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Abstract 

The traditional muIti-commodity flow problem assumes a given flow network in which multiple commodities are 
to be maximally routed in response to given demands. This paper considers the multi-commodity flow network-de- 
sign problem: given a set of multi-commodity flow demands, find a network subject to certain constraints such that 
the commodities can be maximally routed. 

This paper focuses on the case when the network is required to be a tree. The main result is an approximation 
algorithm for the case when the tree is required to be of constant degree. The algorithm reduces the problem to the 
minimum-weight balanced-separator problem; the performance guarantee of the algorithm is within a factor of 4 of 
the performance guarantee of the balanced-separator procedure. If Leighton and Rao’s balanced-separator proce- 
dure is used, the performance guarantee is O(log n). This improves the 0(log2n) approximation factor obtained by a 
direct application of the balanced-separator method. 
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1. Introduction 

Let a graph G = (V, E) represent multicom- 
modity flow demands: the weight of each edge 
e = (a, b} represents the demand of a distinct 
commodity to be transported between the sites a 
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and b. Our goal is to design a network, in which 
the vertices of G will be embedded, and to route 
the commodities in the network. The maximum 
capacity edge of the network should be low in 
comparison to the best possible in any network 
meeting the required constraints. For example, 
the weight of each edge could denote the ex- 
pected rate of phone calls between two sites. The 
problem is to design a network in which calls can 
be routed minimizing the maximum bandwidth 
required; the cost of building the network in- 
creases with the required bandwidth. 

We consider the case when the network is 
required to be a tree, called the free congestion 
problem. Given a tree in which the vertices of G 
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are embedded, the load on an edge e is defined 
as follows: delete e from T. This breaks T into 
two connected components. If S is the set of 
vertices from G in one of the connected compo- 
nents, then load(e) is equal to 

W(S, S) = c w(x, Y). 
(x, y)EE, XES, YES 

In other words, the demand of each edge e = 
{a, b} in G, maps to the unique path in T from a 
to b, and loads each edge on the path. The load 
of a single edge is the sum of the demands that 
load this edge. 

In this paper we study two different versions of 
this problem. 

1.1. Routing tree problem 

The following problem was proposed and stud- 
ied by Seymour and Thomas [5] 

Definition 1.1. A tree T is called a routing tree if 
it satisfies the following conditions: 
- The leaves of T correspond to vertices of G. 
- Each internal vertex has degree 3. 
The congestion of T is the maximum load of any 
edge of T. The congestion of G, denoted by PC, 
is defined to be the minimum congestion over all 
routing trees T of G. 

We would like to find a routing tree T with 
minimum congestion (that achieves PG). 

Seymour and Thomas showed that this prob- 
lem is NP-hard by showing that graph bisection 
can be reduced to this problem. They also showed 
that in the special case when G is planar, the 
problem can be solved optimally in polynomial 
time. 

We provide a polynomial-time approximation 
algorithm for the congestion problem when G is 
an arbitrary graph. Our algorithm computes a 
routing tree T whose congestion is within an 
O(log n> factor from the optimal congestion (Sec- 
tion 3). The algorithm extends to the case when 
the routing tree is allowed to have vertices of 
higher degree. 

1.2. Congestion tree problem 

We also study the case when T is required to 
be a spanning tree of a given feasibility graph F. 
We show that the problem is NP-complete (Sec- 
tion 4). In the special case when F is complete, 
we show that an optimal solution can be com- 
puted in polynomial time. 

1.3. Main ideas 

Our algorithm is a simple divide-and-conquer 
algorithm that uses the Leighton-Rao [4] bal- 
anced-separator algorithm to split the graph. By a 
naive application of the LR algorithm, one ob- 
tains an O(log2n) approximation factor. Our main 
contribution is to show that by a subtle applica- 
tion of LR, one can actually obtain an O(log n) 
approximation factor. We believe that this kind of 
an application of LR will prove to be useful in 
obtaining better approximation ratios for other 
problems as well. 

2. Preliminaries 

A cut in a graph G is a set of edges whose 
removal separates G into two disconnected pieces 
S and s = V/S. A cut can be represented by the 
vertex set S. The weight of a cut S, denoted by 
W(S, s), is the sum of the weights of those edges 
which have one endpoint in S and one endpoint 
in 3. We use W(U) to refer to the sum of the 
weights of the edges incident to U. A cut S is 
b-balanced if b . n I I S / 5 (1 - b) . n. The defini- 
tion is extended to the case when vertices are 
weighted as follows. Let U be a non-negative 
weight function on the vertices and let U(S) be 
the sum of the weights of all the vertices in S. A 
cut S is b-balanced if 

b.U(V)sU(S)s(l-b).U(V). 

