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HUFFMAN CODING WITH LETTER COSTS:
A LINEAR-TIME APPROXIMATION SCHEME∗
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Abstract. We give a polynomial-time approximation scheme for the generalization of Huffman
coding in which codeword letters have nonuniform costs (as in Morse code, where the dash is twice as
long as the dot). The algorithm computes a (1 + ε)-approximate solution in time O(n+ f(ε) log3 n),
where n is the input size.
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1. Introduction. The problem of constructing a minimum-cost prefix-free code
for a given distribution, known as Huffman coding, is well known and admits a simple
greedy algorithm. But there are many well-studied variations of this simple problem
for which fast algorithms are not known. This paper considers one such variant—
the generalization of Huffman coding in which the encoding letters have nonuniform
costs—for which it describes a polynomial-time approximation scheme (PTAS).

Letter costs arise in coding problems where different characters have different
transmission times or storage costs [3, 24, 20, 27, 28]. One historical example is the
telegraph channel—Morse code. There, the encoding alphabet is {·,−}, and dashes
are twice as long as dots; i.e., cost(−) = 2 cost(·) [10, 11, 22]. A simple data-storage
example is the (h, k)-run-length-limited codes used in magnetic and optical storage.
There, the codewords are binary and constrained so that each “1” must be preceded
by at least h, and at most k, “0’s” [17, 13]. (To reduce this problem to Huffman
coding with letter costs, use an encoding alphabet with one letter of cost j + 1 for
each string “0j1,” where h ≤ j ≤ k.)

Definition 1.1 (Huffman coding with letter costs—Hulc). The input is
• a probability distribution p on [n],
• a codeword alphabet Σ of size at most n,
• for each letter � ∈ Σ, a specified nonnegative integer,1 cost(�).

The output is a code X consisting of n codewords, where Xi ∈ Σ∗ is the codeword
for probability pi. The code must be prefix-free. (That is, no codeword is a prefix of
any other.) The goal is to minimize the cost of X , which is denoted cost(X ) and
defined to be

∑n
i=1 pi cost(Xi), where, for any string w, cost(w) is the sum of the
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Fig. 1. Two prefix-free codes, in tree representation. The letter costs are (1, 1) and (1, 3),
respectively. The code on the left is {00, 01, 10, 11}. The code on the right is {aaa, b, ab, aab}. The
costs of the two codes are, respectively, 2(p1 + p2 + p3 + p4) and 3(p1 + p2) + 4p3 + 5p4.

costs of the letters in w. (See Figure 1.)
Hulc has been extensively studied, since at least 1954. Blachman [3], Marcus

[24], and Gilbert [11] give heuristic algorithms. The first algorithm yielding an exact
solution is due to Karp, based on integer linear programming [20]. Karp’s algorithm
does not run in polynomial time. A number of other works use some form of entropy
to lower-bound the optimal cost opt, and give polynomial-time algorithms that com-
pute heuristic solutions of cost at most opt+f(cost), where f(cost) is some function
of the letter costs [22, 8, 7, 25, 2, 12]. These algorithms are not constant-factor ap-
proximation algorithms, even for fixed letter costs, because nontrivial instances can
have small opt. For further references and other uses of Hulc, see Abrahams’ survey
on source coding [1, section 2.7].

However, there is no known polynomial-time algorithm for Hulc, nor is it known
to be NP-hard. Before now, the problem was not known to have any polynomial-time
constant-factor approximation algorithm. Our main result is a PTAS.

Theorem 1.2 (PTAS for Hulc). Given any Hulc instance, the tree represen-
tation of a prefix-free code of cost at most 1 +O(ε) times minimum can be computed
in time O(n) +Oε(log

3 n).
The tree representation is a standard representation of prefix-free codes (see Def-

inition 1.6 and Figure 1). In the Oε(log
3 n) term, the subscript ε denotes that the

hidden constant in the big-O depends on ε.
We note without proof that the above PTAS can easily be adapted to show that,

given any fixed ε, the problem of (1+ ε)-approximating Hulc is in NC (Nick’s class—
polynomially many parallel processors and polylogarithmic time).

Related problems. When all letter costs are equal, Hulc reduces to standard
Huffman Coding. The well-known greedy algorithm for Huffman Coding is due
to Huffman [16]. The algorithm runs in O(n) time, or O(n log n) time if p is not
sorted.

When the letter costs are fixed integers, Golin and Rote give a dynamic program-
ming algorithm that produces exact solutions in time O(n2+maxj cost(�j)) [13]. This
is improved to O(nmaxj cost(�j)) for alphabets of size 2 by Bradford et al. [4] and for
general (but fixed) alphabets by Dumitrescu [9].

When all the probabilities are equal (each pj = 1/n), Hulc is the Varn Coding

problem, which is solvable in polynomial time [28, 23, 6, 26, 14, 5].
Finally, Alphabetic Coding is like Huffman Coding but with an additional

constraint on the code: the order of the given probabilities matters—their respec-
tive codewords must be in increasing alphabetic order. (Here the probabilities are
not assumed to be in sorted order.) Alphabetic Coding with Letter Costs
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(also called Dichotomous Search [15] or the Leaky Shower problem [19]) mod-
els designing testing procedures where the time required by each test depends upon
the outcome [21, (section 6.2.2, Example 33)]. That problem has a polynomial-time
algorithm [18].

Basic idea of the PTAS. To give some intuition for the PTAS, consider the
following simple idea. Without the prefix-free constraint, Hulc would be easy to
solve: to find an optimal code X , one could simply enumerate the strings in Σ∗ in
order of increasing cost, and take Xi to be the ith string enumerated.

The cost of this optimal non–prefix-free code X is certainly a lower bound on
the minimum cost of any prefix-free code. Now consider modifying X to make it
prefix-free as follows. Prepend to each codeword Xi its length, encoded in a prefix-
free binary encoding. That is, take X ′

i = enc(|Xi|)Xi, where enc(�) is any natural
prefix-free encoding of integer �. (For example, make the standard binary encoding
prefix-free by replacing 0 and 1 by 01 and 10, respectively, then append a 00.) The
resulting code is prefix-free, because knowing the length of an upcoming codeword
is enough to determine where it ends. And, intuitively, the cost of X ′ should not
exceed the cost of X by much, because each codeword in X with � letters has only
O(log2 �) ≤ O(ε�) letters added to it. Thus, the cost of prefix-free code X ′ should be
at most 1 + O(ε) times the cost of X , and thus at most 1 + O(ε) times the cost of
opt.

Why does the above idea fail? It fails because log2 � is not O(ε�) when � <
O(ε−1 log ε−1). That is, when a codeword is small, prepending its length can increase
its cost by too much. To work around this, we handle the small codewords separately,
determining their placement by exhaustive search. This is the basic idea of the PTAS.
The rest of the paper gives the technical details.

Terminology and definitions. For technical reasons, we work with a general-
ization of Hulc in which codewords can be restricted to a given universe U , as given
next.

Definition 1.3 (Hulc with restricted universe). The input is a Hulc instance
(p,Σ, cost) and a codeword universe U ⊆ Σ∗. The universe U is specified by a finite,
prefix-free set R ⊂ Σ∗ of “roots” such that U consists of the strings with a prefix in
R. The problem is to find a code of minimum cost among the prefix-free codes whose
codewords are in U .

Formally, U is defined from the given root set R ⊂ Σ∗ as the set of strings x ∈ Σ∗

such that prefixes(x) ∩ R �= ∅, where prefixes(x) denotes the set of all prefixes of x.
The universe is necessarily closed under appending letters (that is, if x ∈ U and y has
x as a prefix, then y ∈ U). If U = Σ∗ (i.e., R contains just the empty string), then
the problem is Hulc as defined at the start of the paper.

In any problem instance, we assume the following without loss of generality:
• There are at most n letters in the alphabet Σ, and they are {0, 1, . . . , |Σ|−1}.
• The letter costs are increasing: cost(0) ≤ cost(1) ≤ · · · ≤ cost(|Σ| − 1).
(If not, sort them first, adding O(n log n) or less to the run time.)
• The codeword probabilities are decreasing: p1 ≥ p2 ≥ · · · ≥ pn.
(If not, sort them first, adding O(n log n) to the run time.)

Definition 1.4 (monotone code). A code X is monotone if

cost(X1) ≤ cost(X2) ≤ · · · ≤ cost(Xn).

For any code X , reordering its codewords to make it monotone does not increase
its cost (since p is decreasing), so we generally focus on monotone codes.
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Next we define two more compact representations of codes.
Definition 1.5 (signature representation). Given a set X ⊆ Σ∗, its signature

is the vector x such that xi is the number of strings in X that have cost i. (Recall
that letters, and thus codewords, have integer costs.)

In Figure 1, the first code has signature (0, 0, 4); the second code has signature
(0, 0, 0, 2, 1, 1).

Many codes may have the same signature, but any two (monotone) codes with the
same signature are essentially equivalent. For example, the signature x of a monotone
code X determines cost(X ): indeed, cost(Xk) = i(k), where i(k) is the minimum i
such that x1 + · · ·+ xi ≥ k.

Definition 1.6 (tree representation). The tree representation of a code X is a
forest with a node v(s) for each string s ∈ prefixes(X ) ∩ U , and an edge from each
(parent) node v(s) to (child) node v(s′) if s′ = s� for some letter � ∈ Σ. Each root of
the forest is labeled with its corresponding string in R.

For standard Huffman coding (with just two equal-cost letters {0, 1} and U = Σ∗),
the tree representation is a binary tree. Each codeword traces a path from the root,
with 0’s corresponding to left edges and 1’s to right edges. See, for example, X1 in
Figure 1. If U �= Σ∗, the tree representation can be a forest (that is, it can have
multiple trees, each with a distinct root in R).

A code is prefix-free if and only if, in its tree representation, all codewords are
leaf nodes.

Definition 1.7 (levels). The ith level of a set X ⊆ Σ∗ contains the cost-i strings
in X . (See the horizontal lines in Figure 1.)

Additional terminology and notation. Throughout the paper, ε is an arbitrary con-
stant strictly between 0 and 1/2. The PTAS returns a near-optimal code—a code of
cost 1+O(ε) times the minimum cost of any prefix-free code. The terms “nearly,” “ap-
proximately,” etc., generally mean “within a 1+O(ε) factor.” The notation Oε(f(n))
denotes O(f(n)), where the hidden constant in the big-O can depend on ε.

Given a problem instance I, the cost of an optimal solution is denoted opt(I),
or just opt if I is clear from context. As is standard, [n] denotes {1, 2, . . . , n}. We
let [i..j] denote {i, i+ 1, . . . , j}.

The rest of the paper proves Theorem 1.2. The value of the second-largest letter
cost, i.e., cost(1), is a major consideration in the proof. We first describe a PTAS
for the case when cost(1) ≤ 3/ε; we then reduce the general case to that one. For
efficiency, the PTAS works mainly with code signatures; in the last step, it converts
the appropriate signature to a tree representation.

See Figure 2 for a summary of the three remaining sections and the five subsections
of section 2.

2. Computing the signature of a near-optimal code when cost(1) ≤ 3/ε.
This section gives the core algorithm of the PTAS. Given any instance in which
cost(1) ≤ 3/ε, the core algorithm computes the signature of a near-optimal prefix-free
code for that instance. (Recall that all letter costs are integers.) Formally, in this
section we prove the following theorem.

