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Abstract

Given matricesA andB and vectors, b, ¢c andd, all with non-negative entries, we consider the problem of
computing miric’x : x € 7%, Ax>a, Bx<b, x <d}. We give a bicriteria-approximation algorithm that, given
¢ € (0,1], finds a solution of cosO (In(m)/¢?) times optimal, meeting the covering constraints: a) and
multiplicity constraints £ <d), and satisfyingBx < (1 + ¢)b + §, whereg is the vector of row sumg; = Zj Bij.
Herem denotes the number of rows af

This gives anO (In m)-approximation algorithm for CIP—minimum-cost covering integer programs with mul-
tiplicity constraints, i.e., the special case when there are no packing consBaiqts. The previous best approx-
imation ratio has bee® (In(max; ) ; A;;)) since 1982. CIP contains the set cover problem as a special case, so
O (In m)-approximation is the best possible unless RP.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We consider integer covering/packing programs of the following form:
GivenP = (A, B,a,b,c,d)ywith A e R, B e R\, a € R, b € R, andc,d € R, compute
opt=min{c’x : x € 7, Ax >a, Bx<b, x <d).
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The constraintsix >a, Bx <b, andx <d are called, respectivelgovering packing andmultiplicity
constraints.

Thewidth, W, is min{a; /A;; : A;; > 0}. Note that it is easy to reduce any instance to an equivalent
instance with widthW at least 1—simply change eadh; to min{A;;, a;}. This does not change the set
of integer solutions.

Thedilation, o, is the maximum number of covering constraints that any variable appears in.

A p-approximatesolution is a solution meeting all constraints and having cost at jastes the
optimum. Ap-approximation algorithnis a polynomial-time algorithm that produces optapproximate
solutions. The quantity is called theapproximation ratioof the algorithm.

Perhaps the most well-known problem of the form above is set cover: given a collection of sets
with costs, choose a minimum-cost collection of sets such that every element is in a chosen set. In the
corresponding formulatiod;; € {0, 1}, anda; = 1,fori = 1,...,m, j = 1,...,n. This problem
admits a simpl€l + In m)-approximation algorithni3,9,12], and n@(In m)-approximation is possible
in polynomial time, unless B NP [19].

Other special cases include natural generalizations of set cover, inchedimuylticovewhereq; € 7
andmultiset multicovewhere in additiom;; € 7 [24]. In these problems, multiplicity constraints limit
the number of times a given set or multiset can be chosen. In facility-location problems (where
represents the number of facilities opened at g kitaultiplicity constraints are used to limit the number
of facilities opened at a site. The motivation may be capacity limits, security goals, or fault-tolerance (to
ensure that when a site is breached or damaged, only a limited number of opened facilities should be
affected) [14,23].

We give bicriteria approximation algorithms. For anyg (0, 1], our first algorithm finds a solutiaf
suchthati >a, BX <(1+e)b+p, X <[(1+e)d], wheregisthe vector of sums of rows 8f f; = >, Bij.

The costc” % is O(1 + In(1 4 «)/(We?)) times the optimum of the standard linear programming (LP)
relaxation. Note that the standard LP relaxation has an arbitrarily large integrality gap if multiplicity
constraints are to be respected. Our second algorithm finds a solufaostO (1 + In(1+ «) /&) times

the optimum, satisfyingix >a, Bx <(1+ ¢)b + f, x <d, thus meeting the multiplicity constraints.

These algorithms are appropriate for the case wBiéas small row sums (for example, a multiset
multicover problem with restrictions such as “from the 5 sats», ..., s5, only 100 copies can be
chosen”) and for th€lP (covering integer programming) problem, formed by instances without packing
constraints (no Bx <b”). CIP is well-studied in its own right. For this problem, our second algorithm
is an O (In(1 + «))-approximation algorithm. This is the first approximation algorithm for CIP whose
approxignation ratio is logarithmic in the input size. Fig. 1 has a table of known approximation algorithms
for CIP.

