
ELSEVIER Information Processing Letters 50 (1994) 49-55

Information
Processing
Letters

Designing multi-commodity flow trees

Samir Khuller *,aTb, Balaji Raghavachari **,‘, Neal Young ***,b

a Department of Computer Science, University of Maryland, College Park, MD 20742, USA
b Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA

’ Department of Computer Science, The University of Texas at Dallas, Box 830668, Richardson, TX 75083-0688, USA

(Communicated by F. Dehne; received 26 April 19931

Abstract

The traditional muIti-commodity flow problem assumes a given flow network in which multiple commodities are
to be maximally routed in response to given demands. This paper considers the multi-commodity flow network-de-
sign problem: given a set of multi-commodity flow demands, find a network subject to certain constraints such that
the commodities can be maximally routed.

This paper focuses on the case when the network is required to be a tree. The main result is an approximation
algorithm for the case when the tree is required to be of constant degree. The algorithm reduces the problem to the
minimum-weight balanced-separator problem; the performance guarantee of the algorithm is within a factor of 4 of
the performance guarantee of the balanced-separator procedure. If Leighton and Rao’s balanced-separator proce-
dure is used, the performance guarantee is O(log n). This improves the 0(log2n) approximation factor obtained by a
direct application of the balanced-separator method.

Key words: Analysis of algorithms; Combinatorial problems; Network flow; Network design; Congestion

1. Introduction

Let a graph G = (V, E) represent multicom-
modity flow demands: the weight of each edge
e = (a, b} represents the demand of a distinct
commodity to be transported between the sites a

* Corresponding author. Email: samir@cs.umd.edu. Research

currently supported by NSF Research Initiation Award CCR-
9307462.
** Email: rbk@utdallas.edu. Part of this work was done while
the author was visiting UMIACS.
*** Email: young@niacs.umd.edu. Research supported in

part by NSF grants CCR-8906949 and CCR-9111348.

and b. Our goal is to design a network, in which
the vertices of G will be embedded, and to route
the commodities in the network. The maximum
capacity edge of the network should be low in
comparison to the best possible in any network
meeting the required constraints. For example,
the weight of each edge could denote the ex-
pected rate of phone calls between two sites. The
problem is to design a network in which calls can
be routed minimizing the maximum bandwidth
required; the cost of building the network in-
creases with the required bandwidth.

We consider the case when the network is
required to be a tree, called the free congestion
problem. Given a tree in which the vertices of G

0020-0190/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved
SSDZ 0020-0190(94)00002-G

50 S. Khuller et al. /Information Processing Letters 50 (1994) 49-55

are embedded, the load on an edge e is defined
as follows: delete e from T. This breaks T into
two connected components. If S is the set of
vertices from G in one of the connected compo-
nents, then load(e) is equal to

W(S, S) = c w(x, Y).
(x, y)EE, XES, YES

In other words, the demand of each edge e =
{a, b} in G, maps to the unique path in T from a
to b, and loads each edge on the path. The load
of a single edge is the sum of the demands that
load this edge.

In this paper we study two different versions of
this problem.

1.1. Routing tree problem

The following problem was proposed and stud-
ied by Seymour and Thomas [5]

Definition 1.1. A tree T is called a routing tree if
it satisfies the following conditions:
- The leaves of T correspond to vertices of G.
- Each internal vertex has degree 3.
The congestion of T is the maximum load of any
edge of T. The congestion of G, denoted by PC,
is defined to be the minimum congestion over all
routing trees T of G.

We would like to find a routing tree T with
minimum congestion (that achieves PG).

Seymour and Thomas showed that this prob-
lem is NP-hard by showing that graph bisection
can be reduced to this problem. They also showed
that in the special case when G is planar, the
problem can be solved optimally in polynomial
time.

We provide a polynomial-time approximation
algorithm for the congestion problem when G is
an arbitrary graph. Our algorithm computes a
routing tree T whose congestion is within an
O(log n> factor from the optimal congestion (Sec-
tion 3). The algorithm extends to the case when
the routing tree is allowed to have vertices of
higher degree.

