.

9 For example, considermin{x1 + x2 + x3 : x1 + x2 ≥ 1, x1 + x3 ≥ 2}. If the greedy algorithm does the constraints ineither
order and choosesβ maximally, it gives a solution of cost 4. In the dualmax{y12 + 2y13 : y12 + y13 ≤ 1}, the only way
to generate a solution of cost 2 is to sety13 = 1 andy12 = 0. If the primal constraint fory12 is considered first,y12 cannot
be assigned a non-zero value. Instead, one should consider the dual variables for constraints for which steps were done,in the
reverseorder of those steps, raising each until a constraint is tight.



Proof. Let x∗ be an optimal solution. Applying properties (a) and (c), then (b), then (a),

c(x) = c(0) +
∑T

t=1 ct(x) ≤ c(0)∆ +
∑T

t=1 ct(x∗)∆ + r(x∗)∆ = c(x∗)∆. ⊓⊔

Next we describe how to use the proof of Thm. 1 (based on residual cost) to generate such a decomposition.
Let distance(x, y) = c(x ∨ y)− c(x) (the cost to raisex to dominatey).
For anyx, definect(x) = distance(xt−1, x)− distance(xt, x), wherext is Alg. 1’s x aftert calls tostep().
Definer(x) = distance(xT , x), wherexT is the algorithm’s solution.
For linearc notect(x) =

∑
j cj

∣∣[0, xj ] ∩ [xt−1
j , xt

j ]
∣∣, the cost forx “between”xt−1 andxt.

Lemma 3. Thesect andr have properties (a-c) from Lemma 2, so the algorithm gives a∆-approximation.

Proof. Part (a) holds because the sum in (a) telescopes todistance(0, x)− distance(xT , x) = c(x) − c(0)− r(x).
Part (c) holds because the algorithm returnsxT , andr(xT ) = distance(xT , xT ) = 0.
For (b), consider thetth call tostep(). Let β be as in that call.
The triangle inequality holds fordistance(), so, for anŷx, ct(x̂) ≤ distancec(x

t−1, xt) = c(xt)− c(xt−1).
As proved in the proof of Thm. 1,c(xt)− c(xt−1) is at mostβ∆.
Also in the proof of Thm. 1, it is argued thatβ ≤ distance(xt−1,∩S∈CS)− distance(xt,∩S∈CS).
By inspection that argument holds for anyx∗ ∈ ∩S∈CS, givingβ ≤ distance(xt−1, x∗)− distance(xt, x∗).
The latter quantity isct(x∗). Thus,ct(x̂) ≤ β∆ ≤ ct(x∗)∆. ⊓⊔
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