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Abstract

Given matricesA andB and vectorsa, b, c andd, all with non-negative entries, we consider the problem of
computing min{cT x : x ∈ Zn+, Ax�a, Bx�b, x�d}. We give a bicriteria-approximation algorithm that, given
� ∈ (0,1], finds a solution of costO(ln(m)/�2) times optimal, meeting the covering constraints (Ax�a) and
multiplicity constraints (x�d), and satisfyingBx�(1+ �)b + �, where� is the vector of row sums�i = ∑

jBij .
Heremdenotes the number of rows ofA.
This gives anO(lnm)-approximation algorithm for CIP—minimum-cost covering integer programs with mul-

tiplicity constraints, i.e., the special case when there are no packing constraintsBx�b. The previous best approx-
imation ratio has beenO(ln(maxj

∑
iAij )) since 1982. CIP contains the set cover problem as a special case, so

O(lnm)-approximation is the best possible unless P= NP.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We consider integer covering/packing programs of the following form:
GivenP = (A,B, a, b, c, d) with A ∈ R

m×n+ , B ∈ R
r×n+ , a ∈ Rm+, b ∈ Rr+, andc, d ∈ Rn+, compute

OPT= min{cT x : x ∈ Zn+, Ax�a, Bx�b, x�d}.
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The constraintsAx�a, Bx�b, andx�d are called, respectively,covering, packing, andmultiplicity
constraints.
Thewidth,W , is min{ai/Aij : Aij > 0}. Note that it is easy to reduce any instance to an equivalent

instance with widthWat least 1—simply change eachAij to min{Aij , ai}. This does not change the set
of integer solutions.
Thedilation, �, is the maximum number of covering constraints that any variable appears in.
A �-approximatesolution is a solution meeting all constraints and having cost at most� times the

optimum.A�-approximation algorithmis a polynomial-time algorithm that produces only�-approximate
solutions. The quantity� is called theapproximation ratioof the algorithm.
Perhaps the most well-known problem of the form above is set cover: given a collection of sets

with costs, choose a minimum-cost collection of sets such that every element is in a chosen set. In the
corresponding formulationAij ∈ {0,1}, andai = 1, for i = 1, . . . , m, j = 1, . . . , n. This problem
admits a simple(1+ lnm)-approximation algorithm[3,9,12], and noo(lnm)-approximation is possible
in polynomial time, unless P= NP [19].
Other special cases include natural generalizations of set cover, includingsetmulticoverwhereai ∈ Z+

andmultiset multicoverwhere in additionAij ∈ Z+ [24]. In these problems, multiplicity constraints limit
the number of times a given set or multiset can be chosen. In facility-location problems (wherexj
represents the number of facilities opened at a sitej), multiplicity constraints are used to limit the number
of facilities opened at a site. The motivation may be capacity limits, security goals, or fault-tolerance (to
ensure that when a site is breached or damaged, only a limited number of opened facilities should be
affected) [14,23].
We give bicriteria approximation algorithms. For anyε ∈ (0,1], our first algorithm finds a solution̂x

such thatAx̂�a, Bx̂�(1+ε)b+�, x̂��(1+ε)d
,where� is thevector of sumsof rowsofB:�i = ∑
j Bij .

The costcT x̂ is O(1+ ln(1+ �)/(W �2)) times the optimum of the standard linear programming (LP)
relaxation. Note that the standard LP relaxation has an arbitrarily large integrality gap if multiplicity
constraints are to be respected. Our second algorithm finds a solutionx̂ of costO(1+ ln(1+ �)/�2) times
the optimum, satisfyingAx̂�a, Bx̂�(1+ ε)b + �, x̂�d, thus meeting the multiplicity constraints.
These algorithms are appropriate for the case whenB has small row sums (for example, a multiset

multicover problem with restrictions such as “from the 5 setss1, s2, . . . , s5, only 100 copies can be
chosen’’) and for theCIP (covering integer programming) problem, formed by instances without packing
constraints (no “Bx�b’’). CIP is well-studied in its own right. For this problem, our second algorithm
is anO(ln(1 + �))-approximation algorithm. This is the first approximation algorithm for CIP whose
approximation ratio is logarithmic in the input size. Fig. 1 has a table of known approximation algorithms
for CIP.1