1.2. Congestion tree problem

We also study the case when T is required to
be a spanning tree of a given feasibility graph F.
We show that the problem is NP-complete (Sec-
tion 4). In the special case when F is complete,
we show that an optimal solution can be com-
puted in polynomial time.

1.3. Main ideas

Our algorithm is a simple divide-and-conquer
algorithm that uses the Leighton-Rao [4] bal-
anced-separator algorithm to split the graph. By a
naive application of the LR algorithm, one ob-
tains an O(log2n) approximation factor. Our main
contribution is to show that by a subtle applica-
tion of LR, one can actually obtain an O(log n)
approximation factor. We believe that this kind of
an application of LR will prove to be useful in
obtaining better approximation ratios for other
problems as well.

2. Preliminaries

A cut in a graph G is a set of edges whose
removal separates G into two disconnected pieces
S and s = V/S. A cut can be represented by the
vertex set S. The weight of a cut S, denoted by
W(S, s), is the sum of the weights of those edges
which have one endpoint in S and one endpoint
in 3. We use W(U) to refer to the sum of the
weights of the edges incident to U. A cut S is
b-balanced if b . n I I S / 5 (1 - b) . n. The defini-
tion is extended to the case when vertices are
weighted as follows. Let U be a non-negative
weight function on the vertices and let U(S) be
the sum of the weights of all the vertices in S. A
cut S is b-balanced if

b.U(V)sU(S)s(l-b).U(V).

Definition 2.1. For b 5 l/3, a A-approximate min-
imum b-bisector is a b-balanced cut whose weight
is at most h times the weight of a minimum-weight
+-balanced cut.

S. Khuller et al. /Information Processing Letters 50 (1994) 49-55 51

The following result was proved by Leighton
and Rao [4, Section 1.41.

Theorem 2.2. Let G be a graph with non-negative
weights on the edges (without vertex weights). It is
possible to compute an O(log n)-approximate mini-
mum $-bisector of G in polynomial time.

The above theorem was extended to the case
when vertices are given non-negative weights by
Tragoudas [6].

Theorem 2.3. Let g be a graph with non-negative
weight on the edges and vertices. It is possible to
compute an 00og n)-approximate minimum i-bi-
sector of G in polynomial time.

Definition 2.4. Let T be a tree and let u be a
vertex of degree two in T. Let u and w be the
neighbors of u. The following operation is said to
short-cut u in T: delete u from T and add the
edge Iv, w}. To short-cut T is to delete all ver-
tices of degree two by short-cutting them in arbi-
trary order.

3. Routing tree problem

W(U) corresponds to the total weight between
u and other vertices and is called the load of a
vertex. Note that the load of any vertex v is a
lower bound on &., because the edge incident to
the leaf corresponding to v in any routing tree
has to handle this load.

Lemma 3.1. For any vertex v, W(v) I PG.

Given a procedure to compute a h-approxi-
mate minimum b-bisector, our algorithm finds a
routing tree whose congestion is at most A/b
times the optimal congestion.

3.1. Lower bounds

We show two ways of finding lower bounds on
the weight of the optimal solution. First, we show
that the weight of a minimum-weight balanced
separator is a lower bound on PG. Second, we

show that the optimal solution for the problem in
a subgraph G’ induced by an arbitrary set of
vertices I/’ c V is a lower bound on the optimal
solution of G. This implies that an optimal solu-
tion to a sub-problem costs no more than any
feasible solution to the whole problem.

Lemma 3.2, Let G = (V, E) be a graph with non-
negative weights on the edges. Suppose we are given
a non-negative weight function U(v) on the ver-
tices. Let the weight of each vertex be at most
one-half of the total weight of all the vertices. Let
Q be the weight of a minimum-weight b-balanced
separator of G for any b I l/3. Then Q I /3o.

Proof. Let T be a routing tree with congestion
PC. Each edge e of T naturally induces a cut in
G as follows: delete e from T to obtain subtrees
T, and T2. Let S, be the set of vertices in G that
are leaves of TI (this yields a cut in G). Clearly,
WCS,, S,) is the congestion on edge e and hence
WCS,, S,) 5 PC. Since T is a tree of degree three,
and by the assumption on the weights of vertices,
it contains at least one edge e’ which yields a
b-balanced separator. Since Q is the minimum
b-balanced separator of G we have Q _<

W(S,, q) I &. 0

Lemma 3.3. Let G = (V, E) be a graph. Let H be
a subgraph of G. Then /3n I PC.