Theorem 2.1. Fix any instance I = (p,Σ, cost,U) of Hulc with restricted
universe such that cost(1) ≤ 3/ε. Let P be the cumulative probability distribution for
p: P� =

∑
k≤� pk (for � ∈ [n]). Let σ be the signature of Σ. Let r be the signature of

the roots of U . Assume that P , σ, and r are given as inputs.
Then the signature and approximate cost of a prefix-free code (for I) with cost at

most (1 +O(ε))opt(I) can be computed in time Oε(log
2 n).
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Section 2. For instances in which cost(1) ≤ 3/ε, the signature x of a near-optimal
prefix-free code can be computed in time Oε(log

2 n), provided that the following inputs
are precomputed: the cumulative probability distribution P (for the distribution p) and
the signatures σ and r of, respectively, the alphabet Σ and the roots R of the universe U .
(These inputs p, σ, and r can be precomputed in O(n) time.)

Section 3. From the signature x, the tree can be built in O(n) +Oε(log
2 n) time.

Section 4. Any arbitrary instance of Hulc reduces to Oε(log n) instances with cost(1) ≤
3/ε, which can in turn be solved by the PTAS from sections 2 and 3, giving the full PTAS.

Breakdown of section 2 (finding a near-optimal signature when cost(1) ≤ 3/ε).
Sections 2.1–2.4 define and analyze certain structural properties related to near-optimal
codes. Section 2.5 uses these properties to assemble the PTAS for instances with cost(1) ≤
3/ε.

Section 2.1. In a τ -relaxed code, codewords of cost at least a given threshold τ are
allowed to be prefixes of other codewords. For appropriate (constant) τ , this relaxation
(finding a min-cost τ -relaxed code) has a gap of 1 +O(ε)—a given τ -relaxed code can be
efficiently “rounded” into a prefix-free code without increasing the cost by more than a
factor of 1 +O(ε).

Thus, it suffices to find a near-optimal τ -relaxed code and then round it.
Any τ -relaxed code X is essentially determined by its set X<τ codewords of cost less

than τ . This observation alone is enough to give a slow PTAS for instances with cost(1) ≤
3/ε: exhaustively search the possible signatures f of X<τ to find the best.

This would give run time nOε(1). The remaining subsections improve the time to
O(n) +Oε(log

2 n).

Section 2.2. Restricting attention to a relatively small subset of τ -relaxed codes, so-called
group-respecting codes, increases the cost by at most a 1 + O(ε) factor. Thus, it suffices
to find an optimal group-respecting τ -relaxed code. This observation reduces the search
space size to a constant.

Section 2.3. There is a logarithmic-size set L of levels such that, without loss of generality,
we can consider only codes with support in L—that is, codes whose tree representations
have (interior or codeword) nodes only in levels in L. Thus, it suffices to find an optimal
group-respecting τ -relaxed code with support in L.
Section 2.4. The problem of finding the signature of such a code is formally modeled via
an integer linear program, ilp. Thanks to section 2.3, ilp has logarithmic size. Further,
given the values of just a constant number of key variables of ilp, an optimal (greedy)
assignment of the rest of the variables can easily be computed in logarithmic time.

Section 2.5. Putting the above pieces together, the PTAS for instances with cost(1) ≤ 3/ε
enumerates the constantly many possible assignments of the key variables in ilp, then
chooses the solution giving minimum cost. This gives the signature x of a near-optimal τ -
relaxed code, which is converted via the rounding procedure of section 2.1 into the desired
signature x′ of a near-optimal prefix-free code.

Fig. 2. Outline of the proof of Theorem 1.2 (PTAS for Hulc).

Throughout this section, in proving Theorem 2.1, assume cost(1) ≤ 3/ε. (The
proof holds for any instance in which cost(1) = Oε(1); we focus on the case cost(1) ≤
3/ε only because later we reduce the general case to that case.)

2.1. Allowing codes to be τ -relaxed. In a τ-relaxed code, codewords of cost
at least τ can be prefixes of other codewords, as illustrated in Figure 3.

Definition 2.2 (relaxation τ -Relax). Given a threshold τ ≥ 0, a code X is
τ -relaxed if no codeword of cost less than τ is the prefix of another codeword. (Prefix-
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Fig. 3. Tree representation of a τ -relaxed code X with four codewords in levels less than τ = 6.
The 21 codewords in levels τ and higher can be prefixes of other codewords, so they are taken to be
the cheapest 21 strings that have no prefix in X of cost less than τ .

free codes are τ-relaxed, but not vice versa.)
τ -Relax is the problem of finding a minimum-cost τ-relaxed code for a given

instance of Hulc.
Hulc reduces to τ -Relax. Specifically, if the threshold τ is appropriately chosen,

the relaxation changes the optimal cost by at most a 1 +O(ε) factor, as shown next.
Lemma 2.3 (relaxation gap). Fix threshold τ = 
log2[cost(1)/ε] cost(1)/ε�.

Given a τ-relaxed code X for any Hulc instance, there exists a prefix-free code X ′

such that cost(X ′) = (1+O(ε)) cost(X ). The code X ′ is produced by calling procedure
Round(X ).

Proof. The procedure Round is Algorithm 2.1, below. Roughly, for each codeword
of cost τ or more in X , Round inserts the cost, i, (encoded in a simple prefix-free
binary code, as specified in step 1 of the algorithm) into the codeword, starting at
level τ . For technical reasons, instead of the cost i, it actually inserts i − τ̂ , where τ̂
is the minimum cost of any codeword in the code of cost at least τ .

Algorithm 2.1. Round: Construct a prefix-free code from a τ-relaxed code.

given: τ-relaxed code X (for τ = 
log2[cost(1)/ε] cost(1)/ε�).
return: Prefix-free code X ′ of cost (1 +O(ε)) cost(X ).
1: Define enc(0) = 00. For integer i > 0, define enc(i) to be the encoding of i

obtained from the binary representation of i by replacing each 0 by 01, each 1 by
10, and finally appending 00.
Note that {enc(i) : i = 0, 1, 2, . . .} is prefix-free.

2: Let τ̂ = min{cost(Xk) : cost(Xk) ≥ τ}.
3: for each codeword Xk of cost τ or more do
4: Round the codeword: let x be the smallest prefix of Xk of cost τ or more

that is in U ; let y be the remaining suffix; replace the codeword Xk = xy by
X ′

k = x enc(cost(xy)− τ̂ )y.
5: Return the rounded code X ′.

Here is why the code X ′ returned by Round is prefix-free. Since X is τ -relaxed,
codewords of cost less than τ are not prefixes of any other codeword. Any codeword
of cost i ≥ τ , once rounded, cannot be a prefix of any nonrounded codeword because
the nonrounded codewords have cost less than τ . It cannot be a prefix of any rounded
codeword because in any rounded codeword the string enc(i− τ̂ ) (which immediately
follows its unique minimal prefix x of cost τ or more in U) uniquely determines the
cost of the remaining suffix y. Thus, X ′ is prefix-free.

Here is why X ′ has cost (1 + O(ε)) cost(X ). Modifying a codeword of cost i ≥ τ
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increases its cost by at most 2 cost(1)
log2 i�. Since i ≥ τ and τ is chosen2 so that
cost(1) log τ = O(ετ), the increase is O(εi).

Each modified codeword is still in U because, in any codeword xy that is modified,
the unmodified prefix x is in U , so xz is in U for any string z.

Remark for intuition—A slow PTAS. Lemma 2.3 alone is enough to give an
nOε(1)-time PTAS for Hulc (when cost(1) ≤ 3/ε). The intuition is as follows.

A minimum-cost τ -relaxed code X can be found as follows (much more easily than
a minimum-cost prefix-free code). Let X<τ denote the set containing the codewords
in X of cost less than τ . Given just X<τ , the optimal way to choose the remaining
codewords (those in X − X<τ ) is greedily: those remaining codewords must simply
be some n− |X<τ | cheapest available strings among those that have no prefix in X<τ .
In short, the optimal τ -relaxed code X is essentially determined by its set X<τ of
codewords of cost less than τ .

In fact, the code X is essentially determined by just the signature f of this set
X<τ (the signature f essentially determines X<τ , which in turn determines X ). Each
such signature is a distinct function f : [τ ]→ [0..n]. There are (n+1)τ such functions.

Recall that, as defined in Lemma 2.3, the threshold τ is Oε(1). (The assumption
cost(1) ≤ 3/ε and the choice of τ ≈ log[cost(1)/ε] cost(1)/ε imply τ = O(log(1/ε)/ε2).)
Thus, the number (n+ 1)τ of such functions is nOε(1).

The PTAS is as follows: exhaustively search all such functions f . For each,
construct a minimum-cost τ -relaxed code X such that X<τ has signature f . (If any
such code X exists, it can be constructed greedily from just f as described above.)
Finally, take Xmin to be the code of minimum cost among the τ -relaxed codes X
obtained in this way, take X ′ to be the prefix-free code produced by Round(Xmin),
and, finally, return X ′.

By Lemma 2.3, the prefix-free code X ′ obtained by rounding Xmin has cost (1 +
O(ε)) cost(Xmin). By its construction, Xmin is an optimal τ -relaxed code. Since any
prefix-free code is also τ -relaxed, the cost of Xmin is at most the cost of the minimum-
cost prefix-free code, opt. Transitively,

cost(X ′) ≤ (1 +O(ε)) cost(Xmin) ≤ (1 +O(ε))2 opt = (1 +O(ε))opt .

That is, the algorithm is a PTAS.
The rest of the paper is about reducing the running time (in sections 2 and 3)

and reducing the general case to the case cost(1) ≤ 3/ε (in section 4).

2.2. Restricting to group-respecting τ -relaxed codes. By Lemma 2.3, to
find a near-optimal prefix-free code, it suffices to find a near-optimal τ -relaxed code
X and then “round” X .

As described in the remark in section 2.1, this fact yields a PTAS, one that works
by exhaustively searching the potential signatures f for the set X<τ of codewords
of cost less than τ . This gives an optimal τ -relaxed code X , which the PTAS then
rounds to a near-optimal prefix-free code.

The run time of this PTAS is high because there are nOε(1) potential signatures.
To reduce the run time, we next show how to compute a set S of signatures that

has constant size yet is nonetheless still guaranteed to contain a good signature—that
is, the signature f of some set X<τ that extends to a near-optimal τ -relaxed code X .

2The condition cost(1) log τ = O(ετ) is equivalent to τ/ log τ = Ω(z) for z = cost(1)/ε. This
holds because the choice of τ implies τ ≥ z log z, which (using log z ≤ z and some algebra) implies
τ/ log τ ≥ z/2.
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To compute this set S, we restrict our attention to codes that choose the code-
words in levels less than τ in a restricted way. In particular, we partition the prob-
abilities {pi}i into a constant number of groups. We then consider only codes that,
within the levels less than τ , give all probabilities within each group codewords of equal
cost.

The partition G of p[1..n] in question is constructed greedily so that there are
O(τ/ε) = Oε(1) groups, and, within each group, either there is only one (large)
probability or the probabilities sum to O(ε/τ). Recall that p is decreasing.

Definition 2.4 (grouping). Given any Hulc instance (p,Σ, cost), ε > 0, and
τ from Lemma 2.3, define the grouping G = Gε,τ (p) of p to be a partitioning of
p’s index set [n] into some γ contiguous groups (G1, G2, . . . , Gγ), as follows: take
Gg = (j, j + 1, . . . , h), where h is maximal subject to pj + · · ·+ ph−1 ≤ ε/τ (and j is
just after the previous group ended, i.e., j = 1 +maxGg−1, or j = 1 if g = 1).

Given a τ-relaxed code X , say that X respects G if, for each group Gg, if any
index k in Gg is assigned a codeword of some cost i less than τ , then all indices in
Gg are assigned codewords of cost i. (Formally, for all g, for any k, k′ ∈ Gg, one has
max(cost(Xk), τ) = max(cost(Xk′ ), τ).)