We use here results for another special case—CIP without multiplicity constraints. This problem,
which we denote CIP∞, has a long line of research, but we use only the following results. Randomized
rounding easily yields anO(1+ ln(m)/W +√

ln(m)/W)-approximation algorithm, whereW, called the
width of the problem instance, is max{ai/Aij : Aij > 0}. Srinivasan gives anO(1 + ln(1 + �)/W +√
ln(1+ �)/W)-approximation algorithm, where�, called thedilation of the instance, is the maximum

1 In the table,H(t) is the harmonic series witht terms. It is well-known thatH(t) = ln t + �(1). To give some intuition for
the Fisher–Wolsey bound consider for example the case where eachcj = 1 and the minimum non-zero entry ofA is 1. In this
case the bound is asymptotically equal to Dobson’s.
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Fig. 1. Approximation algorithms for the CIP problem, min{cT x : x ∈ Zn+, Ax�a, x�d}. The width W is
min{ai/Aij : Aij > 0}. Without loss of generality,W �1. The dilation� is the maximum number of constraints any vari-
able appears in. The algorithms presented in this paper generalize to allow packing constraints (Bx�b); for the general case the
approximate solution̂x satisfiesBx̂�(1+ ε)b + � where�i = ∑

j Bij .

number of constraints that any variable occurs in[21,22]. Neither of these algorithms return solutions
that are suitable for CIP, as the solutions can violate the multiplicity constraints by a large factor.
A preliminary version of this paper appeared in [11]. Other work on covering problems includes

[4,6,15,18,21,22,26]. See [8] for a survey.
The outline of this paper is as follows. In Section 2 we present our first main algorithm that violates

the multiplicity constraints by a(1+ ε) factor. In Section 3 we discuss the integrality gap of the standard
LP formulation and present our second main algorithm which meets the multiplicity constraints. We
conclude in Section 4 with some open questions.

2. Rounding LP relaxations of CIP∞ and CIP

Theapproximation ratios in thispaperareprovenwith respect to various linearprogramming relaxations
of the problems. Our first main result follows from careful consideration of the relation between various
forms of the problem and their standard relaxations.
Webegin by describing a standard approximation algorithm forCIP∞. Given an instanceP = (A, a, c)

of CIP∞, the standard linear programming (LP) relaxation isFOPT∞ = min{cT x : x ∈ Rn+, Ax�a}. We
call feasible solutions to this LPfractionalsolutions toP. In contrast, we call actual solutions toP integer
solutions.
The valueFOPT∞ can be computed in polynomial time (using linear programming) and is a lower bound

on the optimum valueOPT. The algorithm computes an optimal solutionx̄ (of costFOPT∞) to the fractional
relaxation, then rounds̄x to an integer solution̂x using the following randomized rounding scheme:
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Lemma 1 (folklore). Given aCIP∞ instanceP = (A, a, c) and fractional solutionx̄, let L = 1 +
max{4 ln(2m)/W,√4 ln(2m)/W }. With positive probability, the following rounding scheme produces
an integer solution̂x of cost at most2L times the cost of̄x:

1. Letx′ = Lx̄.
2. Randomly roundx′ to x̂:

let x̂j = �x′
j
 with probabilityx′

j − �x′
j�, and x̂j = �x′

j� otherwise.
The proof is standard and we postpone it until the appendix. In what follows, the floor (ceiling) of a

vectort denotes the vector where theith coordinate is the floor (ceiling) ofti .

Corollary 2. Given aCIP∞ instanceP = (A, a, c) and fractional solution̄x, letL = 1+max{4 ln(2m)
/W,

√
4 ln(2m)/W }. One can compute in polynomial time an integer solutionx̂��Lx̄
 of cost at most

2L times the cost of̄x.