We use here results for another special case—CIP without multiplicity constraints. This problem,
which we denote CIR, has a long line of research, but we use only the following results. Randomized
rounding easily yields a® (1 + In(m)/ W + /In(m)/ W)-approximation algorithm, whe&, called the
width of the problem instance, is max/A;; : A;; > 0}. Srinivasan gives a® (1 + In(1 4 o)/ W +
J/In(1+ «)/ W)-approximation algorithm, wherg called thedilation of the instance, is the maximum

1in the table,H (¢) is the harmonic series withterms. It is well-known thati (r) = In + @(1). To give some intuition for
the Fisher—Wolsey bound consider for example the case wherecgaeti and the minimum non-zero entry Afis 1. In this
case the bound is asymptotically equal to Dobson’s.
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Who Restriction |Cost approximation | Multiplicity
on CIP ratio guarantee
Fisher None 1+ In(B1/B2) r<d
Wolsey [6] b1 = max; 3; Aij/c;
Ba = min{%’lmu >
0}
Dobson [4] Aij €2y H(max?_, 37, Ajj) z<d
Rajagopalan A;; €{0,1} | O(In(1 + a)) z<d
Vazirani [18]
Srinivasan ci=1 O(1 +1In(m)/(We?)) |z < [(1+e)d]
Teo [23]
Kolliopoulos [10] || A;; € O(In(1 + a)) z < [12d]
{O’ d’j }
for some ¢;
Srinivasan None Ol+In(l+a)/W) |z < OQ1 +
[21,22] In(1+a)/W)d
This paper None O(1+In(1+e)/(We?)) | z < [(1+€)d]
This paper None O(In(1 + @) /€?) z<d

Fig. 1. Approximation algorithms for the CIP problem, miﬁx DX € Zf@, Ax>a,x<d}. The width W is
min{a; /A;; : A;; > 0}. Without loss of generalityW > 1. The dilations is the maximum number of constraints any vari-
able appears in. The algorithms presented in this paper generalize to allow packing con#&xaiis$, for the general case the
approximate solutiont satisfiesB <(1+ )b + f wherep; =3 _; B;;.

number of constraints that any variable occur$2h,22]. Neither of these algorithms return solutions
that are suitable for CIP, as the solutions can violate the multiplicity constraints by a large factor.

A preliminary version of this paper appeared in [11]. Other work on covering problems includes
[4,6,15,18,21,22,26]. See [8] for a survey.

The outline of this paper is as follows. In Section 2 we present our first main algorithm that violates
the multiplicity constraints by &l + ¢) factor. In Section 3 we discuss the integrality gap of the standard
LP formulation and present our second main algorithm which meets the multiplicity constraints. We
conclude in Section 4 with some open guestions.

2. Rounding LP relaxations of CIP,, and CIP

The approximation ratios in this paper are proven with respect to various linear programming relaxations
of the problems. Our first main result follows from careful consideration of the relation between various
forms of the problem and their standard relaxations.

We begin by describing a standard approximation algorithm fog CIBiven an instanc® = (A, a, ¢)
of CIP4, the standard linear programming (LP) relaxationdst,, = min{c’x : x € R}, Ax>a}. We
call feasible solutions to this LiPactional solutions taP. In contrast, we call actual solutions®integer
solutions.

The valuerorTy, can be computed in polynomial time (using linear programming) and is a lower bound
on the optimum valueprT. The algorithm computes an optimal solutibfof costrorTy,) to the fractional
relaxation, then roundsto an integer solutioft using the following randomized rounding scheme:
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Lemma 1 (folklore). Given aCIP,, instance? = (A, a, ¢) and fractional solutiony, let L = 1 +
max{4In(2m)/ W, /4In(2m)/ W}. With positive probabilitythe following rounding scheme produces
an integer solutiorx of cost at mos2L times the cost of:

1. Letx’ = Lx.
2. Randomly round’ to x:
letx; = rx;.] with probabilityx} — Lx}J, andx; = Lx;.J otherwise.

The proof is standard and we postpone it until the appendix. In what follows, the floor (ceiling) of a
vectort denotes the vector where thh coordinate is the floor (ceiling) of.

Corollary 2. Given aClPy, instanceP = (A, a, ¢) and fractional solutiorx, let L = 1+ max{4 In(2m)
/W, J/4In(2m)/W}. One can compute in polynomial time an integer solutian[ Lx7] of cost at most
2L times the cost of.

The corollary follows because the rounding scheme can be derandomized using the method of condi-
tional probabilitied5,16,20]. The rounding scheme above has been improved by Srinivasan, who shows
the following:

Theorem 3(Srinivasan21]). Given aCIP, instanceP = (A, a, ¢) and fractional solutiorx, let « be
the maximum number of constraints in which any variable appears. For somé + O (In(1+«)/ W +
J/In(IT+ «)/W), one can compute in polynomial time an integer solutien[Lx] of costO (L) times
the cost ofx.