The number of groups, γ, is at most τ/ε (because each group except the last has
total probability at least ε/τ). Also, each group Gg = (j, j + 1, . . . , h) either has just
one member, or has pj + pj+1 + ph−1 ≤ ε/τ .

Next we argue that there is always a G-respecting τ -relaxed code that is near-
optimal. To argue this, we show that any τ -relaxed code (in particular the optimal
one) can be modified, by working from level 0 to level τ−1, appending 0’s to codewords
as necessary to make the code G-respecting, while increasing the cost by at most a
1 + ε factor. More specifically, since the code is monotone, in any given level i < τ ,
at most one group Gg is “split” between that level and higher levels, and that group
has total probability O(ε/τ). We “fix” that group (by appending a 0 to its level-i
codewords) while increasing the cost of the code by O(cost(0)ε/τ). The total cost of
fixing all levels in [0, τ − 1] in this way is at most τ × cost(0)ε/τ = cost(0)ε. This is at
most ε times the total cost of the code, because any code must cost at least cost(0).

Lemma 2.5 (grouping gap). Given a τ-relaxed code X for any Hulc instance,
there exists a τ-relaxed code X ′ that is G-respecting and such that cost(X ′) ≤ (1 +
ε) cost(X ).

Proof. Let X be any τ -relaxed code. If X is not monotone, reorder its codewords
to make it monotone. For each i ∈ [τ ], in increasing order, do the following. Since
X is monotone there can be at most one group Gg that is “split” at level i, meaning
that some probabilities are assigned codewords of cost i while others are assigned
codewords of larger cost. If there is such a group, add a letter 0 to the end of each
level-i codeword assigned to that group, and then reorder the codewords above level
i to restore monotonicity. This defines X ′. (See Figure 4.)

Note that the codewords in X ′ are still in U , and that X ′ is monotone, G-
respecting, and τ -relaxed.

To finish we bound the cost increase. Clearly, reordering codewords to make a
code monotone never increases the cost. Then, if a group Gg = (j, j + 1, . . . , h) has
its codewords modified for level i, then that group must have at least two members,
and pj + pj+1 + · · ·+ ph−1 must be at most ε/τ . Thus, adding a letter 0 to the level-i
codewords assigned to Gg increases the cost of the code by at most cost(0)ε/τ . Since
there is at most one such increase for each level i < τ , the total increase in cost is
at most τ cost(0)ε/τ = ε cost(0). On the other hand, the cost of any code is at least
cost(0). Thus, the modified code X ′ has cost at most (1 + ε) cost(X ).
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Fig. 4. Making a code G-respecting. The first four groups are G1 = {1, 2}, G2 = {3, 4, 5},
G3 = {6, 7}, G4 = {8, 9, 10, 11, 12}. Iterations for levels i = 2, 3, 4 are shown, from left.

2.3. Bounding the support of τ -relaxed group-respecting codes. By
Lemma 2.5, to find a near-optimal τ -relaxed code, it suffices to find a near-optimal
G-respecting τ -relaxed code X .

In this section, we observe that any such code X (and its prefix-free rounded code
X ′, per Lemma 2.3) must have support in a logarithmic-size set L of levels. That is,
each string in prefixes(X ) ∩ U (and each node in its tree representation) must have
cost in L. Thus, for example, the signature x of such a code has support of logarithmic
size.

We use this structural property later in the paper to keep parts of the computation
time polylogarithmic. The detailed definition of L is not important; what is important
is that L can be precomputed easily and has logarithmic size.

Definition 2.6 (limited levels, L). Given any instance of τ-Relax, let τ be
as defined in Lemma 2.3. Let iR be the minimum cost of any root of U of cost at
least τ . Let iΣ be the minimum cost of any letter in Σ of cost at least τ . Let δ =
cost(1)
log2 n�. Define L, the set of possible levels, to contain the O(poly(ε−1) logn)
integers in

(2.1) [0, 2τ + 3δ] ∪ [iR, iR + 3δ] ∪ [iΣ, iΣ + τ + 3δ].

(If iR or iΣ is not well defined, take the corresponding interval above to be empty.)
To verify that L has logarithmic size, note that, since cost(1) ≤ 3/ε, it follows

that τ = O(poly(ε−1)) and δ = O(poly(ε−1) logn). Thus, by inspection, L has size
O(poly(ε−1) logn).

Next we prove that without loss of generality, in computing and rounding a τ -
relaxed code, we can limit our attention to codes having support in L.

The proof is based on local-optimality arguments (and details of the rounding pro-
cedure). The rough idea is this. Among the words in levels τ and up that are available
to be codewords, let sτ denote one of minimum cost, as shown in Figure 5. Since code-
words in levels τ and above must be taken greedily in any optimal τ -relaxed code, and
the n words of the form sτ{0, 1}�log2 n� are available to be codewords, it follows that
all codewords that lie in level τ or above should have costs in [cost(sτ ), cost(sτ ) + δ]
(recall δ = cost(1)
log2 n�). To finish the proof, we bound the values that cost(sτ )
can take, and we observe that rounding any codeword in level τ or above increases its
costs by at most 2δ.

Lemma 2.7 (limited levels). Given any instance of τ-Relax, let L be as defined
above. Then the following hold:

(i) Any minimum-cost τ-relaxed G-respecting code X has support in L.
(ii) Rounding such a code X (per Lemma 2.3) gives a prefix-free code X ′ with

support in L.
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Fig. 5.

Proof. Part (i). Let X be any minimum-cost G-respecting τ -relaxed code. As-
sume X has a codeword of cost at least τ (otherwise all nodes in the tree representation
are in [0, τ) ⊂ L, and we are done).

Say a string of cost at least τ is available if no prefix of the string is a codeword
of cost less than τ in X .

Let sτ be a minimum-cost available codeword. (There is at least one, by the
assumption that X has a codeword of cost at least τ .) Let s be the parent of sτ , so
that sτ = s� for some � ∈ Σ, as shown in Figure 5.

The n strings in S = sτ{0, 1}�log2 n� are available. Each costs at most cost(sτ )+δ,
so, in the tree representation of X , all levels i > cost(sτ ) + δ are empty. (Otherwise
X could be made cheaper by swapping in some string of cost at most cost(sτ ) + δ.)
Thus, X has support in [0, τ) ∪ [cost(sτ ), cost(sτ ) + δ].

Let X ′ be obtained by rounding X (Lemma 2.3). Any unmodified codeword has
cost less than τ . Following the notation of Algorithm 2.1, let X ′

k = x enc(i − cost(sτ ))y
be any modified codeword, so that i = cost(Xk). By the previous paragraph, i ≤
cost(sτ )+δ, and rounding increases the cost of the codeword by at most cost(enc(δ)) ≤
2 cost(1)
log2 δ� ≤ 2δ (assuming n ≥ 3/ε) to at most cost(sτ ) + 3δ. Also, by the
rounding method, the code tree is not modified below level cost(sτ ). Thus, X ′ and X
have support in [0, τ) ∪ [cost(sτ ), cost(sτ ) + 3δ].

To complete the proof, we show that these two intervals are contained within the
three intervals [0, 2τ + 3δ] ∪ [iR, iR + 3δ] ∪ [iΣ, iΣ + τ + 3δ] from the definition of L.
By inspection, this will be the case as long as

(2.2) cost(sτ ) ∈ [τ, 2τ ] ∪ {iR} ∪ [iΣ, iΣ + τ ].

We use a case analysis to show that (2.2) holds.
If it happens that s �∈ U , then sτ is a root of U , necessarily (by the choice of sτ )

of cost iR, so (2.2) holds. So assume s ∈ U . Then cost(s) < τ . (Otherwise s would
be available and have cost less than sτ , contradicting the choice of sτ .) If it happens
that cost(�) < τ , then cost(sτ ) = cost(s) + cost(�) < 2τ , so cost(sτ ) ∈ [τ, 2τ ], and
(2.2) holds. So assume cost(�) ≥ τ . In this case iΣ is well defined, and cost(�) ≥ iΣ
(as no letters have cost in [τ, iΣ), by the definition of iΣ). In fact it must be that
cost(�) = iΣ (otherwise replacing the last letter � in codeword sτ by the letter of cost
iΣ would give a string that is cheaper than sτ , contradicting the choice of sτ ). Thus,
iΣ ≤ cost(�) ≤ cost(sτ ) ≤ τ + iΣ, so cost(sτ ) ∈ [iΣ, iΣ + τ ].

2.4. A mixed integer program to find a min-cost G-respecting τ -relaxed
code. In this section we focus on the problem of finding the full signature x of an
optimal G-respecting τ -relaxed code X , for a given instance of Hulc. We describe
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minimize
∑

i,k pk i yki s.t.

xi + wi ≤ ri +
∑

j<i σi−jwj (i ∈ [m])∑
k∈[n] yki = xi (i ∈ [m])∑
i∈[m] yki = 1 (k ∈ [n])

wi, xi, yki ∈ N≥0 (i ∈ [m],
k ∈ [n])

Parameters

p — probability distribution on [n]
r — signature of U ’s root set R
σ — signature of alphabet Σ
m — n×max{cost(�) | � ∈ Σ}

Variables determining code X
x — signature of codewords (X )
w — signature of interior nodes
y — assignment; yki = 1 iff cost(Xk) = i

Fig. 6. Karp’s integer linear program (Karp) for finding a minimum-cost prefix-free code.

how this problem can by modeled by an integer linear program (ilp) that (thanks to
Lemma 2.7) has size Oε(logn).

We also identify, within ilp, a particular constant-size vector z of binary variables.
(These variables encode the assignment of the groups in G to the levels less than τ .)
We show that, given any assignment to just these constantly many binary variables, an
optimal assignment of the remaining variables can be computed greedily in Oε(log

2 n)
time. Thus, by exhaustive search over the Oε(1) possible assignments to z, one can
find an optimal solution to ilp (and hence the signature x of an optimal G-respecting
τ -relaxed code) in Oε(log

2 n) time.
The integer linear program ilp is a modification of one of Karp’s original integer

programs [20, sect. IV] for Hulc (that is, for finding a minimum-cost prefix-free
code; in contrast we seek a G-respecting, τ -relaxed code). The variables of ilp are
contained in four vectors (w, x, y, z), where x encodes the signature of the codeword
set, w encodes the signature of the set of interior nodes, y encodes the assignment
of probabilities to levels (y is determined by x, and helps compute the cost), and
z encodes the assignment of groups to levels (for levels less than τ). The basic idea
(following Karp) is that, since the numbers of various types of nodes available on level
i satisfy natural linear recurrences in terms of the numbers at lesser levels, we can
model the possible signatures by linear constraints on x and w.

For intuition, we first describe Karp’s original integer program for finding a prefix-
free code (generalized trivially here to allow a universe U with arbitrary root set
R). The inputs to Karp’s program are the probability distribution p along with the
signatures σ and r of, respectively, the alphabet Σ and the root set R. (Note that
m = nmax{cost(�) | � ∈ Σ} is a trivial upper bound on any codeword cost in any
optimal code.) Karp’s program is in Figure 6.

We call the first constraint in Karp the “capacity” constraint. Note that the
vector z is not used in Karp.

Theorem 2.8 (correctness of Karp, [20, sect. IV]). In any optimal solution
(w�, x�, y�) of Karp, the vector x� is the signature of a minimum-cost prefix-free
code, the cost of which is the cost of (w�, x�, y�).