The corollary follows because the rounding scheme can be derandomized using the method of condi-
tional probabilities[5,16,20]. The rounding scheme above has been improved by Srinivasan, who shows
the following:

Theorem 3(Srinivasan[21] ). Given aCIP∞ instanceP = (A, a, c) and fractional solution̄x, let � be
the maximum number of constraints in which any variable appears. For someL = 1+O(ln(1+�)/W +√
ln(1+ �)/W), one can compute in polynomial time an integer solutionx̂��Lx̄
 of costO(L) times

the cost of̄x.

Since the optimal fractional solution̄x can be computed in polynomial time, Srinivasan immediately
obtains anO(L)-approximation algorithm for CIP∞.

2.1. Extending to CIP using1/K-granularity

A natural idea would be to extend the rounding schemes above for CIP∞ to handle CIP problems too.
Of course, to do this, we need to figure out how to handle the multiplicity constraints. The natural LP
relaxation of CIP is

FOPT= min{cT x : x ∈ Rn+, Ax�a, x�d}.
The first idea would be to compute the optimal fractional solutionx̄, then use the rounding scheme from
Lemma1 or Theorem 3 to find an integer solutionx̂ approximatinḡx. But those rounding schemes return
x̂ such thatx̂ ≈ Lx̄. So, x̂ would violate the multiplicity constraints by a factor ofL. But L can be as
large as�(lnm), and we would prefer to not violate the multiplicity constraints so much.
To work around this, given a CIPP = (A, a, c, d), we do compute an optimal fractional solutionx̄, but

then, instead of computing an integer solutionx̂ that approximates̄x, we first compute a fractional solution
x̄′ that is what we call(1/K)-granular—meaning that each coordinate ofx̄′ is an integermultiple of 1/K.
We do this for a sufficiently large integerK, so that the(1/K)-granular solution̄x′ hasx̄′ ≈ (1+ �)x̄ (and
satisfies all covering constraints). To get the final integer solutionx̂, we roundx̄′ up deterministically by
rounding each coordinate up to its nearest integer. Thenx̂ = �x̄′
��(1+ �)x̄
. A little thought shows
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that this last rounding step increases the cost by at most a factor ofK, so that the cost of̂x isO(K) times
the cost ofx̄.
The next lemma captures the exact tradeoff between granularity and approximation of the cost (and,

implicitly, multiplicity constraints). The lemma is a straightforward consequence of the previous results.

Lemma 4. Fix any integerK > 0. Given aCIP∞ instance(A, a, c) and fractional solutionx̄, let �
be the maximum number of constraints in which any variable appears. For someL = 1 + O(ln(1 +
�)/KW +√

ln(1+ �)/KW), one can compute in polynomial time a(1/K)-granular solutionx′′��Lx̄

of costO(L) times the cost of̄x.

Proof. Here is the algorithm. The input isP = (A, a, c), x̄, andK.

1. Construct CIP∞ instanceP ′ = (A,Ka, c). Let x̄′ = Kx̄.
2. Let x̂′ be the integer solution obtained by applying Theorem3 toP ′ andx̄′.
3. Returnx′′ = x̂′/K.

Step 2 is well defined as̄x′ is a fractional solution toP ′.
By Theorem3, x̂′��LKx̄
 is an integer solution toP ′ of costO(KL) times the cost of̄x, with

L = 1+O(ln(1+ �)/KW + √
ln(1+ �)/KW).

Thus (usingx′′ = x̂′/K), x′′��Lx̄
 is a(1/K)-granular solution toP of costO(L) times the cost of
x̄. (We also use here�LKx̄
/K��Lx̄
 for integerK.) �

Note: In Step 2 of the algorithm in the proof, Lemma 1 can be used instead of Theorem 3, in which
case the 1+ �’s in the definition ofL (in the lemma) are replaced bym’s.
In the remainder of the section, bya (�, �)-bicriteria approximate solutionfor a CIP, we mean an

integer solutionx̂ that satisfiesAx�a andx���d
, with cost at most� times the optimumFOPT. By
a (�, �)-bicriteria approximation algorithm, we mean a polynomial-time algorithm that returns(�, �)-
approximate solutions.
Our first algorithm works as follows. It first computes a(1/K)-granular solutionx̄′ (whereK ≈