Definition 2.1. For b 5 l/3, a A-approximate min- 
imum b-bisector is a b-balanced cut whose weight 
is at most h times the weight of a minimum-weight 
+-balanced cut. 
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The following result was proved by Leighton 
and Rao [4, Section 1.41. 

Theorem 2.2. Let G be a graph with non-negative 
weights on the edges (without vertex weights). It is 
possible to compute an O(log n)-approximate mini- 
mum $-bisector of G in polynomial time. 

The above theorem was extended to the case 
when vertices are given non-negative weights by 
Tragoudas [6]. 

Theorem 2.3. Let g be a graph with non-negative 
weight on the edges and vertices. It is possible to 
compute an 00og n)-approximate minimum i-bi- 
sector of G in polynomial time. 

Definition 2.4. Let T be a tree and let u be a 
vertex of degree two in T. Let u and w be the 
neighbors of u. The following operation is said to 
short-cut u in T: delete u from T and add the 
edge Iv, w}. To short-cut T is to delete all ver- 
tices of degree two by short-cutting them in arbi- 
trary order. 

3. Routing tree problem 

W(U) corresponds to the total weight between 
u and other vertices and is called the load of a 
vertex. Note that the load of any vertex v is a 
lower bound on &., because the edge incident to 
the leaf corresponding to v in any routing tree 
has to handle this load. 

Lemma 3.1. For any vertex v, W(v) I PG. 

Given a procedure to compute a h-approxi- 
mate minimum b-bisector, our algorithm finds a 
routing tree whose congestion is at most A/b 
times the optimal congestion. 

3.1. Lower bounds 

We show two ways of finding lower bounds on 
the weight of the optimal solution. First, we show 
that the weight of a minimum-weight balanced 
separator is a lower bound on PG. Second, we 

show that the optimal solution for the problem in 
a subgraph G’ induced by an arbitrary set of 
vertices I/’ c V is a lower bound on the optimal 
solution of G. This implies that an optimal solu- 
tion to a sub-problem costs no more than any 
feasible solution to the whole problem. 

Lemma 3.2, Let G = (V, E) be a graph with non- 
negative weights on the edges. Suppose we are given 
a non-negative weight function U(v) on the ver- 
tices. Let the weight of each vertex be at most 
one-half of the total weight of all the vertices. Let 
Q be the weight of a minimum-weight b-balanced 
separator of G for any b I l/3. Then Q I /3o. 

Proof. Let T be a routing tree with congestion 
PC. Each edge e of T naturally induces a cut in 
G as follows: delete e from T to obtain subtrees 
T, and T2. Let S, be the set of vertices in G that 
are leaves of TI (this yields a cut in G). Clearly, 
WCS,, S,) is the congestion on edge e and hence 
WCS,, S,) 5 PC. Since T is a tree of degree three, 
and by the assumption on the weights of vertices, 
it contains at least one edge e’ which yields a 
b-balanced separator. Since Q is the minimum 
b-balanced separator of G we have Q _< 

W(S,, q) I &. 0 

Lemma 3.3. Let G = (V, E) be a graph. Let H be 
a subgraph of G. Then /3n I PC. 

Proof. Let T be a routing tree with congestion 
PG. Generate a routing tree Tn for H from T as 
follows. Let V, be the vertex set of H. Mark the 
leaves of T corresponding to V,. Repeatedly 
delete the unmarked leaves of T until it has no 
unmarked leaves. Delete all vertices of degree 
two by short-cutting the tree, thus yielding Tn. It 
is easily verified that Tn is a routing tree for H 
with congestion bounded by PC. q 

3.2. The routing tree algorithm 

Discussion. Our basic approach is to subdivide 
the graph into pieces that are smaller by a con- 
stant fraction using an approximately minimum 
bisector. Since computing a minimum-weight bal- 
anced separator is also NP-hard, we use approxi- 
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Fig. 1. Example to illustrate algorithm. 

mation algorithms designed by Leighton and Rao 
[4] and Tragoudas [6] for computing approxi- 
mately minimum-weight balanced separators (or 
approximate minimum bisectors). The solutions 
for the pieces are obtained recursively. All inter- 
nal vertices of the solution tree have degree three 
except for the root. The two trees are glued 
together by creating a new root and making the 
roots of the pieces the children of the new root. 
If implemented naively, this procedure leads to 
an O(log*n) factor approximation. Using balanc- 
ing techniques, we improve the performance ratio 
to O(log n). 