Proof sketch. For any prefix-free code X , there is a feasible solution (w, x, y) for
Karp of cost cost(X ). To see why, consider the tree representation of X . Let xi be
the number of leaves in level i, let wi be the number of interior nodes (in U) in level
i, and let yki = 1 if cost(Xk) = i and yki = 0 otherwise. (So yki indicates whether
probability pk is assigned to level i.) Taking (w, x, y) as a solution to Karp, the
capacity constraint holds because each interior node on level j can have at most σi−j

children in level i. By inspection, the other constraints are also met, and (w, x, y) has
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minimize
∑

i,k pk i yki s.t.

if i < τ : xi + wi

(a)→ if i ≥ τ : max(xi, wi)

}
≤ ri +

∑
j<i σi−jwj (i ∈ L) ← (b)∑

k yki = xi (i ∈ L)∑
i yki = 1 (k ∈ [n])

(c)→ zgi ∈ {0, 1} (i ∈ [τ − 1], g ∈ [γ])
yki = zgi (i ∈ [τ − 1], g ∈ [γ], k ∈ Gg)

wi, xi, yki ∈ N≥0 (i ∈ L, k ∈ [n])

Fig. 7. An integer program ( ilp) for computing an optimal τ -relaxed, G-respecting code. In-
novations (a), (b), and (c) are described in the text.

cost equal to cost(X ).
Conversely, given any feasible solution (w, x, y), one can greedily construct a code

X with signature x by building its tree representation level by level (in order of
increasing i ∈ L), adding wi interior nodes and xi codeword nodes in level i. The
capacity constraint ensures that there are enough parents (and roots) to allocate each
level’s nodes.

Next we modify Karp to model our problem: finding the signature x of a
minimum-cost G-respecting τ-relaxed code (instead of a minimum-cost prefix-free
code). The modified program, denoted ilp, is shown in Figure 7. The program
differs from Karp’s in three ways, labeled (a), (b), and (c) in the figure:

(a) For i above the threshold τ , the left-hand side of the capacity constraint is
replaced by max(xi, wi). This models τ -relaxed codes, in which codeword
nodes in level i ≥ τ can also be interior nodes.

(b) The indices i (and j) range over the set L of possible levels, instead of [m]
(per Definition 2.6). Restricting i and j to levels within L is without loss of
generality by Lemma 2.7.

(c) There are τγ new 0/1 variables: one variable zgi for each group Gg (g ≤ γ)
and level i < τ .

The new z variables enforce the restriction to G-respecting codes. Specifically,
they constrain the y variables to force all probabilities within a given group to be
assigned to the same level (if any is assigned to a level below τ): zgi will be 1 if and
only if group Gg is assigned to level i < τ . (If a group is not assigned to any level
below τ , then all its zgi’s will be zero.)

Next we state the formal correctness of ilp: that the feasible solutions to ilp do
correspond to the (signatures of the) G-respecting τ -relaxed codes.

Lemma 2.9 (correctness of ilp). (i) Given any minimum-cost τ-relaxed G-
respecting code X , the integer program ilp has a feasible solution (w, x, y, z) of cost
cost(X ), where x is the signature of X .

(ii) Conversely, given any solution (w, x, y, z) of ilp, there is a τ-relaxed G-
respecting code X having signature x and with equal (or lesser) cost.

Proof sketch. (A detailed proof is in the appendix.)
The proof is a simple extension of the proof of Theorem 2.8. In the forward

direction, the capacity constraint is met because, in any τ -relaxed code, codeword
nodes in levels τ and higher can also be interior nodes. In the backward direction,
the code is G-respecting because of the constraint yki = zgi (for g ≤ γ, k ∈ Gg, and
i < τ).
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Remark. We remark without proof that the integrality constraints on w, x, and
y (in the final line of ilp) can be dropped, giving a mixed integer linear program. (In
any optimal basic feasible solution to the latter program, w, x, and y will still take
only integer values.)

Note that a particular assignment of the z variables determines the assignment
of groups in G within each level in [0, τ − 1]. As previously discussed, this in turn
essentially determines the rest of the τ -relaxed code, as codewords in levels τ and above
should be chosen greedily. Thus, given any particular assignment of the variables in
z, there is a natural optimal assignment of the remaining variables (w, x, y). We call
this (w, x, y, z) the greedy extension of z. Here is the formal definition.

Definition 2.10 (greedy extension). Given any z with values in {0, 1} such
that

∑
i zgi ≤ 1 for each g, define the greedy extension of z for ilp to be the tuple

(ŵ, x̂, ŷ, z) of all-integer vectors defined as follows:
1. In each level i < τ , in increasing order, define x̂i and ŵi as follows. Let x̂i be

the number of probabilities that z assigns to level i; that is, x̂i =
∑

g:zgi=1 |Gg|. Let

ŵi be the number of interior nodes left available in level i. That is, let ŵi be maximal
subject to the capacity constraint.

2. For each level i ≥ τ , in increasing order, take interior and codeword nodes
greedily: take x̂i and ŵi to be maximal subject to the capacity constraint for i and the
constraint

∑
j≤i x̂j ≤ n.

3. Among vectors y such that the tuple (ŵ, x̂, y, z) is feasible for ilp, let ŷ be one
giving minimum cost (breaking any ties by assigning probabilities with lesser indices
to lesser levels).

Note: In step 1, if it happens that the capacity constraint is violated even with
ŵi = 0, then there is no G-respecting τ -relaxed code for the given z, and the greedy
extension of z is not well defined.

In step 2, if it happens that some probabilities are not assigned to any level below
τ (i.e.,

∑
i<τ x̂i < n) but no nodes are available in higher levels (i.e., for all i ≥ τ the

right-hand side of the capacity constraint is 0), then there is no G-respecting τ -relaxed
code for the given z, and the greedy extension of z is not well defined.

Since codewords in levels τ and higher should be assigned greedily, the greedy
extension is optimal, as shown next.

Lemma 2.11 (optimality of greedy extension). Fix any z for which there is any
feasible extension (x,w, y, z) for ilp. Then the greedy extension (ŵ, x̂, ŷ, z) of z is
well-defined, feasible, and has minimum cost.

The proof is straightforward; it is given in the appendix.
The next corollary summarizes what is needed from this section.
Corollary 2.12 (correctness of ilp). Fix any instance of Hulc.
(i) Fix any z that has some feasible extension for ilp. Then the greedy extension

(ŵ, x̂, ŷ, z) of z is well defined, feasible, and has minimum cost.
(ii) Let (w�, x�, y�, z�) be an optimal solution to ilp. Then x� is the signature of

a minimum-cost G-respecting τ-relaxed code.
Part (i) of the corollary is just Lemma 2.11. Part (ii) follows from Lemma 2.9.

2.5. Proof of Theorem 2.1. We now prove Theorem 2.1, which is restated
here for convenience.

Theorem 2.1. Fix any instance I = (p,Σ, cost,U) of Hulc with restricted
universe such that cost(1) ≤ 3/ε. Let P be the cumulative probability distribution for
p: P� =

∑
k≤� pk (for � ∈ [n]). Let σ be the signature of Σ. Let r be the signature of

the roots of U . Assume that P , σ, and r are given as inputs.
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0. Let τ = 
cost(1) log2(cost(1)/ε)/ε�.
1. Compute grouping G = G(p) (Definition 2.4) and set of levels L (Defini-
tion 2.6).

2. For each possibly feasible assignment ẑ to z in ilp:

2a. compute just ŵ and x̂ of the greedy extension of ẑ (Definition 2.10);

2b. from x̂, compute the cost of the greedy extension of ẑ (if well defined).

Select (w�, x�, z�) to be the (ŵ, x̂, ẑ) giving minimum cost among those computed.

3. Without explicitly computing the τ -relaxed code X with signature x�, compute
the signature x′ and approximate cost of the prefix-free code X ′ = Round(X ).

Fig. 8. The steps of the PTAS for the case cost(1) ≤ 3/ε.

Then the signature and approximate cost of a prefix-free code (for I) with cost at
most (1 +O(ε))opt(I) can be computed in time Oε(log

2 n).
Proof. By Lemmas 2.3–2.7 and Corollary 2.12, the steps in Figure 8 give the

signature x′ and cost.
To finish, we show that each of these steps can be done in Oε(log

2 n) time, given
P , σ, and r.

Step 1. Compute G (in particular, the first and last index of each group Gg) as
follows. By inspection of Definition 2.4, for each group Gg = (j, . . . , h), the index h
can be computed in O(log n) time from P by binary search. There are at most τ/ε
groups, so the total time is O((τ/ε) log n) = Oε(log n).

Compute L in time O(|L|) = Oε(logn) as follows. Following Definition 2.6,
compute iR and iΣ in O(τ) = Oε(1) time (assuming r and σ are given as sorted lists
or arrays indexed by i), and then enumerate L.

Step 2. There are at most τ |G| = Oε(1) possibly feasible assignments to z. (An
assignment chooses a level in [τ − 1], or no such level, for each group index g ∈ [γ];
although ilp allows other assignments to z in which

∑
i zgi > 1, none of those will

have a feasible extension because they force
∑

i yki > 1 for k ∈ Gg.)
For each such assignment ẑ, to compute just ŵ and x̂ of the greedy extension

(Definition 2.10), observe that all x̂i with i < τ can be set in total time O(|G|) =
O(γ) = Oε(1) using x̂i =

∑
g:ẑgi=1 |Gg|. Then, the ŵi (for i ∈ L) and the x̂i (for

i ∈ L, i ≥ τ) can each be computed in time O(|L|) (the time it takes to compute∑
j<i σi−jwj), for a total time of O(|L|2) = Oε(log

2 n).
Given ẑ and x̂, the cost of the code can then be computed (without computing y!)

as follows. The probability associated with a group Gg is P [maxGg]− P [maxGg−1].
The contribution of levels less than τ to the cost is

∑
g

∑
i<τ i ẑgi(P [maxGg] −

P [minGg − 1]).
The cumulative cost of codewords in levels i ≥ τ can be computed as follows. Con-

sider those groups Gg that are not assigned to the lower levels, in order of increasing
g. Break the groups as necessary into smaller pieces, while assigning the pieces mono-
tonically to the levels i = τ, τ + 1, . . . , so that each level i is assigned pieces of total
size xi. (At most |G| + |L| − τ pieces will be needed to do this.) Once all pieces
are assigned levels, compute their cumulative cost as the sum, over the pieces, of the
cumulative probability in the piece times the assigned level. In this way, the cost of
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the code for a given ẑ and x̂ can be computed in time O(|G|τ + |G|+ |L|) = Oε(log n).
Since there are Oε(1) assignments ẑ to consider and, for each, x̂ can be computed

in Oε(log
2 n) time, the total time to find the minimum-cost signature x is Oε(log

2 n).
Step 3. By inspection of Round in the proof of Lemma 2.3, for each codeword of

cost i ≥ τ in X , there is a codeword of cost i+cost(enc(i− τ̂ )) in X ′. Thus, x′ can be
computed directly from x by taking x′

i = xi for i < τ , and for the rest, starting with
x′
i = 0 and then, for each i ≥ τ , incrementing x′

i′ by xi, where i
′ = i+cost(enc(i − τ̂)).

The cost of X ′ is 1 +O(ε) times the cost of the τ -relaxed code with signature x,
which is, in turn, the cost of the solution (w, x, y, z) to ilp, which is known from the
previous step.

This completes the proof of Theorem 2.1.
The following observations about the proof are useful in the next section. By

Lemma 2.7, the code whose signature is produced has support in L. Thus, the tree
representation uses only the roots of U that lie in levels in L. Similarly, by inspection
of ilp, its solution requires only those ri with i ∈ L. We summarize as follows.

Observation 2.13. The computation in Theorem 2.1 produces a signature x for
a code with support in L. The computation does not require the full signature r of the
roots of U , but relies only on the ri such that i ∈ L (the set L of possible levels from
Definition 2.6).

3. Computing the tree representation from the signature. For the case
cost(1) ≤ 3/ε, Theorem 2.1 proves that the signature (and cost) of a near-optimal
prefix-free code can be efficiently computed, but says nothing about computing a more
explicit representation of the code. Here we address this by proving Theorem 3.1,
which describes how to compute the tree representation in O(n) + Oε(log

2 n) time,
given the signature x.