ln(1+ �)/(Wε2)) approximating the optimal fractional solutionx̄. Then it gets an integer solution̂x by
deterministically rounding each coordinate ofx̄′ up to the nearest integer. It returnsx̂.
Here is a sketch of the analysis. For this choice ofK, x̄′ = (1+O(ε))x̄, so thatx̂ nearly satisfies the

multiplicity constraints:x̂��(1+O(ε))x̄
. Sincex̄′ meets the covering constraints, so doesx̂. Finally,
x̄′ has cost 1+ O(ε) times the cost of̄x, and, crucially, sincēx′ is (1/K)-granular,deterministically
roundingx̄′ up increases the cost by at most a factor of K. So the final integer solution̂x has cost at most
K times the cost of̄x′, i.e.,O(K) times the cost of the original fractional solutionx̄.
The next lemma gives a detailed statement of the result and its proof.

Lemma 5. Fix any ε ∈ (0,1]. Given a CIP instance(A, a, c, d) and fractional solutionx̄, one can
compute in polynomial time an(O(1+ ln(1+�)/(Wε2)),1+ε)-bicriteria approximate solution̂x��(1+
ε)x̄
.
Proof. Here is the algorithm. The input isP = (A, a, c, d), x̄, andε.

1. TakeK = �ln(1+ �)/Wε2
.
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2. Obtain a(1/K)-granular solution̄x′ by applying Lemma4 to the CIP∞ instanceP ′ = (A, a, c) with
fractional solutionx̄.

3. Returnx̂ = �x̄′
.
By Lemma4, for someL = 1+O(ln(1+ �)/KW + √

ln(1+ �)/KW), we have that̄x′��Lx̄
 and that
x̄′ has costO(L) times the cost of̄x.
It follows that x̂��Lx̄
 and thatx̂′ has costO(KL) times the cost of̄x. (The latter becausēx′ is

(1/K)-granular, which implies that the cost ofx̂ is at mostK times the cost of̄x′.) Since (by the choice
of K) L = 1+O(ε), this implies the result. �

Remark 1. The result of the lemma is best possible in the following sense. For any finite�, a (�,1)-
approximate solution w.r.t.FOPTis impossible because of the arbitrarily large integrality gap (see Section
3 for an example). It is alsowell-known that the integrality gap forFOPT∞ is�(lnm) for the special case of
set cover where arbitrarily large values for the variables are allowed. Hence for anyl, a(�, l)-approximate
solution for a CIP with� = o(lnm) is also impossible.

Now we can state our first main result—an approximation algorithm for any general integer cover-
ing/packing problem with multiplicity constraints:

OPT= min{cT x : x ∈ Zn+, Ax�a, Bx�b, x�d}.
The algorithm returns a solution that meets the covering constraints, approximatelymeets themultiplicity
constraints (and hence approximately meets the packing constraints), and has costO(K) times the cost
FOPTof the fractional solution.

Theorem 6(First main result). Letε ∈ (0,1],andan integer covering/packingprogramOPT= min{cT x :
x ∈ Zn+, Ax�a, Bx�b, x�d},with fractional solutionx̄,be given. Let�i = ∑

j Bij .Then one can com-
pute in polynomial time an̂x ∈ Zn+ such that

1. cT x̂�O(1+ ln(1+ �)/(Wε2)) cT x̄,
2. Ax̂�Ax̄�a,
3. x̂��(1+ ε)x̄
��(1+ ε)d
, and
4. Bx̂�(1+ ε)x̄ + ��(1+ ε)b + �.

Proof. Here is the algorithm. The input isP = (A,B, a, b, c, d), x̄, andε.

1. Letx̂ be theapproximate solution obtainedbyapplying Lemma5 to theCIP instanceP ′ = (A, a, c, d),
and fractional solution̄x.