Suppose S, a subset of the vertices represent- 
ing a subproblem, is split into two pieces S, and 
S, using an approximate bisector. When the 

problem is solved recursively on the two pieces, 
the main obstacle to obtaining an O(log n) ap- 
proximation is the following. In the worst case, it 
is possible that most of the load corresponding to 
W(S, 3) may fall on S, or S,. If this happens 
repeatedly, an edge can be overloaded propor- 
tionally to its depth in the tree. To avoid this, it is 
necessary to partition the demand from 3 roughly 
equally among the pieces S, and S,. The following 
idea solves the problem and leads to an O(log n) 
approximate solution. Suppose we define a weight 
U(v) for each vertex u in S according to the 
amount of demand from u to the set S. Now 
when we split S, we use a cut that splits the 
vertices of S into two sets of roughly equal weight. 
Lemma 3.2 guarantees that the minimum value of 

ROUTE-TREE(S) - Find a routing tree for S. 
If 15’1 = 1 then Return S as a tree on a single vertex. 
For each IJ E S, iix its weight U(V) to be W({V}, 3). 
Let the sum of the weights of the vertices in S be Us. 
If for any vertex V, U(V) > Us/2 and Us # 0 then 

ROUTE-TREE(S \ {v}) 
Create a new tree T by attaching the above tree and w as the children 
of a new root T. Return T. 

Find an approximate minimum-weight a-balanced separator for the 
subgraph induced by S in G (if (.ls = 0, find an unweighted balanced 
separator). Let this break S into pieces Sr and &. 
ROUTE-TREE( &) 
ROUTE-TREE(&) 
Create a new tree 2’ by attaching the two trees generated above as the 
children of a new root vertex. Return T. 

Fig. 2. Approximation algorithm to find a routing tree. 
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such a cut is a lower bound on ps, which is a 
lower bound on Po by Lemma 3.3. We illustrate 
the recursive step of the algorithm by an example 
in Fig. 1. 

The algorithm first splits graph G into A, B 
by using an approximate bisector (without weight- 
ing the vertices). Each vertex in A is then as- 
signed a weight equal to the total demand it has 
to vertices in A. Similarly vertices in B are as- 
signed weights corresponding to their demands 
from B. The algorithm now recursively splits A 
and B by approximate bisectors with respect to 
the vertex weights. The problem is solved recur- 
sively on each piece. These recursive calls weight 
vertices similarly and return with respective trees 
as solutions for the pieces A and B as shown. By 
adding new edges and a new root vertex, the 
solution for the entire graph is obtained. 

The algorithm given in Fig. 2 implements the 
above ideas. The procedure ROUTE-TREE(S) 
takes a subset of vertices S, and returns a routing 
tree for the graph induced by the vertices in S. 
This routing tree will either be a singleton vertex, 
or a tree in which each vertex has degree one or 
three, except for the root that has degree two. 
The routing tree is computing in a way so as to 
approximately “divide” the demand from the ver- 
tices in S to the vertices in I/- S. 

Analysis. Given a graph G, ROUTE-TREE(V) re- 
turns a routing tree for G. To make sure that the 
root of the tree has degree three, we can discard 
the root by short-cutting it. 

Let the algorithm use a A-approximate mini- 
mum i-bisector in Line 6. If Leighton and Rao’s 
[4] balanced separator algorithm is used, A = 
O(log n). The following theorem shows that the 
load of any edge is at most 4h times the optimal 
congestion. We use induction to prove that our 
load-balancing technique splits the load properly. 

Theorem 3.4 (Performance). The algorithm in Fig. 
2 finds a routing tree Tfor G such that & 5 4hp,. 

Proof. The proof proceeds by induction on the 
level of recursion. In the first call of ROUTE-TREE, 
the algorithm splits G into two pieces S and 3 
using an approximate bisector. It then finds rout- 
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Fig. 3. Inductive proof. 

ing trees for S and 5 and connects the two roots 
with an edge e. The load on e is WCS, 3). By 
Lemma 3.2., the weight of a minimum-weight 
balanced separator is a lower bound on PC. The 
weight of the separator the algorithm uses is 
guaranteed to be at most A times the weight of an 
optimal separator. Hence the load on edge e is at 
most A&. This satisfies the induction hypothesis. 

For the induction step, let us consider the case 
when we take a set S and split it into two pieces 
S, and S, (see Fig. 3). Let L be the load on the 
edge connecting the tree for S to its parent. 
Similarly, let L, (i = 1,2) be the load on the edge 
connecting the tree for Si to its parent. Induc- 
tively L s 4A&. We show that each Li I 4A&. 

Let U be the weight function defined by the 
algorithm in this recursive call. Note that L = 
U(S) = WCS, s) and Lj = W(&, si> = W(Si, 3) + 
W(S,, S,). Also observe that U(SJ = W(Sj, 3). 