Given the signature, it would be easy to compute the tree-representation F using
a root-to-leaves greedy algorithm in time O(|F | + |L|) (where |F | is the number of
nodes in F ). Roughly, one could just allocate the nodes and edges of F appropriately
in order of increasing level i ∈ L. Unfortunately, F might not have size O(n), because
in the worst case it may have many long chains of interior nodes, each with just one
child.3

One could of course modify F , splicing out nodes with just one child, so as to build
a new tree F ′ whose size is O(n) and whose cost is less than or equal to the cost of
F . However, if the algorithm were to explicitly build F from the signature, and then
modify F into F ′ as described, it would still take time at least O(|F |), which could be
excessive. To prove the theorem below, we describe how to bypass the intermediate
construction of F , instead building F ′ directly from x, in time O(|F ′|) + Oε(log

2 n),
where |F ′| = O(n).

Theorem 3.1. Given any instance I = (p,Σ, cost,U) of Hulc with restricted
universe such that cost(1) ≤ 3/ε, and given the signature x of some prefix-free code
X with support in L, one can construct the tree representation of a prefix-free code
X ′ that has cost at most cost(X ). The running time is O(n) + Oε(log

2 n). The tree
representation has O(n) nodes.

Proof. Starting from the signature x, we first compute various signatures for a
tree F whose codeword nodes have signature x. Specifically, we compute both w (the
signature of the interior nodes of F ) and an “edge signature” e—where eji is the
number of edges from level j to level i > j in F . In fact the signature x does not

3Indeed, for some instances, there are signatures that force this to happen.
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uniquely determine e or w, so we make some arbitrary choices to fix a particular F
with codeword signature x.

Here are the details of how to compute w and e in time O(|L|2).
1. To start, initialize vector w so that the capacity constraint for Karp (on the

left below) holds with x:

the capacity constraint for Karp

xi + wi ≤ ri +
∑
j<i

σi−jwj (i ∈ L)
constraints defining edge signature e

xi + wi ≤ ri +
∑
j<i

eji (i ∈ L)

wji = 
eji/σi−j� (i, j ∈ L, j < i)
wj = max

i>j
wji (j ∈ L)

(Achieve this as follows. For each i ∈ L, in increasing order, choose wi maximally
subject to the ith capacity constraint. This assignment to w will satisfy the capacity
constraints (with x) if any assignment to w can.)

2. In the edge-signature constraints on the right above, eji represents the number
of edges from level j to level i > j, and wji represents the number of interior nodes in
level j with children in level i > j. Initialize the edge signature e and the wji’s so that
these constraints are met. (To do this, take eji = σi−jwj and wji = wj for all i and
j. Since the capacity constraints for Karp are satisfied by x and w, by inspection,
the edge-signature constraints for e on the right above will also be satisfied.)

3. Next, lower w, e, and possibly r so that all of the edge-signature constraints
above are tight. (Achieve this by mimicking a leaves-to-root scan over the tree that
deletes “unused” interior nodes and edges, as follows. For each j ∈ L, in decreasing
order, for each i ∈ L with i > j, lower eji as much as possible subject to the first
edge-signature constraint for i ∈ L, then update wji and wi. Finally, if the first
edge-signature constraint for some i ∈ L is still loose, it must be that

∑
j<i eji = 0,

so lower ri to xi + wi to make the constraint tight.)
4. In F , if for some edge (a, b), b is a’s only child, then call the node a useless.

(Contracting such edges would give a better code.) Call all other nodes (including
codeword nodes) useful. For each j, count the number uj of useless nodes in level j
as follows. For definiteness, order the level-j nodes arbitrarily and assume that, for
each i, j ∈ L with i > j, the nodes in level j that have children in level i are the
first wji interior nodes in level j, and that all but the last of these wji nodes has the
maximum possible number (σj−i) of children in level i (so that the last such node has
eji mod σj−i children in level i). Then count the useless nodes in level j as follows.
Let i′ = argmaxiwji and i′′ = argmaxi	=i′ wji be the two levels having the most
and second-most children of nodes in level j. (So wi = wji′ ≥ wji′′ .) If it happens
that σj−i′ = 1, then the last wj − wji′′ level-j interior nodes have only one child, so
uj = wj − wji′′ . Otherwise (σj−i′ ≥ 2), only the last level-j interior node can have
just one child (because all others have σj−i′ edges to level i′). The number of level-i′

children of that last node is eji′ mod σj−i′ . If this quantity is 1 and wji′′ < wi (the
node has no children in level i′′), then uj = 1, and otherwise uj = 0.

5. Define F ′ to be the subforest of F induced by useful nodes and their children.
Explicitly construct F ′ as follows. For each level j ∈ L in decreasing order, do the
following. Create the xj codeword nodes and the wj − uj nonuseless interior nodes.
Then, following the description of the edges in F from step 4 above, for each i > j,
add up to eji edges greedily from each of the first min(wji, wj − uj) interior nodes
(adding at most σi−j edges from each node) to parentless nodes in level i (giving those
nodes parents). If there are not enough parentless nodes in level i to do this, create



700 M. J. GOLIN, C. MATHIEU, AND N. E. YOUNG

new childless interior nodes in level i as needed (these new nodes are useless children
of nonuseless nodes; in step 6, below, they are the stubs). Among all xj +wj−uj new
nodes instantiated in level j, designate as many as possible (min(xj + wj − uj, rj))
as roots, and designate the rest as (temporarily) parentless. Nonroot nodes might be
left parentless (these are nodes whose parents were useless in F ; in step 6, they are
the orphans).

6. Next consider the nonroot parentless nodes in F ′ (call these orphans), and the
(useless) childless interior nodes in F ′ (call these stubs). The nodes in F − F ′ are
interior nodes with one child whose parents also have one child, so in F the nodes in
F−F ′ form vertex-disjoint paths connecting each orphan d to a unique stub A(d) (the
child of d’s first nonredundant ancestor in F ). Thus, the number of orphans equals
the number of stubs. Make a list a1, a2, . . . , ak of the stubs, and a list d1, d2, . . . , dk
of the orphans, both ordered by increasing level (breaking ties arbitrarily). Finally,
modify F ′ as follows. For each pair of nodes (aj , dj), identify aj and dj—that is, make
dj the child of aj ’s parent in place of aj . The resulting forest is F ′′.

Correctness. Let X ′ be the monotone code with tree representation F ′′. By
construction, X ′ is prefix-free, has codewords in U , and has signature x. To prove
that F ′′ has cost no greater than the cost of F , we observe that each leaf node in F has
a corresponding leaf node in F ′′ and observe that, in the last step of the construction,
going from F ′ to F ′′, cannot increase the level of any orphan dj . Indeed, suppose for
contradiction that the level of some dj in F is strictly less than the level of its paired
node aj . Thus, the j stub nodes A(d1), A(d2), . . . , A(dj) are in levels strictly less than
the level of aj . Each of these j nodes must precede aj in the ordering a1, a2, . . . , ak
of stub nodes, but only j − 1 nodes can do so.

Time. The time for constructing x, w, and e is O(|L|2) = Oε(log
2 n). By inspec-

tion, the forest F ′′ can be constructed from w, x, and e in time O(|L|2 + |F ′′|). In F ′′

there are n leaves, and each interior node has at least two children, so |F ′′| ≤ 2n.

4. Computing the signature of a near-optimal code when cost(1) ≥ 3/ε.
The preceding sections give a complete PTAS for instances of Hulc with cost(1) ≤
3/ε. In this section, the goal is to extend the PTAS to handle arbitrary letter costs.
Note that if the letter costs were fixed (not part of the input), then for small (but
still constant) ε it would be the case that cost(1) ≤ 3/ε, so the PTAS in the preceding
sections could be applied as it stands. But since letter costs are part of the input, as
we’ve defined Hulc, we cannot assume that cost(1) is constant; we have to handle
the case when cost(1) grows asymptotically.

Unfortunately, the PTAS in the preceding sections makes fundamental use of the
assumption that cost(1) = Oε(1). Indeed, that restriction is what ensures that the
relaxation gap for τ -relax is 1 +O(ε) for some threshold τ = Oε(1). In turn, using a
threshold τ with value Oε(1) is central to the polynomial running time. This approach
does not seem to extend to handle instances in which the ratio cost(0)/ cost(1) is quite
small (e.g., decreasing with n). We need another approach for handling the case when
cost(0) is quite small.

4.1. Reducing to coarse letter costs. We start with a simple scaling and
rounding step (a standard technique in PTAS’s), to bring the letter costs into a
restricted form that is easier to work with. Ideally, we would like to make (i) all letter
costs integers and (ii) cost(1) ≤ 3/ε, for then the preceding PTAS would apply. We
almost achieve these two conditions, failing only in that cost(0) may end up being
noninteger. More specifically, we scale and round the costs to make them coarse, as
follows.
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Definition 4.1. The letter costs are coarse if
• the second-cheapest letter cost, cost(1), is in the interval [1/ε, 3/ε]; and
• all letter costs are integers, except possibly cost(0), which may instead be the
reciprocal of an integer.

Note well that throughout this section cost(0) is not necessarily an integer—it
may instead be the reciprocal of an integer, i.e., cost(0) = 1/N for some integer N .
All other letter costs are still integers.

Here are the specific scaling and rounding steps that we use to achieve coarse
letter costs.

Subroutine 4.1. Coarsening the letter costs.

1: if cost(1)/ cost(0) ≥ 1/ε, then

2: Let N be the maximum integer such that cost(1)
N cost(0) ≥ 1/ε.

Initialize cost′(�) = cost(�)
N cost(0) for � ∈ Σ.

3: else
4: Let N be the minimum integer such that N cost(1)

cost(0) ≥ 1/ε.

Initialize cost′(�) = N cost(�)
cost(0) for � ∈ Σ.

5: For each � ∈ Σ except � = 0, round cost′(�) to the integer 
cost′(�)�.
6: Return cost′.

To conclude section 4.1 we prove that the above procedure does indeed produce
coarse letter costs in linear time, and that any instance with arbitrary costs reduces
(in an approximation-preserving way) to the same instance but with coarsened costs.

Lemma 4.2. Let cost′ : Σ→ R≥0 be the costs output by the coarsening subroutine
(given arbitrary letter costs cost : Σ → R≥0). Then the following hold: (i) The
subroutine takes O(n) time. (ii) The costs cost′ are coarse. (iii) Any code that is
near-optimal under cost′ is also near-optimal under cost.

Proof. Part (i) is clear by inspection and the assumption that |Σ| ≤ n.
(ii) If the condition in the “if” statement holds (that is, cost(1)/ cost(0) ≥ 1/ε),

the scaling step makes cost′(0)
(
= cost(0)

N cost(0) = 1/N
)
the reciprocal of an integer. Also,

the scaling step brings cost′(1) into the interval [1/ε, 2/ε), because, by the choice of N ,

1
2 cost

′(1) ≤ N
N+1 cost′(1) = N

N+1
cost(1)

N cost(0) =
cost(1)

(N+1) cost(0) <
1
ε ≤ cost(1)

N cost(0) = cost′(1).

Alternatively, if the “else” clause is executed, the scaling step makes cost′(0) an
integer and brings cost′(1) into the interval [1/ε, 2/ε) because N ≥ 2 and

1
2 cost

′(1) ≤ N−1
N cost′(1) = N−1

N
N cost(1)
cost(0) = (N−1) cost(1)

cost(0) < 1
ε ≤ N cost(1)

cost(0) = cost′(1).