2. Returnx̂.

Properties 1–3 of̂x follow immediately from Lemma5. To see that property 4 holds, note that, from
x̂��(1+ ε)x̄
 it follows that x̂j < (1+ ε)x̄j + 1, which implies(Bx̂)i�(B(1+ ε)x̄)i + �i . �

The optimal fractional solution̄x to the LP relaxation can be computed in polynomial time, so Theorem
6 immediately implies that the desired approximate solutionx̂ (having properties 1–4 from the theorem
and costO(1+ ln(1+ �))FOPT) can be computed in polynomial time.
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Remark 2. Note that for a CIP problem with maxj dj = O(1), by takingε = 1/(2maxj dj ), the above
theorem implies that one can find in polynomial time an integer solution having costO(1 + ln(1 +
�)/W)FOPTandx̂j �dj + 1. That is, the multiplicity constraints can be met within anadditive1.

3. Meeting the multiplicity constraints

Given a fractional solution̄x, it is not in general possible to find an integer solutionx̂ meeting the
covering and multiplicity constraints exactly and having costO(ln(1+ �)) times the cost of̄x. To see
this, fix � > 0 arbitrarily small, and consider the following CIP, which is a simple instance of Minimum
Knapsack:

min{x2 : x ∈ Z2+, (1− �)x1 + x2�1, x1�1}.
The optimal fractional solution has cost�, whereas the optimal integer solution has cost 1. This example
demonstrates that the integrality gapcanbearbitrarily large ifmultiplicity constraints are tobe respected.2

However, notice that the two constraints ((1− �)x1 + x2�1 andx1�1) imply a third:x2��. This third
constraint, and the observation thatx2 ∈ Z imply �x2��.
The constraint “�x2��’’ above is avalid inequalityfor the CIP, meaning that it holds for all feasible

integer solutions. Adding a valid inequality to the integer program (IP) does not change the space of
solutions or the value of the optimal solution. But adding the constraint can strengthen the linear pro-
gramming relaxation by ruling out some fractional solutions, and this can give a better bound onOPT. For
example, adding the constraint to the example above, and then solving the LP relaxation with the added
constraint, gives a lower bound of 1 onOPT.
For the general problem, reasoning as above leads to a class of valid inequalities called Knapsack

Cover (KC) inequalities. These inequalities generalize valid inequalities used for CIP problems with
Aij ∈ {0,1} in [1,7,25]. They were also used by Carr et al. [2].
Our next algorithm begins by finding a fractional solutionx̄ to the LP relaxation with a number of KC

inequalities added. It then roundsx̄ to an integer solution̂x as follows: forj such thatx̄j �dj/(1+ ε),
it “pins’’ x̂j = dj . (This increases the cost by at most 1+ ε.) To set the remaininĝxj ’s, it rounds the
correspondinḡxj ’s using the randomized rounding algorithm from (Lemma 1) or Srinivasan’s algorithm
(Theorem 3). Since each non-pinnedx̄j is at mostdj/(1+ �), this rounding can be done so thatx̂j is at
mostdj .
An astute reader may ask whether this process will work if started with a fractional solutionx̄ to the

LP relaxationwithoutKC inequalities. If so, this would yield a faster algorithm. After we describe and
analyze the algorithm sketched above, we discuss this question.

3.1. The KC inequalities

Fix a problem instanceP = (A,B, a, b, c, d). For each constraint(Ax)i�ai and any subsetF of the
j’s (corresponding toxj ’s that we imagine pinning), defineaFi

.= max{0, ai −∑
j∈F Aijdj }. Define also

AFij
.= min{Aij , aFi } for j ∈ F andAFij

.= 0 for j /∈ F . In words,aFi is the residual covering requirement

2 A similar example appears in[2]. In [18] the integrality gap was erroneously claimed to beH(maxn
j=1

∑m
i=1 Aij ).
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of the ith constraint if all variables inF were to be set to their upper bounds, andAFij is Aij , possibly
lowered to ensure the width is at least 1. (In the small example above, we knew that, forx2 ∈ Z+, the
inequalityx2�� held if and only if the inequality�x2�� did, sowe replaced the former constraint with the
latter.) The KC inequalities for a setF ⊂ N areAFx � aF . TheLP-KC relaxationofP is to findx ∈ Rn+
minimizing cT x subject toAx�a, Bx�b, x�d, and subject to the KC inequalities for allF ⊂ N .
We are not aware of an algorithm that solves this relaxation exactly in polynomial time. Carr et al.