Case 1: If there is some vertex v in S whose 
weight U(v) is more than U(S)/2, then we split S 
and S, = {u) and S, = S/iv}. Since Li = U(Si) + 
KS,, S,) and C&S,) > U(S)/2 > UC&) it follows 
that L, > L,. This is because U(S) is the sum of 
U(S,) and UC&). It remains only to bound L,. 
The demand from v, W(U), is a lower bound on 
the congestion (by Lemma 3.1) and therefore 
PC 2 W(v)= L,. Hence both L, and L, satisfy 
the induction hypothesis. 

Case 2: Otherwise, the algorithm distributed 
U(S) into the weights of the vertices of S and 
then used a A-approximate $-bisector of S. By 
the induction hypothesis, the edge from the sub- 
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tree of S to its parent has a load L (= U(S)) of mutually edge-disjoint paths Pi, P,, . . . , Pk such 
at most 4h&. that Pi connects si with ti? 

Since W(Si, s) = U(Si) I zU(S) and W(S,, S,) 
5 AP, (by Lemmas 3.2 and 3.3) we have 

L,=W(S,,S)+W(S,,S*)~3hPG+APG. 0 

Theorem 3.5. The routing tree algorithm in Fig. 2 
runs in polynomial time. 0 

Corollary 3.6. The algorithm in Fig. 2 finds in 
polynomial time a routing tree T for G such that 
&- = Oh3 n)&. 

Note. Our algorithm also handles the case when 
vertices of G are allowed to be internal vertices 
of the output tree. Lemmas 3.2 and 3.3 are valid 
in this case also. The lower bound in Lemma 3.1. 
weakens by a factor of 3. This lower bound is not 
critical to the performance ratio, so the perfor- 
mance ratio of algorithm is unchanged. 

Our algorithm can be generalized to find rout- 
ing trees when every interval vertex may have 
degree up to k, for any k 2 3. We obtain the 
same O(log n) approximation factor, indepen- 
dent of k. An algorithm obtaining an approxima- 
tion factor of n/k is straightforward and is useful 
as k approaches n. 

It is easy to see that this problem can be 
recorded to the general tree congestion problem. 
For the reduction we construct F from H. For 
each vertex u E I/, if u has degree d(u), we 
create a clique on d(u) vertices, ui, uz,. . . , udcuj. 
For each edge from u to w we introduce and 
edge from ui to wj where these are distinct ver- 
tices (not shared with any other edges). (Infor- 
mally, each vertex is “exploded” into a clique, 
and the edges incident on the vertex are made 
incident each on distinct clique vertices.) The 
demand graph G has edges between si and ti (for 
all i>. If there is a solution to the disjoint paths 
problem, clearly that yields a congestion tree with 
bandwidth one. The set of paths Pi can form 
cycles, but these cycles can be “pried” apart in F 
since we replaced each vertex with a clique. These 
can now be connected to form a congestion tree 
with bandwidth one. 

4. General congestion problem 

If there is a solution to the congestion tree 
problem it is clear that this yields a solution to 
the edge-disjoint paths problem (the demand edge 
from si to sj gets mapped to a path in the tree 
and causes a load of one on each edge). Since the 
bandwidth is restricted to one, no other path can 
use the same edge (even when we go from F to 

H). 

In this section we show that the following 
problem is NP-complete. The input to the prob- 
lem is a demand network G = (V, E), a “feasibil- 
ity network” F = (V, E’), and the integer D. Each 
edge e = {a, b} of G has a nonnegative weight 
w(e) that represents the demand between the 
sites a and b. The problem is to find a tree T 
that is a subgraph of F, such that when the 
demands of the edges in G are mapped to the 
tree T the congestion on each edge is at most D. 

Theorem 4.1. The general congestion problem is 
NP-complete. 

The reduction is done from the k Edge-Dis- 
joint Paths Problem, known to be NP-complete 

[31. 

k Edge-Disjoint Paths Problem: Given an undi- 
rected graph H = (V, E), and sets S = 

($9 s 2,. . . , s,> and T = It,, t,, . . . , tJ are there k 

An interesting open problem is to design approxi- 
mation algorithms with nontrivial approximation 
factors for designing routing trees where the feasi- 
bility graph F is given in the input. In the special 
case when F is complete, it is easy to show that an 
optimal routing tree can be computed. In this case 
each edge of the routing tree is made to handle a 
load that is equal to the minimum cut in G separat- 
ing two of its vertices. This follows from the result 
of Gomory and Hu [2], who showed how to con- 
struct a tree which encodes all min-cuts in a graph. 
Gusfield [3] gave an algorithm to compute such 
trees efficiently. 
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Theorem 4.2. If F is the complete graph, the 
problem of designing a routing tree with minimum 
congestion for an arbitrary demand graph G can be 
solved in polynomial time. 
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