In either case, the final rounding step (line 5) makes every cost′(�) (for � ≥ 1) an
integer. The rounding step also leaves cost′(1) ≤ 3/ε, because cost′(1) ≤ 2/ε before
rounding and 
2/ε� ≤ 3/ε for ε ≤ 1.

(iii) The scaling steps (lines 1–4) do not change the ratio of any two letter costs.
The rounding step changes the relative costs of any two letters by at most a factor of
1 + ε, because, before rounding, each rounded letter cost, cost′(�), is at least 1/ε and
so increases by at most a 1+ ε factor. Thus, any prefix-free code X is a near-optimal
solution under cost′() if and only if it is a near-optimal solution under cost().

4.2. Reducing to coarse letter costs with cost(0) ≥ 1. Appealing to
Lemma 4.2, we can now assume without loss of generality that the letter costs are
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Fig. 9. Given Σ = {0, 1} with cost(0) = 1/N = 1/5 and cost(1) = 1/ε = 2, the top of Σ∗ is
on the left, the top of Σ′∗ is on the right. The “chunk” alphabet Σ′ has six letters, called “chunks”:
the cheapest chunk, 00000, represents the string 00000 in Σ∗, and costs 1. The other five chunks
( 1, 01, 001, 0001, and 00001) represent, respectively, the strings 1, 01, 001, 0001, and 00001. Each
costs 2 = cost(1).

coarse. That is, we assume that cost(1) ∈ [1/ε, 3/ε] and that all letter costs are
integers except perhaps cost(0), which may instead be the reciprocal of an integer.

If it does happen that cost(0) is an integer, then the condition for the PTAS of
the preceding sections is met: all letter costs are integers, and cost(1) ≤ 3/ε. So in
this case we can apply that PTAS directly to the instance.

So, assume that cost(0) is not an integer. That is, cost(0) equals 1/N for some
integer N ≥ 2.

We now confront the core problem of this section: how to deal with an instance in
which cost(0) is very small in comparison to cost(1). To handle such an instance, the
basic idea is to reduce the problem to the case we’ve already solved. In particular, we
replace the given alphabet by a new alphabet Σ′, in which each new letter s represents
some string s over the original Σ. This idea allows us to manipulate the letter costs:
by choosing large enough strings s to represent, we can make sure no letter cost in Σ′

is too small.
For intuition, consider an example with binary alphabet Σ = {0, 1}. Consider

replacing this alphabet with an alphabet Σ′ containing the six letters 00000, 1, 01,
001, 0001, and 00001. Call these letters chunks. They represent, respectively, the four
strings 00000, 1, 01, 001, 0001, and 00001 over Σ. In this way, each string of chunks
(i.e., string over Σ′) represents a string over Σ in a natural way, For example, the
string “1 00000 01” over Σ′ represents the string “10000001” over Σ. See Figure 9.

For letter costs, it would be natural to take cost(s) equal to the cost of the string
over Σ that s represents. For the example, if cost(0) is 1/5, it would be natural to take
cost(00000) = 1, cost(1) = cost(1), cost(01) = 1

5 + cost(1), cost(001) = 2
5 + cost(1),

etc. But, since our goal is to have all-integer letter costs, we instead round down the
costs: cost(00000) = 1, cost(1) = cost(1), cost(01) = cost(1), cost(001) = cost(1), etc.
Because cost(1) ≥ 1/ε, rounding down doesn’t alter the “natural” costs by more than
a 1 + ε factor.

In general, for an arbitrary alphabet Σ, where, say, cost(0) = 1/N , here is how
we construct Σ′.

Definition 4.3 (chunk alphabet). Let chunk alphabet Σ′ contain the following
letters (called chunks): one letter denoted 0N and, for each nonzero letter � ∈ Σ, N
letters denoted �, 0�, . . . , 0N−1�. (Each underlined string 0i� denotes a single letter in
Σ′.) Give letter 0N cost 1, and give each letter 0i� cost equal to cost(�).
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For any string s′ over Σ′, let unchunk(s′) denote the string over Σ that s′ rep-
resents. Say a string s over Σ is chunkable if s = unchunk(s′) for some s′ over Σ′.
(These are the strings over Σ that can be cleanly broken into chunks.)

Extending from strings to codes, each code X ′ over Σ′ represents a code X over
Σ in a natural way, specifically Xi = unchunk(X ′

i ). Let unchunk(X ′) denote this code
X . Say that a code X over Σ is chunkable if it can be obtained in this way (i.e., all
its codewords are chunkable).

Thus, unchunk() gives a bijection between the strings over Σ′ and the chunkable
strings over Σ. Likewise, it gives a bijection between the codes over Σ′ and the
chunkable codes over Σ. On consideration, unchunk(X ′) will be prefix-free if and only
if X ′ is prefix-free. Thus, this bijection preserves prefix-free-ness and (approximate)
cost.

First attempt at PTAS via reduction. The general scheme will be something like
the following:

(1) Given Σ, construct the chunk alphabet Σ′.
(2) Find a near-optimal prefix-free code X ′ over Σ′ using PTAS for cost(1) ≤ 3/ε.
(3) Return the prefix-free code X = unchunk(X ′) that X ′ represents.

The main flaw in this reduction is the following: not all strings over Σ can be
broken into chunks from Σ′. In particular, the codewords in the optimal code X � over
Σ might not be chunkable. Thus, even if X ′ is near-optimal over Σ′ a priori, it may
happen that unchunk(X ′) is far from optimal over Σ.

The main technical challenge in this section is to understand this flaw and work
around it. To understand the flaw in detail, recall that the codes over Σ′ correspond,
via the bijection unchunk(), to the chunkable codes over Σ, and this bijection preserves
prefix-free-ness and (approximate) cost.

Because of this bijection, the reduction proposed above (after Definition 4.3) will
work if and only if the optimal prefix-free code X � over Σ is has approximately the
same cost as the optimal chunkable prefix-free code over Σ (since the latter code has
approximately the same cost as the optimal prefix-free code over Σ′). So, is there
always a chunkable prefix-free code whose cost is near that of the optimal prefix-free
code X �?

Let’s consider which strings over Σ are chunkable (that is, can be broken into
chunks from Σ′). On consideration,4 a necessary and sufficient condition for a string
s over Σ to be chunkable is that the number of 0’s at the end of s should be a multiple
of N . Thus, a given code X over Σ is chunkable if and only if all of its codewords
end nicely in that way. Define pad(X ) to be the code over Σ obtained by padding
each codeword in X with just enough 0’s so that the number of 0’s at the end of the
codeword is a multiple of N .

Then pad(X �) is a prefix-free, chunkable code over Σ. But how much can padding
increase the cost of X �? Padding a codeword adds at most N−1 0’s to the codeword.
This increases each codeword cost by at most (N − 1) cost(0) = (N − 1)/N < 1.

Is this significant? That is, can it increase the cost of the codeword by more than
a 1+ ε factor? In order for this to happen, the codeword must have cost less than 1/ε.
Call any such codeword (of cost less than 1/ε) a runt. Recalling that cost(�) ≥ 1/ε
for every letter � ∈ Σ−{0}, for a codeword in X � to be a runt it must consist only of

4A string with this property can be broken into chunks as follows: first break the string after
each occurrence of each nonzero letter, leaving pieces of the form 0i� for some i, plus a final piece of
the form 0iN for some i; then, within each such piece, break the piece after every Nth 0.
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0’s. In any prefix-free code, there is either one runt or none, and the only codeword
that can be the runt is the cheapest one, X �

1 .
In sum, the reduction above fails, but just barely, and the reason that it fails is

because padding the runt can, in the worst case, increase the cost of the code by too
much.

Second attempt. To work around this issue, we handle the runt differently: we use
exhaustive search to remove it from the problem, then solve the remaining runt-free
problem as described above.

More specifically, we consider all possibilities for the runt in the optimal code:
either the optimal code has no runt (in which case the reduction in the first attempt
above works), or the optimal code has a runt of the form 0q for some q ≤ n such that
cost(0q) < 1/ε. For each possible choice 0q for X1, we compute a near-optimal choice
for the n−1 remaining codewords X2,X3, . . . ,Xn, given that X1 = 0q. We then return
the best code found in this way.

How do we find a near-optimal choice for the n− 1 remaining codewords, given
a particular choice 0q for X1? This problem can be stated precisely as follows:

(4.1)

∣∣∣∣∣
Find a near-optimal prefix-free code of n− 1 codewords over alphabet Σ,
for probabilities p′ = 〈p2, p3, . . . , pn〉/(1− p1),
from the universe Uq of strings that do not have 0q as a prefix.

Since padding any nonrunt codeword to make it chunkable increases its cost by
at most a 1 + ε factor and maintains prefix-free-ness, the problem above reduces in
an approximation-preserving way to the following one:

(4.2)

∣∣∣∣∣
Find a near-optimal prefix-free code of n− 1 codewords over alphabet Σ,
for probabilities p′ = 〈p2, p3, . . . , pn〉/(1− p1),
from the universe Ûq of chunkable strings that do not have 0q as a prefix.

Since the chunkable strings over Σ correspond via the bijection unchunk() to
the strings over chunk alphabet Σ′, and this bijection preserves prefix-free-ness and
approximate cost, the problem above in turn reduces in an approximation-preserving
way to the following problem:

(4.3)

∣∣∣∣∣
Find a near-optimal prefix-free set of n− 1 codewords over chunk alphabet Σ′,
for probabilities p′ = 〈p2, p3, . . . , pn〉/(1− p1),
from universe U ′

q of strings s such that unchunk(s) does not have 0q as a prefix.

Note that the chunk alphabet Σ′ in the latter problem (4.3) has integer letter
costs, and the second cheapest letter cost is cost(1) = cost(1), which is in [1/ε, 3/ε].
These letter costs are appropriate for the PTAS from the preceding sections. We solve
problem (4.3) using that PTAS.

To do so we have to limit the codeword universe U = U ′
q to those “strings s

such that unchunk(s) does not have 0q as a prefix.” The basic idea is to choose
an appropriate root set R′

q for U ′
q. For intuition, consider an example with binary

alphabet Σ = {0, 1}, with cost(0) = 1/5 and cost(1) = 2, shown in Figure 10. The
strings over Σ are shown to the left; the strings over the chunked alphabet Σ′ are
shown to the right. A potential runt 07 is marked with �. The strings having 07 as
a prefix (on the left) and the corresponding strings over Σ′ (s such that unchunk(s)
has 07 as a prefix, on the right) are gray.

The remaining (allowed) strings are those in the subtrees marked E,F, . . . ,K (on
both the left and the right). The roots of these subtrees are the roots of U ′

7.
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Fig. 10. An example of chunking. The alphabet is 0, 1, with cost(0) = 1/5 and cost(1) = 2.

In general, given any alphabet Σ where cost(0) = 1/N for some integer N , and
given an arbitrary runt 0q, we compute the root set R′

q for the desired universe U ′
q as

follows.
Let chunk() denote the functional inverse of unchunk(): if string s is chunkable,

then chunk(s) is the string s′ over Σ′ such that unchunk(s′) = s; likewise, if code X
is chunkable, then chunk(X ) is the code X ′ over Σ′ such that unchunk(X ′) = X .

The universe U ′
q should contain those strings s′ such that unchunk(s′) does not

have 0q as a prefix. The chunkable strings over Σ that do not have 0q as a prefix
are those that start with a prefix of the form 0i�, where i < q and � ∈ Σ − {0}.
Each such string 0i� is itself chunkable (as it ends in a letter other than 0). Thus,
unchunk(s′) does not have 0q as a prefix if and only if s′ starts with a prefix of the
form chunk(0i�), where i < q and � ∈ Σ− {0}. That is, the universe U ′

q has root set

R′
q = {chunk(0i�) : i < q, � ∈ Σ− {0}}.
Thus, we can reformulate problem (4.3) with an explicit root set as follows:

(4.4)

∣∣∣∣∣
Find a near-optimal prefix-free set of n− 1 codewords over chunk alphabet Σ′,
for probabilities p′ = 〈p2, p3, . . . , pn〉/(1− p1),
from the universe U ′

q with root set R′
q = {chunk(0i�) : i < q, � ∈ Σ− {0}}.