[2] define the following type of solutions, which are adequate for our purpose. For� > 1, call a vector
x a �-relaxed solutionto LP-KC if it has cost at most the fractional optimum of LP-KC and satisfies (i)
Ax�a, (ii) Bx�b, (iii) x�d and (iv) the KC inequalities for the setF� = {j : xj �dj/�}. The following
theorem follows from the results in [2] together with the properties of the ellipsoid method (see, e.g.,
[13]).

Theorem 7(Carr et al. [2] , Lovász[13] ). SupposeP = (A,B, a, b, c, d) has rational coefficients. For
any constant� > 1,a �-relaxed solution to the LP-KC relaxation ofP can be found in polynomial time.

For the sake of completenesswe sketch the idea behind the theorem.When the ellipsoidmethod queries
the separation oracle with a pointx, the oracle returns a separating hyperplane corresponding either to a
constraint of the standard LP, or to one that is a valid KC inequality for the set of variables inx that are
high (in this particularx). In the end, look at the set of hyperplanes the separation oracle has passed to
the ellipsoid method. That set defines a polytope which is a relaxation of the LP-KC polytope.
The input to our next algorithm is an instanceP = (A,B, a, b, c, d) of the general problem and an

� ∈ (0,1]. The algorithm can also be viewed as a reduction of the problem of finding a�-approximate
solution to a CIP to finding a(�, �)-bicriteria approximate solution for appropriate�.

1. Setd ′ := �d�.
2. Let x̄ be a(1+ ε)-relaxed solution to the LP-KC relaxation ofP = (A,B, a, b, c, d ′).
3. LetF = {j : x̄j �d ′

j /(1+ ε)}.
4. Define CIPP ′ = (A′, a′, c, d ′′) by settingA′ := AF , a′ := aF , and defining fractional solution̄x′

andd ′′ as follows:
5. Forj ∈ F let x̄′

j = d ′′
j = 0. Forj /∈ F let x̄′

j = d ′′
j = x̄j .

6. Find integer solution̂x′ toP ′ by applying Theorem6 with fractional solution̄x′ and the givenε.
7. Let x̂j = dj for j ∈ F andx̂j = x̂′

j for j /∈ F . Returnx̂.

Theorem 8(Second main result). Givenε ∈ (0,1], and an integer covering/packing programOPT =
min{cT x : x ∈ Zn+, Ax�a, Bx�b, x�d}, let�i = ∑

j Bij .Thealgorithmabovecomputes inpolynomial
time anx̂ ∈ Zn+ such that

1. cT x̂�O(1+ ln(1+ �)/(Wε2))OPT,
2. Ax̂�a,
3. x̂�d, and
4. Bx̂�(1+ ε)b + �.

Proof. Note that the cost of̄x is a lower bound onOPT. Observe also that Step 1 does not change the
space of integer solutions.
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First we bound the cost of the solution̂x′ (to the restricted problemP ′). Sincex̄ satisfies the KC
inequalities for the specific setF, the definitions ofF,A′, b′, andd ′′ ensure that̄x′ is a fractional solution
of P ′. By definition ofAF , the width ofP ′ is at least 1. Thus, the cost ofx̂′ isO(ln(1+ �)) times the
cost ofx̄′, which is alsoO(ln(1+ �)) times the cost of̄x, and thusO(ln(1+ �)OPT).
Next we bound the cost of the final solutionx̂. The cost ofx̂ is at most 1+ � times the cost of̄x, plus

the cost ofx̂′. Thus, the cost of̂x isO(ln(1+ �)OPT).
Next we verify that̂x does not exceed themultiplicity constraints. This is clear for the pinned variables:

x̂j = dj for j ∈ F . For the other variables (j /∈ F ), we havex̂j = x̂′
j ��(1+ ε)d ′′

j
 = �(1+ ε)x̄j
 <
�(1+ ε)d ′

j /(1+ ε)
�dj .
Finally,Bx̂�(1+ ε)b + � follows fromBx̄�b andx̂��(1+ �)x̄
. �

Corollary 9. The integrality gap of theLP-KC relaxation for CIP isO(ln(1+ �)).