Proof. Let T be a routing tree with congestion
PG. Generate a routing tree Tn for H from T as
follows. Let V, be the vertex set of H. Mark the
leaves of T corresponding to V,. Repeatedly
delete the unmarked leaves of T until it has no
unmarked leaves. Delete all vertices of degree
two by short-cutting the tree, thus yielding Tn. It
is easily verified that Tn is a routing tree for H
with congestion bounded by PC. q

3.2. The routing tree algorithm

Discussion. Our basic approach is to subdivide
the graph into pieces that are smaller by a con-
stant fraction using an approximately minimum
bisector. Since computing a minimum-weight bal-
anced separator is also NP-hard, we use approxi-

52 S. Khuller et al. /Information Processing Letters 50 (1994) 49-55

[T---__h___[T]

(a)

-2’ v
I’

/CL ‘I
(cl

(b)

a
jf3

0
.

Fig. 1. Example to illustrate algorithm.

mation algorithms designed by Leighton and Rao
[4] and Tragoudas [6] for computing approxi-
mately minimum-weight balanced separators (or
approximate minimum bisectors). The solutions
for the pieces are obtained recursively. All inter-
nal vertices of the solution tree have degree three
except for the root. The two trees are glued
together by creating a new root and making the
roots of the pieces the children of the new root.
If implemented naively, this procedure leads to
an O(log*n) factor approximation. Using balanc-
ing techniques, we improve the performance ratio
to O(log n).

Suppose S, a subset of the vertices represent-
ing a subproblem, is split into two pieces S, and
S, using an approximate bisector. When the

problem is solved recursively on the two pieces,
the main obstacle to obtaining an O(log n) ap-
proximation is the following. In the worst case, it
is possible that most of the load corresponding to
W(S, 3) may fall on S, or S,. If this happens
repeatedly, an edge can be overloaded propor-
tionally to its depth in the tree. To avoid this, it is
necessary to partition the demand from 3 roughly
equally among the pieces S, and S,. The following
idea solves the problem and leads to an O(log n)
approximate solution. Suppose we define a weight
U(v) for each vertex u in S according to the
amount of demand from u to the set S. Now
when we split S, we use a cut that splits the
vertices of S into two sets of roughly equal weight.
Lemma 3.2 guarantees that the minimum value of

ROUTE-TREE(S) - Find a routing tree for S.
If 15’1 = 1 then Return S as a tree on a single vertex.
For each IJ E S, iix its weight U(V) to be W({V}, 3).
Let the sum of the weights of the vertices in S be Us.
If for any vertex V, U(V) > Us/2 and Us # 0 then

ROUTE-TREE(S \ {v})
Create a new tree T by attaching the above tree and w as the children
of a new root T. Return T.

Find an approximate minimum-weight a-balanced separator for the
subgraph induced by S in G (if (.ls = 0, find an unweighted balanced
separator). Let this break S into pieces Sr and &.
ROUTE-TREE(&)
ROUTE-TREE(&)
Create a new tree 2’ by attaching the two trees generated above as the
children of a new root vertex. Return T.

Fig. 2. Approximation algorithm to find a routing tree.

S. Khuller et al. /Information Processing Letters SO (1994) 49-55 53

such a cut is a lower bound on ps, which is a
lower bound on Po by Lemma 3.3. We illustrate
the recursive step of the algorithm by an example
in Fig. 1.

The algorithm first splits graph G into A, B
by using an approximate bisector (without weight-
ing the vertices). Each vertex in A is then as-
signed a weight equal to the total demand it has
to vertices in A. Similarly vertices in B are as-
signed weights corresponding to their demands
from B. The algorithm now recursively splits A
and B by approximate bisectors with respect to
the vertex weights. The problem is solved recur-
sively on each piece. These recursive calls weight
vertices similarly and return with respective trees
as solutions for the pieces A and B as shown. By
adding new edges and a new root vertex, the
solution for the entire graph is obtained.