We solve this problem using the PTAS from the preceding sections.
Next is a precise summary of the entire reduction.
For efficiency, instead of considering all possible choices 0q for the root (for all

q < n such that cost(0q) < 1/ε), we further restrict q to be near a power of 1 + ε.
This is okay because in any prefix-free code the runt 0q can be padded with O(εq) 0’s
to convert it to this form, without increasing the cost by more than a 1 + ε factor.
(This reduces the number of possibilities for the runt from n to Oε(logn).)

Definition 4.4 (reduction).
Forward direction: Given a Hulc instance I = (p,Σ, cost), the forward direction

of the reduction produces a set of instances {I ′0} ∪ {I ′q | q ∈ Q} over alphabet Σ′,
where Q = {
min(n,N/ε)/(1 + ε)j� | j ∈ N≥0} (one instance for each choice of runt
in opt).

Instance I ′0 (for the case of no runt in opt) is (p,Σ′, cost,R′
0) with chunked

alphabet Σ′ and universe (Σ′)∗ (with root set R′
0 containing just the empty string).

For each q ∈ Q, instance I ′q (for the case of runt 0q in opt) is (p′,Σ′, cost,R′
q),

where p′ = 〈p2, p3, . . . , pn〉/(1−p1) and universe U ′
q contains the string s over Σ′ such

that unchunk(s) doesn’t have 0q as a prefix (root set R′
q = {chunk(0i�) : i < q, � ∈

Σ− {0}}).
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Backward direction: Given any near-optimal prefix-free code Y0 for I ′0, and near-
optimal prefix-free codes Yq for each I ′q, the reverse direction of the reduction produces

a near-optimal code Xmin for the original instance I as follows: Let Xmin be a code
of near-minimum cost among the codes unchunk(Y0), and {0q} ∪ unchunk(Yq) for
q ∈ Q. Return Xmin.

By the preceding discussion, the reduction above is correct, as shown next.
Lemma 4.5 (correctness). Assuming the codes Yq for q ∈ {0} ∪ Q are near-

optimal prefix-free codes for their respective instances, the code Xmin returned by the
reduction above is a near-optimal prefix-free code for I.

Proof. By construction, all of the codes unchunk(Y0), and {0q} ∪ unchunk(Yq)
for q ∈ Q, are prefix-free codes over Σ.

To see that at least one of these codes is near-optimal, let X � be an optimal
prefix-free code over Σ. In the case that X � has no runt, the code chunk(pad(X �))
for instance I ′0 has approximately the same cost as X �, so the code Y0 for I ′0 also has
approximately the same cost as X �, and thus so does unchunk(Y0).

Otherwise code X � has some runt 0q with q ≤ min(n,N/ε). Padding the root
to 0q

′
for q′ ∈ Q gives a prefix-free code X over Σ of approximately the same cost.

By construction, for the near-optimal solution Yq′ to instance I ′q′ , the codewords in

unchunk(Yq′) are a near-optimal choice for the nonrunt codewords for any code over
Σ with runt 0q

′
. Thus, the cost of the prefix-free code {0q′} ∪ unchunk(Yq′) is ap-

proximately the same as cost(X ), which is approximately the same as cost(X �).

4.3. Proof of Theorem 1.2. The full PTAS implements the reduction in Def-
inition 4.4. That is, it uses the PTAS from the preceding section to approximately
solve the instances {I ′q}q produced by the forward direction of the reduction, then

computes and returns Xmin following the backward direction of the reduction. By
Lemma 4.5, this gives a near-optimal prefix-free code for the given instance. Below is
an outline of the steps needed to achieve running time O(n) +Oε(log

3 n).
Step 1 (forward direction—computing and solving the instances). For each of the

Oε(log n) instances {I ′q}q, the PTAS first computes the signature and approximate
cost (not the code tree) of the respective solutions {Y ′

q}q.
By Theorem 2.1 (section 2.5), for each instance I ′q, the signature and approxi-

mate cost of the solution Yq can be computed in Oε(log
2 n) time given appropriate

precomputed inputs. Here is a restatement of that theorem.
Theorem 2.1. Fix any instance I = (p,Σ, cost,U) of Hulc with restricted

universe such that cost(1) ≤ 3/ε. Let P be the cumulative probability distribution for
p: P� =

∑
k≤� pk (for � ∈ [n]). Let σ be the signature of Σ. Let r be the signature of

the roots of U . Assume that P , σ, and r are given as inputs.
Then the signature and approximate cost of a prefix-free code (for I) with cost at

most (1 +O(ε))opt(I) can be computed in time Oε(log
2 n).

To solve the instances this way, we need to precompute three things for each in-
stance: the cumulative probability distribution, the signature of the chunked alphabet
Σ′, and the signature of the root set.

Regarding the cumulative probability distributions, in fact there are only two dis-
tinct distributions used by the instances: p for I ′0, and p′ for the remaining instances.
So the necessary cumulative distributions for all instances can be computed in O(n)
time.

Regarding the signature σ′ of Σ′, it can be computed as follows. First, compute
the signature σ of Σ − {0} in O(n) time. Then, according to the definition Σ′ =
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{0N} ∪ {0i� : i < N, � ∈ Σ − {0}}, take σ′
1 = 1 and, for j such that σj > 0, take

σ′
j = Nσj . This takes O(n) time since |Σ| ≤ n.

Next consider how to compute the root-set signatures. For I ′0, the root set is
trivial. For each of the remaining Oε(logn) instances I ′q, the PTAS computes the
signature of the root set in Oε(log n) time using the following lemma.

Lemma 4.6. Given the signature σ of Σ − {0}, the signature rq of the root set
of universe U ′

q for I ′q (restricted to the set L of possible levels, per Observation 2.13)
can be computed in time Oε(log n).

Proof. The root set for instance I ′q isR′
q = {chunk(0j�) : � ∈ Σ−{0}, 0 ≤ j < q}.

The associated multiset of costs is {cost(chunk(0j�)) : � ∈ Σ − {0}, 0 ≤ j < q}.
Expressing the costs explicitly, this is {�j/N�+ cost(�) : � ∈ Σ− {0}, 0 ≤ j < q}.

In this multiset, by calculation, each fixed � ∈ Σ − {0} contributes N copies of
a+ cost(�) for each nonnegative integer a < �q/N�, and q mod N copies of �q/N�+
cost(�). Thus, the multiset can be expressed as

N × {a+ cost(�) : � ∈ Σ− {0}, 0 ≤ a < �q/N�}⋃
(q mod N)× {a+ cost(�) : � ∈ Σ− {0}, a = �q/N�}.

Introducing variable i = cost(�) + a to eliminate a, and rearranging the inequalities,
this is

N × {i : � ∈ Σ− {0}, i− �q/N� < cost(�) ≤ i}⋃
(q mod N)× {i : � ∈ Σ− {0}, cost(�) = i− �q/N�}.

Thus, introducing variable j = cost(�) and recalling that σj is the number of cost-j
letters in Σ− {0}, a given i ∈ L occurs with multiplicity

rqi = N ×
i∑

j=i−
q/N�+1

σj + (q mod N)× σi−
q/N�.

Since by assumption 0q is a runt, cost(0q) < 1/ε, so q/N < 1/ε. Thus, the sum above
has at most 1/ε terms, and the value of rqi for a given i and q can be calculated in
O(1/ε) time.

To finish, we observe that the set L of possible levels for the instance I ′q can be
computed as follows. Per Definition 2.6 (section 2.3), the set is [0, 2τ+3δ] ∪ [iR′

q
, iR′

q
+

3δ] ∪ [iΣ′ , iΣ′ + τ + 3δ].
The values of τ and δ (resp., 
log2[cost(1)/ε] cost(1)/ε� and cost(1)
log2 n�) are

easy to calculate.
By definition, iΣ′ is the minimum cost of any letter in Σ′ of cost at least τ . It

can be calculated (just once) in O(log n) time by binary search over Σ.
By definition, iR′

q
is the minimum cost of any root in R′

q of cost at least τ .

Reinspecting the calculation of rqi above, iR′
q
is the minimum value of the form a +

cost(�) exceeding τ − 1, for any � ∈ Σ− {0} and integer a ∈ [0, q/N ]. This value can
be found in binary search over Σ in O(log n) time.

Once L is computed for I ′q, each coordinate of the signature rq of the root set R′
q

above (restricted to L) can be calculated in Oε(1) time. Since |L| = Oε(log n), the
total time is Oε(logn).

In sum, the PTAS precomputes the necessary inputs for all instances {I ′q}q of the
reduction, taking Oε(logn) time for each of the Oε(logn) instances. It then applies
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Theorem 2.1 to solve these instances. Specifically, in O(n) +Oε(log
3 n) total time, it

computes the signature and approximate cost of a near-optimal prefix-free code Yq

for every instance I ′q.
Step 2 (backward direction—building the near-optimal code tree). The backward

direction of the reduction must return a near-minimum-cost code Xmin among the
following candidate codes: unchunk(Y0) and {0q} ∪ unchunk(Yq) for q ∈ Q.

At this point, the PTAS has only the signatures and approximate costs of the vari-
ous codes {Yq}q. But this is enough information to determine which of the candidate
codes above have near-minimum cost. In particular, unchunking a code approxi-
mately preserves its cost, so the PTAS knows the approximate costs of each code
unchunk(Yq). Then, from the approximate cost of unchunk(Yq), the approximate
cost of {0q} ∪ unchunk(Yq) is easily calculated. (Recall that each code unchunk(Yq)
is for probabilities p′ = 〈p2, p3, . . . , pn〉/(1−p1) and has nonrunt codewords that don’t
have 0q as a prefix. By calculation, adding codeword 0q to the code gives a code for
p of cost p1 cost(0

q) + (1 − p1) cost(unchunk(Yq)).) In this way, the PTAS chooses
the index q of the best candidate code. The PTAS retains the signature x of the
corresponding code Yq over Σ′.

One more step remains: to compute the tree representation T of the chosen
candidate code X q (i.e., unchunk(Y0) if q = 0, or {0q} ∪ unchunk(Yq) if q > 0).

Recall that, by Theorem 3.1, for alphabets with integer letter costs and cost(1) ≤
3/ε, given a signature x for a prefix-free code, one can compute a corresponding tree
representation F ′ in O(n) +Oε(log

2 n) time. This theorem doesn’t solve our problem
directly for two reasons: (1) the signature x that we have is for the code Yq over
chunk alphabet Σ′, not for the final code X q over Σ; (2) more fundamentally, because
cost(0) = 1/N < 1 for Σ, the concept of signature is not particularly useful when
working over Σ.

Instead, to compute the tree T for X q, the PTAS uses Theorem 3.1 to first
compute the tree representation F ′ of the prefix-free Yq over Σ′. This takes O(n) +
Oε(log

2 n) time. The PTAS will then convert this tree representation F ′ for Yq

directly into a tree T for X q, using the following lemma.
Lemma 4.7. (i) Given the tree F ′ for a code Y0 for I ′0, the tree T for the corre-

sponding code X 0 = unchunk(Y0) (or one at least as good) for I can be constructed
in O(|F ′|) time.

(ii) Given the forest F ′ for a code Yq for I ′q, the tree T for the corresponding
code X q = {0q} ∪ unchunk(Yq) (or one at least as good) for I can be constructed in
O(|F ′|) time.