3.2. Remarks on the necessity of the LP-KC relaxation

Consider for simplicity thatd ′ = d. The algorithm starts with a (1+ ε)-relaxed solution̄x to LP-KC,
“pins’’ x̂j = dj for j with x̄j �dj/(1+ ε), then uses an existing bicriteria approximation algorithm to
set the remaining variables. A natural question is whether the KC inequalities are necessary. Would it be
enough to start with a fractional solutionx̄ to the standard LP relaxation of the CIP?
If we do this, the analysis of the algorithm (as it stands) fails becausex̄′ may no longer be a feasible

solution toP ′. (Indeed, the problemP ′ may be infeasible withd ′′ defined as it is, or even withd ′′
j =

dj/(1+ ε). To see this, consider the simple example at the start of the section.) This breaks the argument
that bounds the cost of̂x.
Perhaps the first fix that comes tomind is tomodify thealgorithm to takeA′

ij = Aij insteadofA′
ij = AFij

for j /∈ F . But this does not work because the resultingP ′ can have width less than 1, worsening the
approximation ratio.
Perhaps the second fix that comes to mind is to modify the algorithm to, say, setd ′′

j = dj for j /∈ F ,
then solveP ′ from scratch to obtain a (new) optimal fractional solutionx̄′′. In Step 7, the algorithmwould
pass that new fractional solution̄x′′ to Theorem6 (instead ofx̄′) to computex̂′. Since the cost of̄x′′ is
still a lower bound onOPT, it would seem that we can again bound the cost ofx̂ as desired.
The problem with this fix is that the new fractional solutionx̄′′ can havēx′′

j > dj/(1+ ε) for j /∈ F .
Indeed, it can havēx′′

j = dj for j /∈ F . Thus, the rounded solution̂x′ from Theorem 6 could violate the
multiplicity constraints.
The natural work-around is to augmentF by adding any suchj toF, then start over by returning to step

4 with the newF. But, as this process may repeat many times, it is not clear how one might relate the cost
of all the pinned variables toOPT.

4. Open questions

Can one find in polynomial time an integer solution for CIP with an additive 1 violation of the multi-
plicity constraints and logarithmic cost guarantee with respect to the standard LP optimum (without KC
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inequalities)? We have shown this is possible for the case maxj dj = O(1). Is there a faster (possibly
greedy?)O(lnm)-approximation algorithm for CIP?
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Appendix

Proof of Lemma 1. We prove that̂x is a 2L-approximate solution with positive probability. It suffices
to prove that the probability that any of the following events happens is less than 1:

(1) cT x̂ > 2LcT x̄, or (2) (∃i) (Ax̂)iW/ai < W.

Note thatE[x̂] = x′ = Lx̄, so that by linearity of expectation

E[cT x̂] = LE[cT x̄] = L× (FOPT∞)

and

(∀i) E[(Ax̂)iW/ai] = L(Ax̄)iW/ai�LW.

By the Markov bound, the probability of (1) is at most 1/2.
Note that eacĥxj can be thought of as a sum of independent random variables in[0,1] (where we

consider the fixed part,�x′
j�, to be the sum of�x′

j� variables each taking the value 1 with probability 1).
Thus (by the choice ofW) (Ax̂)iW/ai = ∑

j Aij x̂jW/ai is also a sum of independent random variables
in [0,1]. By a standard Chernoff bound[17],

Pr[ (Ax̂)iW/ai�(1− ε)LW ] < exp(−ε2LW/2).
Takingε such that(1− ε)L = 1, for the choice ofL in the rounding scheme, exp(−ε2LW/2)�1/2m.
Thus, the above bound implies

Pr[ (Ax̂)iW/ai�W ] < 1/2m.

Thus, by the naive union bound, the probability that (1) or (2) occurs is less than 1/2+m/2m = 1.
We have proven that the randomized rounding procedure returns a 2L-approximate solution with

positive probability. �
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