Since the optimal fractional solutioncan be computed in polynomial time, Srinivasan immediately
obtains anO (L)-approximation algorithm for CIR.

2.1. Extending to CIP usinty K -granularity

A natural idea would be to extend the rounding schemes above fgr @ Randle CIP problems too.
Of course, to do this, we need to figure out how to handle the multiplicity constraints. The natural LP
relaxation of CIP is

ForT=min{c’x : x € R, Ax >a, x<d}.

The first idea would be to compute the optimal fractional solufiptihen use the rounding scheme from
Lemmal or Theorem 3 to find an integer soluti®mpproximatingr. But those rounding schemes return
X such thatt ~ Lx. So,x would violate the multiplicity constraints by a factor bof But L can be as
large ax2(Inm), and we would prefer to not violate the multiplicity constraints so much.

To work around this, givena CIP = (A, q, ¢, d), we do compute an optimal fractional solutiorbut
then, instead of computing an integer soluticthat approximates, we first compute a fractional solution
x’ that is what we cal{1/ K )-granular—meaning that each coordinateidis an integer multiple of AK .
We do this for a sufficiently large integir, so that theé1/K)-granular solutiorx” hasx’ ~ (1+¢)x (and
satisfies all covering constraints). To get the final integer solttjore roundx’ up deterministically by
rounding each coordinate up to its nearest integer. ’hen[x']<[(1+ ¢)x]. A little thought shows
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that this last rounding step increases the cost by at most a fadtgisofthat the cost of is O (K) times
the cost ofx.

The next lemma captures the exact tradeoff between granularity and approximation of the cost (and,
implicitly, multiplicity constraints). The lemma is a straightforward consequence of the previous results.

Lemma 4. Fix any integerK > 0. Given aCIP,, instance(A, «, ¢) and fractional solutionx, let «
be the maximum number of constraints in which any variable appears. For Bomel + O(In(1 +
«)/KW +4/In(1+ «)/K W), one can compute in polynomial timg} K )-granular solutionx” < [Lx1]
of costO (L) times the cost of.

Proof. Here is the algorithm. The input 8 = (A, a, ¢), X, andK.

1. Construct CIR, instanceP’ = (A, Ka, ¢). Letx’ = K.
2. Letx’ be the integer solution obtained by applying Theo®ta P’ andx’.
3. Returnx” = x'/K.

Step 2 is well defined as ' is a fractional solution t@’.

By Theorem3, x'<[LKx] is an integer solution t@’ of cost O(K L) times the cost of, with
L=1+0(In1+0)/KW + /In(A+ o) /KW).

Thus (usingt” = X'/K), x” <[Lx] is a(1/K)-granular solution t& of costO (L) times the cost of
x. (We also use herfL K x1/K <[Lx] for integerK.) O

Note In Step 2 of the algorithm in the proof, Lemma 1 can be used instead of Theorem 3, in which
case the } «'s in the definition oflL (in the lemma) are replaced Inys.

In the remainder of the section, lay(p, £)-bicriteria approximate solutiorior a CIP, we mean an
integer solutiont that satisfiesAx >a andx <[£d], with cost at mosp times the optimunropt. By
a (p, £)-bicriteria approximation algorithmwe mean a polynomial-time algorithm that retups?)-
approximate solutions.

Our first algorithm works as follows. It first computes(® K)-granular solutiont’ (where K ~
In(1 + o)/(We?)) approximating the optimal fractional solutian Then it gets an integer solutignby
deterministically rounding each coordinatexdfup to the nearest integer. It returiis

Here is a sketch of the analysis. For this choic&pf’ = (1 + O(¢))x, so thatt nearly satisfies the
multiplicity constraintsx <[(1+ O(¢))x]. Sincex’ meets the covering constraints, so doeFinally,
x’ has cost B O(e) times the cost ok, and, crucially, sinc&’ is (1/K)-granular,deterministically
roundingx’ up increases the cost by at most a factor o8¢ the final integer solutiafihas cost at most
K times the cost of’, i.e., O (K) times the cost of the original fractional soluti@n

The next lemma gives a detailed statement of the result and its proof.

Lemma 5. Fix anye € (0, 1]. Given a CIP instancé€A, a, ¢, d) and fractional solutiont, one can
compute in polynomial time & (1+In(1+a)/(We2)), 1+ ¢)-bicriteria approximate solutioft < [ (1+
&)x].

Proof. Here is the algorithm. The input® = (A, a, ¢, d), x, ande.