Proof. Part (i). In this case (q = 0), Y0 has n codewords, and F ′ has only a single
root node. F ′ is the tree representation of Y0 over Σ′, and we want to compute the
tree representation of X 0 = unchunk(Y0) over Σ. Note that the unchunk() function
simply breaks each chunk 0N or 0i� into its individual letters over Σ.

In the tree representation F ′ of Y0 over Σ′, each edge (such as 0001) represents
a chunk. To “unchunk” the tree, we replace each such edge by a path (such as
0→ 0→ 0→ 1), adding intermediate nodes as necessary. This can be accomplished
by applying a local transformation at each interior node u′ of F ′, as illustrated (from
right to left) in Figure 11. Roughly, for each edge labeled a1a2 . . . ak on the right,
there is a corresponding path a1 → a2 → · · · → ak on the left. However, for efficiency,
in fact we do something slightly different. In general, in the tree F ′, only some of the
possible edges might be present. (For example, there is no edge labeled 001 out of u′

on the right.) When there are vacancies such as this, we first preprocess the node,
replacing edges in T ′ by cheaper edges if possible. In general, if the node u′ has some
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Fig. 11. The transformation applied to each node of F ′ to “unchunk” F ′.

d children, we preprocess the node to make sure those d children use the d cheapest
possible outgoing edges in Σ′. In this way we avoid constructing overly large trees.

The general construction is as follows. For each interior node u′ in F ′, let v′0 be
the child along the edge labeled 0N , if any. Let v′1, . . . , v

′
d be the remaining children.

Replace the edges to these latter d children by a subtree t(d) with d leaves, where
t(d) is the tree representation for the d cheapest strings in {b | b ∈ Σ′, b �= 0N}. Next,
identify each child v′i for i ≥ 1 with the ith cheapest leaf in t(d). Then make v′0 the
0-child of the node at the end of the left spine of t(d). Doing this for all interior nodes
gives T .

Part (ii). In this case the forest F ′ is a collection of trees, each with its own root
in the root set R′

q of U ′
q. Let d

′ be the number of roots. Perform the transformation
described in part (i) separately for each tree in the collection. Finally, glue the d′

trees together into a single tree T as follows: start with a tree whose d′ leaves are the
d′ cheapest roots in the root set, then, for j = 1, 2, . . . , d′, identify the jth of these
leaves with the root of the jth (modified) tree in the collection. Finally, add a leaf
0q

′
, where q′ ≤ q is the minimum such that 0q

′
is not already an interior node in T .

Correctness. By inspection of the construction, each leaf node v′ in F ′ becomes
a leaf in T whose cost is at most 1 + ε times the cost of the string over Σ that the
string of v′ originally represented. If q > 0, the runt in T has at most q zeros, so it
has cost at most cost(0q).

Time. Assuming that each interior node u′ in F ′ comes with a list of the edges to
its children ordered by increasing cost, the local transformation at each node u′ can be
done in time proportional to its degree d. Also, gluing together the roots takes time
proportional to the number of roots, since in the resulting tree each interior node has
degree at least two (recall that the roots unchunk to strings of the form 0j� for j < d,
which hang consecutively off the left spine of T ). Thus, the entire transformation can
be done in time proportional to the size of F ′.

Since the trees produced via Theorem 3.1 have size O(n), the time the PTAS
takes to construct the tree T for the near-optimal code X q via Lemma 4.7 is O(n).

This completes the PTAS and the proof of Theorem 1.2.

5. Remarks.
More precise time bound. The proof of Theorem 1.2 shows that the PTAS runs

in O(n) +Oε(log
3 n) time. We note without proof that the time is

O(n) + exp

(
O

(
1

ε3
log2

1

ε

))
log3 n.

Here is a sketch of the reasoning. By careful inspection of the proof of Theorem 1.2,
the time is proportional to (τ + 1)γ(|L|2 + γ) |Q|. Plugging in τ = O(ε−2 log ε−1)
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(Lemma 2.3), γ = O(τ/ε) (Definition 2.4), |L| = O(τ + ε−1 log n) (Definition 2.6),
and |Q| = O(ε−1 logn) (Definition 4.4) gives the claim. (Slightly better bounds can be
shown with more careful arguments, including coarsening the letter costs to ceilings
of powers of (1 + ε) to reduce the number of distinct letter costs.)

Practical considerations. The exhaustive search outlined in section 2.5 is the
bottleneck of the computation. In practice, this search can be pruned and restricted
to monotone group-to-level assignments. Or, it may be faster to use a mixed integer
linear program solver to solve the underlying program. In this case, the alternate
mixed program in Figure 12 may be easier to solve than ilp, as it integer (in fact 0/1)
variables only for the probabilities pk with pk ≥ ε/τ .

minimize
∑

i,k pk i yki s.t.

if i < τ : xi + wi

if i ≥ τ : max(xi, wi)

}
≤ ri +

∑
j<i σi−jwj (i ∈ L)∑

k yki = xi (i ∈ L)∑
i yki = 1 (k ∈ [n])

wi, xi, yki ≥ 0 (i ∈ L, k ∈ [n])

yki ∈ {0, 1} (i ∈ [τ − 1], k : pk ≥ ε/τ)

Fig. 12. A practical alternative to ilp with integrality gap 1 +O(ε).

Solving this mixed program suffices, because any near-optimal fractional solution
(x,w, y) to it can be rounded to a near-optimal integer solution (corresponding to a
near-optimal τ -relaxed code), as discussed next.

Lemma 5.1. Given any fractional solution (w, x, y) to the mixed program in
Figure 12, one can compute in O(n)+Oε(polylog n) time an integer solution (ŵ, x̂, ŷ)
of cost at most 1 +O(ε) times the cost of (w, x, y).

Proof sketch. For each i < τ , in increasing order, if xi and
∑

k yik have fractional
part f > 0, do the following. Let i′ = i + cost(0). Decrease xi by f , increase wi by
f , and increase xi′ by f . (This preserves the capacity constraint because increasing
wi′ by f increases the right-hand side of the capacity constraint for i′ by at least f ,
since σi′−i = σcost(0) ≥ 1.) Also, decrease

∑
k yki by f , and increase

∑
k yki′ by f by

(repeatedly, if necessary) decreasing the (nonintegral) yki > 0 with smallest pk and
increasing the corresponding nonintegral yki′ .

Since these nonintegral yki’s have pk < τ/ε, for each i, the increase in the cost
is at most (ε/τ)f cost(0), which is less than (ε/τ) cost(0), so the total increase in the
cost (for all levels i < τ) is at most ε cost(0).

After this modification, each xi for i < τ is an integer. Take (ŵ, x̂, ŷ) to be an
optimal, all-integer greedy extension of this assignment to these xi’s. That is, for each
i ∈ L, in increasing order, take ŵi maximally subject to the capacity constraint, and,
if i ≥ τ , take x̂i maximally subject to the capacity constraint. Then take ŷ so that the
corresponding code is monotone. This greedy extension is optimal by an argument
similar to the proof of Lemma 2.11, so it has cost at most the cost of the modified
(w, x, y).

Finding a (1 + ε)-approximation is in NC. Given that Hulc is neither known
to be in P (polynomial time), nor known to be NP-hard, it is interesting that the
results in this paper extend to show that, given any fixed ε, the problem of (1 + ε)-
approximating Hulc is in NC (Nick’s class—polynomially many parallel processors
and polylogarithmic time). (For instances in which cost(1) ≤ 3/ε, the cumulative
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distribution P and the signatures r and σ necessary for Theorem 2.1 can be computed
in NC, and the remaining computation takes time Oε(polylogn) on one processor. For
instances with no restrictions on the cost, one can use the fact that L = Oε(log n) to
show that each O(n)-time step in the proof of Theorem 1.2 is in NC.)

Open problems. The PTAS in this paper is not a fully polynomial-time approxi-
mation scheme (FPTAS). That is, the running time is not polynomial in 1/ε. Is there
an FPTAS? For that matter, is there a polynomial-time exact algorithm? And, of
course, is Hulc NP-complete?

Appendix.

Proof of Lemma 2.9. Part (i). Let F be the forest in the tree representation
of X . Each nonempty level i in F is in L, by Observation 2.13.

Let xi and wi be, respectively, the number of codewords and interior nodes in
level i of F . Let y be the assignment of codewords (or rather codeword costs) to
probabilities: that is, yki = 1 if and only if cost(Xk) = i (else yki = 0). Let z be the
assignment of levels to groups: that is, zgi = yki for all i < τ , g ∈ [γ], and k ∈ Gg.

First consider the capacity constraint of ilp. Level i of F has at least xi + wi

nodes, or max(xi, wi) if i ≥ τ . Up to ri of these nodes can be parentless in F because
they are roots in U . Each of the rest has a parent in F that is an interior node in F in
a level j < i. There are at most

∑
j<i σj−iwj nodes with such parents, because each

of the wj interior nodes in a given level j of F can parent at most σi−j nodes in level
i (one for each of the σi−j letters of cost i− j in Σ). Thus, the capacity constraint is
met. By inspection, (w, x, y, z) meets the remaining constraints of ilp, and the cost
of (w, x, y, z) is cost(X ). This proves part (i) of the lemma.

Part (ii). Given any set X ⊂ U , let X<τ denote {Xk | cost(Xk) < τ}.
Start with X ← ∅. For each i ∈ L, in increasing order, add to X any xi strings

from level i of U that have no prefix in X<τ .
This construction clearly generates a τ -relaxed code as long as there are enough

strings available to assign in each level. There will be, because the construction
maintains the following invariant: for each j < i, at least wj strings in level j of U
are available. (Recall that a string is available if it has no prefix in X<τ .) Suppose
that this invariant holds before codewords are added from level i. At that point, the
number of available strings in level i of U must be at least the right-hand side of
the capacity constraint for i. In the case that i < τ , since the capacity constraint
holds, the right-hand side is at least xi + wi, so placing xi of the available strings
into X leaves wi still available, maintaining the invariant. In the case that i ≥ τ , the
right-hand side is both at least wi (so the invariant is maintained) and at least xi

(so there are xi available strings to add to X , without making any string unavailable,
since i ≥ τ).

Finally, assign to each probability pk a codeword from X of cost i′ such that
yki′ = 1. (This is possible because in X there are xi =

∑
k yki codewords of each cost

i.) Then, cost(X ) equals the cost of (w, x, y, z).

Proof of Lemma 2.11. Let (w, x, y, z) be any minimum-cost feasible extension
of z. Let (ŵ, x̂, ŷ, z) be the greedy extension (if it is well defined).

Given z, the constraints of ilp force x̂i = xi for i < τ .
By induction on i ∈ L (using the maximality of ŵi and that x̂i = xi for i < τ),

it follows that ŵi ≥ wi for all i ∈ L. Thus, replacing w by ŵ in (w, x, y, z) gives a
solution (ŵ, x, y, z) that is also feasible and optimal.

Now suppose for contradiction that xi �= x̂i for some level i. Fix i′ to be the
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minimum such level. Note that i′ ≥ τ since x̂i = xi for i < τ . Since x̂i = xi for i < i′,
and x̂i′ is maximal (by definition of the greedy extension), it follows that xi′ < x̂i′ .
Thus, the capacity constraint for level i′ (≥ τ) is loose for (ŵ, x, y, z). Increasing
xi′ by 1, and decreasing xj by 1 for some j > i (and adjusting y accordingly) gives
a feasible solution that is cheaper than (ŵ, x, y, z), contradicting the optimality of
(ŵ, x, y, z).

Thus, x̂ = x. Thus, (ŵ, x̂, y, z) is feasible. By the choice of ŷ in the definition of
the greedy extension, the lemma follows.
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