The algorithm given in Fig. 2 implements the
above ideas. The procedure ROUTE-TREE(S)
takes a subset of vertices S, and returns a routing
tree for the graph induced by the vertices in S.
This routing tree will either be a singleton vertex,
or a tree in which each vertex has degree one or
three, except for the root that has degree two.
The routing tree is computing in a way so as to
approximately “divide” the demand from the ver-
tices in S to the vertices in I/- S.

Analysis. Given a graph G, ROUTE-TREE(V) re-
turns a routing tree for G. To make sure that the
root of the tree has degree three, we can discard
the root by short-cutting it.

Let the algorithm use a A-approximate mini-
mum i-bisector in Line 6. If Leighton and Rao’s
[4] balanced separator algorithm is used, A =
O(log n). The following theorem shows that the
load of any edge is at most 4h times the optimal
congestion. We use induction to prove that our
load-balancing technique splits the load properly.

Theorem 3.4 (Performance). The algorithm in Fig.
2 finds a routing tree Tfor G such that & 5 4hp,.

Proof. The proof proceeds by induction on the
level of recursion. In the first call of ROUTE-TREE,
the algorithm splits G into two pieces S and 3
using an approximate bisector. It then finds rout-

L
/ __-- ___---- __ --_.

I’
-.

s I’
/’

, Ll L

:l L!ch
-.

‘\
‘\

I’
\ \ \

:

‘i \ 4
\ s2

I’

\ /’

‘. ,’

‘\ ,

‘. .d’
--._ **

---______---
Cc

Fig. 3. Inductive proof.

ing trees for S and 5 and connects the two roots
with an edge e. The load on e is WCS, 3). By
Lemma 3.2., the weight of a minimum-weight
balanced separator is a lower bound on PC. The
weight of the separator the algorithm uses is
guaranteed to be at most A times the weight of an
optimal separator. Hence the load on edge e is at
most A&. This satisfies the induction hypothesis.

For the induction step, let us consider the case
when we take a set S and split it into two pieces
S, and S, (see Fig. 3). Let L be the load on the
edge connecting the tree for S to its parent.
Similarly, let L, (i = 1,2) be the load on the edge
connecting the tree for Si to its parent. Induc-
tively L s 4A&. We show that each Li I 4A&.

Let U be the weight function defined by the
algorithm in this recursive call. Note that L =
U(S) = WCS, s) and Lj = W(&, si> = W(Si, 3) +
W(S,, S,). Also observe that U(SJ = W(Sj, 3).

Case 1: If there is some vertex v in S whose
weight U(v) is more than U(S)/2, then we split S
and S, = {u) and S, = S/iv}. Since Li = U(Si) +
KS,, S,) and C&S,) > U(S)/2 > UC&) it follows
that L, > L,. This is because U(S) is the sum of
U(S,) and UC&). It remains only to bound L,.
The demand from v, W(U), is a lower bound on
the congestion (by Lemma 3.1) and therefore
PC 2 W(v)= L,. Hence both L, and L, satisfy
the induction hypothesis.

Case 2: Otherwise, the algorithm distributed
U(S) into the weights of the vertices of S and
then used a A-approximate $-bisector of S. By
the induction hypothesis, the edge from the sub-

54 S. Khuller et al. /Information Processing Letters 50 (1994) 49-55

tree of S to its parent has a load L (= U(S)) of mutually edge-disjoint paths Pi, P,, . . . , Pk such
at most 4h&. that Pi connects si with ti?

Since W(Si, s) = U(Si) I zU(S) and W(S,, S,)
5 AP, (by Lemmas 3.2 and 3.3) we have

L,=W(S,,S)+W(S,,S*)~3hPG+APG. 0

Theorem 3.5. The routing tree algorithm in Fig. 2
runs in polynomial time. 0

Corollary 3.6. The algorithm in Fig. 2 finds in
polynomial time a routing tree T for G such that
&- = Oh3 n)&.

Note. Our algorithm also handles the case when
vertices of G are allowed to be internal vertices
of the output tree. Lemmas 3.2 and 3.3 are valid
in this case also. The lower bound in Lemma 3.1.
weakens by a factor of 3. This lower bound is not
critical to the performance ratio, so the perfor-
mance ratio of algorithm is unchanged.