1. TakeK = [In(1+ )/ We?].
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2. Obtain a1/ K)-granular solutiork’ by applying Lemmat to the CIR, instanceP’ = (A, a, ¢) with
fractional solution.
3. Returnx = [x].

By Lemmad4, forsomeL = 14+ O(In(1+«)/KW + /In(1+ «)/K W), we have that’ < [Lx] and that
x’ has cos (L) times the cost of.

It follows thatx <[Lx] and thatt’ has costO(K L) times the cost of. (The latter becaus#’ is
(1/K)-granular, which implies that the cost ofis at mosK times the cost of’.) Since (by the choice
of K) L = 1+ O(e), this implies the result. O

Remark 1. The result of the lemma is best possible in the following sense. For any finét&p, 1)-
approximate solution w.r.topTis impossible because of the arbitrarily large integrality gap (see Section
3 foran example). Itis also well-known that the integrality gapforT,, is Q(In m) for the special case of

set cover where arbitrarily large values for the variables are allowed. Hence fhtapy!)-approximate
solution for a CIP withp = o(Inm) is also impossible.

Now we can state our first main result—an approximation algorithm for any general integer cover-
ing/packing problem with multiplicity constraints:

opT=min{c x : x € 7", Ax>a, Bx<b, x<d).

The algorithm returns a solution that meets the covering constraints, approximately meets the multiplicity
constraints (and hence approximately meets the packing constraints), and hasKopsimes the cost
FopTOf the fractional solution.

Theorem 6 (First main resul). Lete e (0, 1], and aninteger covering/packing programr = min{c’ x :
x € 7%, Ax>a, Bx<b, x <d}, with fractional solutiont, be given. Le; = . ; B;;. Then one can com-
pute in polynomial time afl € 7’} such that

1. c"2<O0@+In(L+a)/(We?) Tk,
2. A >AX>a,

3. x<[(1+e)x1<[(1+¢)d], and

4. Bx<(A+e)x +p<(d+e)b+ .

Proof. Here is the algorithm. The input® = (A, B,a, b, ¢, d), x, ande.

1. Letx bethe approximate solution obtained by applying Lemdriwthe CIP instancB’ = (A, a, ¢, d),
and fractional solutiorx.
2. Returnx.

Properties 1-3 of follow immediately from Lemma. To see that property 4 holds, note that, from
X<[(1+¢)x] itfollows thatx; < (14 ¢)x; 4+ 1, which implies(Bx); <(B(1+ &)x); + ;. O

The optimal fractional solutiof to the LP relaxation can be computed in polynomial time, so Theorem
6 immediately implies that the desired approximate solutighaving properties 1-4 from the theorem
and costO (1 + In(1 + «))FopT) can be computed in polynomial time.
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Remark 2. Note that for a CIP problem with maxd; = O(1), by takings = 1/(2max; d;), the above
theorem implies that one can find in polynomial time an integer solution having@dst+ In(1 +
«)/ W)ropTandx; <d; + 1. That is, the multiplicity constraints can be met withinaaiuitive 1.

3. Meeting the multiplicity constraints

Given a fractional solutior, it is not in general possible to find an integer solutiomeeting the
covering and multiplicity constraints exactly and having c0sin(1 + «)) times the cost ok. To see
this, fix 6 > 0 arbitrarily small, and consider the following CIP, which is a simple instance of Minimum
Knapsack:

min{xz : x € 72, A—-0)x1+x2>1, x1<1}.

The optimal fractional solution has castwhereas the optimal integer solution has cost 1. This example
demonstrates that the integrality gap can be arbitrarily large if multiplicity constraints are to be respected.
However, notice that the two constrain{d ¢ 5)x1 + x2>1 andx1 <1) imply a third:x > . This third
constraint, and the observation thate 7 imply dx2> 4.

The constraint x> > ¢ above is avalid inequalityfor the CIP, meaning that it holds for all feasible
integer solutions. Adding a valid inequality to the integer program (IP) does not change the space of
solutions or the value of the optimal solution. But adding the constraint can strengthen the linear pro-
gramming relaxation by ruling out some fractional solutions, and this can give a better board Bar
example, adding the constraint to the example above, and then solving the LP relaxation with the added
constraint, gives a lower bound of 1 onT.

For the general problem, reasoning as above leads to a class of valid inequalities called Knapsack
Cover (KC) inequalities. These inequalities generalize valid inequalities used for CIP problems with
A;; €1{0,1}in[1,7,25]. They were also used by Carr et al. [2].