Our algorithm can be generalized to find rout-
ing trees when every interval vertex may have
degree up to k, for any k 2 3. We obtain the
same O(log n) approximation factor, indepen-
dent of k. An algorithm obtaining an approxima-
tion factor of n/k is straightforward and is useful
as k approaches n.

It is easy to see that this problem can be
recorded to the general tree congestion problem.
For the reduction we construct F from H. For
each vertex u E I/, if u has degree d(u), we
create a clique on d(u) vertices, ui, uz,. . . , udcuj.
For each edge from u to w we introduce and
edge from ui to wj where these are distinct ver-
tices (not shared with any other edges). (Infor-
mally, each vertex is “exploded” into a clique,
and the edges incident on the vertex are made
incident each on distinct clique vertices.) The
demand graph G has edges between si and ti (for
all i>. If there is a solution to the disjoint paths
problem, clearly that yields a congestion tree with
bandwidth one. The set of paths Pi can form
cycles, but these cycles can be “pried” apart in F
since we replaced each vertex with a clique. These
can now be connected to form a congestion tree
with bandwidth one.

4. General congestion problem

If there is a solution to the congestion tree
problem it is clear that this yields a solution to
the edge-disjoint paths problem (the demand edge
from si to sj gets mapped to a path in the tree
and causes a load of one on each edge). Since the
bandwidth is restricted to one, no other path can
use the same edge (even when we go from F to

H).

In this section we show that the following
problem is NP-complete. The input to the prob-
lem is a demand network G = (V, E), a “feasibil-
ity network” F = (V, E’), and the integer D. Each
edge e = {a, b} of G has a nonnegative weight
w(e) that represents the demand between the
sites a and b. The problem is to find a tree T
that is a subgraph of F, such that when the
demands of the edges in G are mapped to the
tree T the congestion on each edge is at most D.

Theorem 4.1. The general congestion problem is
NP-complete.

The reduction is done from the k Edge-Dis-
joint Paths Problem, known to be NP-complete

[31.

k Edge-Disjoint Paths Problem: Given an undi-
rected graph H = (V, E), and sets S =

($9 s 2,. . . , s,> and T = It,, t,, . . . , tJ are there k

An interesting open problem is to design approxi-
mation algorithms with nontrivial approximation
factors for designing routing trees where the feasi-
bility graph F is given in the input. In the special
case when F is complete, it is easy to show that an
optimal routing tree can be computed. In this case
each edge of the routing tree is made to handle a
load that is equal to the minimum cut in G separat-
ing two of its vertices. This follows from the result
of Gomory and Hu [2], who showed how to con-
struct a tree which encodes all min-cuts in a graph.
Gusfield [3] gave an algorithm to compute such
trees efficiently.

S. Khuller et al. /Information Processing Letters 50 (1994) 49-55 55

Theorem 4.2. If F is the complete graph, the
problem of designing a routing tree with minimum
congestion for an arbitrary demand graph G can be
solved in polynomial time.

5. Acknowledgment

We would like to thank the referee for useful
comments.

6. References

[l] M.R. Garey and D.S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness (Freeman,

San Francisco, 1979).

[2] R.E. Gomory and T.C. Hu, Multi-terminal network flows,

J. SOlM 9 (4) (1961) 551-570.

[3] D. Gusfield, Very simple methods for all pairs network
flow analysis. 5LrzM.I. Comput. 19 (1) (1990) 143-155.

[4] F.T. Leighton and S. Rao, An approximate max-flow min-

cut theorem for uniform multicommodity flow problems

with applications to approximation algorithms, in: Proc.
29th Ann. Symp. on Foundations of Computer Science,
White Plains, NY (1988) 422-431.

[5] P. Seymour and R. Thomas, Call routing and the rat

catcher, in: Proc. Workshop on Algorithms and Combinato-
rial Optimization, Atlanta, GA, 1991.

[6] S. Tragoudas, Improved approximations for the minimum-

cut ratio and the flux, Tech. Rept. 93-02, Computer Sci-

ence Dept. Southern Illinois University, 1993.