Our next algorithm begins by finding a fractional solutioto the LP relaxation with a number of KC
inequalities added. It then roundisto an integer solution as follows: forj such thatx; >d; /(1 + ¢),
it “pins” x; = d;. (This increases the cost by at most-%.) To set the remaining;’s, it rounds the
corresponding ;'s using the randomized rounding algorithm from (Lemma 1) or Srinivasan’s algorithm
(Theorem 3). Since each non-pinnedis at mostd; /(1 + ¢), this rounding can be done so tHatis at
mostd;.

An astute reader may ask whether this process will work if started with a fractional satutiiotine
LP relaxationwithoutKC inequalities. If so, this would yield a faster algorithm. After we describe and
analyze the algorithm sketched above, we discuss this question.

3.1. The KC inequalities
Fix a problem instanc® = (A, B, a, b, ¢, d). For each constrair{idAx); >a; and any subsdt of the

j's (corresponding ta;’s that we imagine pinning), defing” = max0, a; — >_jer Aijdj}. Define also
Af; = min{A;j,af }forj € F andAl?; = 0forj ¢ F.Inwords,a[ is the residual covering requirement

2 A similar example appears [&]. In [18] the integrality gap was erroneously claimed tolLI)(zma>(j’.:l YA,
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of theith constraint if all variables ifr were to be set to their upper bounds, actﬁi is A;;, possibly
lowered to ensure the width is at least 1. (In the small example above, we knew that,dor ., the
inequalityx, > ¢ held if and only if the inequalityx, > 6 did, so we replaced the former constraint with the
latter.) The KC inequalities for a sét c N areAfx > af. TheLP-KC relaxationof P is to findx e R’}
minimizing ¢’ x subject toAx >a, Bx <b, x <d, and subject to the KC inequalities for &lc N.

We are not aware of an algorithm that solves this relaxation exactly in polynomial time. Carr et al.
[2] define the following type of solutions, which are adequate for our purpose. Bot, call a vector
x a i-relaxed solutiorto LP-KC if it has cost at most the fractional optimum of LP-KC and satisfies (i)
Ax >a, (i) Bx <b, (iii) x <d and (iv) the KC inequalities for the sé&}, = {; : x; >d;/2}. The following
theorem follows from the results in [2] together with the properties of the ellipsoid method (see, e.g.,
[13]).

Theorem 7(Carr et al.[2], LovasZ13]). Supposé® = (A, B, a, b, c, d) has rational coefficients. For
any constant > 1, a A-relaxed solution to the LP-KC relaxation &f can be found in polynomial time

For the sake of completeness we sketch the idea behind the theorem. When the ellipsoid method querie
the separation oracle with a pointthe oracle returns a separating hyperplane corresponding either to a
constraint of the standard LP, or to one that is a valid KC inequality for the set of variabddélsahare
high (in this particular). In the end, look at the set of hyperplanes the separation oracle has passed to
the ellipsoid method. That set defines a polytope which is a relaxation of the LP-KC polytope.

The input to our next algorithm is an instanBe= (A, B, a, b, ¢, d) of the general problem and an
¢ € (0, 1]. The algorithm can also be viewed as a reduction of the problem of findirgpgroximate
solution to a CIP to finding &o, £)-bicriteria approximate solution for appropriate

1. Setd’ := |d].

2. Letx be a(1 + ¢)-relaxed solution to the LP-KC relaxation B = (A, B,a, b, c,d’).

3. LetF={j: xj>d /(14 ¢e)}.

4. Define CIPP' = (A, d’,c,d") by settingA’ := AF, a' := a¥, and defining fractional solutiof
andd” as follows:

Forj e Fletx, =d=0.Forj ¢ Fletx;, =d" = ;.

Find integer solutiod’ to P’ by applying Theorené with fractional solutiorx” and the giverz.
Letf; = d;for j € F andx; = X’ for j ¢ F. Returnt.

o

No

Theorem 8(Second main resylt Givene € (0, 1], and an integer covering/packing prograoet =
min{c’x : x € 7", Ax>a, Bx<b, x<d},letp; = Zj B;;. The algorithm above computes in polynomial
time anx e 7/} such that

1. T

2. A)2>

3. x<d,and
4. Bx<(1+¢)b+ .

Proof. Note that the cost af is a lower bound omrT. Observe also that Step 1 does not change the
space of integer solutions.
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First we bound the cost of the solutidn (to the restricted probler’). Sincex satisfies the KC
inequalities for the specific sEt the definitions of, A", ', andd” ensure that’ is a fractional solution
of P’. By definition of AT, the width of P’ is at least 1. Thus, the cost §fis O(In(1 + «)) times the
cost ofx’, which is alsoO (In(1 + «)) times the cost of, and thusO (In(1 4+ «)oPT).

Next we bound the cost of the final soluti®nThe cost oft is at most 1+ ¢ times the cost of, plus
the cost oft’. Thus, the cost af is O(In(1 + «)oPT).

Next we verify thatt does not exceed the multiplicity constraints. This is clear for the pinned variables:
xj =d, for j € F. For the other variablesi (¢ F), we havex; = )E;.g [+ s)d/jf] =[1+9o)x;] <
[+ e)d;/(1+e)]<d;.

Finally, Bx <(1+ ¢)b + g follows from Bx <b andx <[(1+ ¢)x]. O

Corollary 9. The integrality gap of ther-kc relaxation for CIP isO (In(1 + «)).

3.2. Remarks on the necessity of the LP-KC relaxation

Consider for simplicity tha#l’ = d. The algorithm starts with a (& ¢)-relaxed solutiorx to LP-KC,
“pins” X; = d; for j with x; >d; /(1 + ¢), then uses an existing bicriteria approximation algorithm to
set the remaining variables. A natural question is whether the KC inequalities are necessary. Would it be
enough to start with a fractional solutiarto the standard LP relaxation of the CIP?

If we do this, the analysis of the algorithm (as it stands) fails bec@usey no longer be a feasible
solution toP’. (Indeed, the probler®® may be infeasible witld” defined as it is, or even with” =
d;j/(1+¢). To see this, consider the simple example at the start of the section.) This breaks tﬁe argument
that bounds the cost af

Perhaps the first fix that comes to mind is to modify the algorithm toAéy& A;j instead omgj = Al?;
for j ¢ F. But this does not work because the resultiigcan have width less than 1, worsening the
approximation ratio.

Perhaps the second fix that comes to mind is to modify the algorithm to, sazﬁg, set; for j ¢ F,
then solveP’ from scratch to obtain a (new) optimal fractional solutidnIn Step 7, the algorithm would
pass that new fractional soluticif to Theorenm6 (instead ofc”) to computer’. Since the cost at” is
still a lower bound oropr, it would seem that we can again bound the cost a$ desired.

The problem with this fix is that the new fractional soluti@hcan haveE/j/ >dj/(1+¢)forj¢F.
Indeed, it can havé’]f =d; for j ¢ F. Thus, the rounded solutioi from Theorem 6 could violate the
multiplicity constraints.

The natural work-around is to augménby adding any suchto F, then start over by returning to step
4 with the newF. But, as this process may repeat many times, it is not clear how one might relate the cost
of all the pinned variables torT.

4. Open questions

Can one find in polynomial time an integer solution for CIP with an additive 1 violation of the multi-
plicity constraints and logarithmic cost guarantee with respect to the standard LP optimum (without KC
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inequalities)? We have shown this is possible for the case max= O(1). Is there a faster (possibly
greedy?)0 (In m)-approximation algorithm for CIP?
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Appendix
Proof of Lemma 1. We prove that is a 2Z-approximate solution with positive probability. It suffices
to prove that the probability that any of the following events happens is less than 1:
D c'x>2LcT%, or (2 @) (AD)iW/a; < W.
Note thatE[x] = x’ = Lx, so that by linearity of expectation
Elc"#] = LE[c"x] = L x (FOPT)
and
(Vi) E[(A%X)iW/a;] = L(AX);W/a; > LW.

By the Markov bound, the probability of (1) is at most21

Note that eacti; can be thought of as a sum of independent random variablgs i (where we
consider the fixed par‘gx}J, to be the sum o[x}J variables each taking the value 1 with probability 1).
Thus (by the choice dN) (Ax);W/a; = Y A;jx;W/a; is also a sum of independent random variables
in [0, 1]. By a standard Chernoff bourdi7],

PH (A%);W/a; <(1— e)LW | < exp(—e’LW/2).

Takinge such that(l — &)L = 1, for the choice of in the rounding scheme, egps?LW/2)<1/2m.
Thus, the above bound implies

Pl (AX)iW/a;<W] < 1/2m.

Thus, by the naive union bound, the probability that (1) or (2) occurs is less fi2an ik /2m = 1.
We have proven that the randomized rounding procedure returrdsap@roximate solution with
positive probability. O
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