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Abstract

Congestion control in the current Internet is accom-
plished mainly by TCP/IP. To understand the macroscopic
network behavior that results from TCP/IP and similar end-
to-end protocols, one main analytic technique is to show
that the the protocol maximizes some global objective func-
tion of the network traffic.

Here we analyze a particular end-to-end, MIMD
(multiplicative-increase, multiplicative-decrease) protocol.
We show that if all users of the network use the protocol,
and all connections last for at least logarithmically many
rounds, then the total weighted throughput (value of all
packets received) is near the maximum possible. Our analy-
sis includes round-trip-times, and (in contrast to most previ-
ous analyses) gives explicit convergence rates, allows con-
nections to start and stop, and allows capacities to change.

1. Congestion control and optimization

Congestion control in the current Internet is accom-
plished mainly by TCP/IP — 90% of Internet traffic is
TCP-based [41]. Meanwhile the design and analysis of
TCP and other end-to-end congestion-control protocols are
only partially understood and are becoming the subject
of increasing attention [25, 28]. One main analytic tech-
nique is to interpret the protocol as solving some under-
lying combinatorial optimization problem on the network
— to show that the protocol causes the traffic distribu-
tion, over time, to optimize some global objective function
[41, 29, 26, 2, 40, 17, 30, 52, 9, 46, 44, 54].

For example, a continuous analogue of TCP-Reno (un-
der various assumptions about the network) maximizes
∑

i τ−1
i arctan(τixi), where τi is the (constant) round-trip

time of packets sent by the ith user and the variable xi is
that user’s transmission rate [41]. (Each term in the sum
is a smoothed threshold function.) Similarly, a continuous
analogue of TCP-Vegas maximizes

∑

i αidi logxi where di

is the round-trip propagation delay of packets sent by the ith
user and αi is a protocol parameter. Typically these results
concern a continuous analogue of the protocol. They ana-
lyze a system of differential equations where time is contin-
uous and each rate xi is a continuous function of time. They
show (e.g. using a Lyapunov function [22, 50]) that, as time
tends to infinity, the vector x tends to an equilibrium point
that maximizes the objective function in question.

This approach is very general. It has been used to design
and analyze protocols other than TCP, including protocols
that require the network routers to explicitly transmit con-
gestion information to the users by means other than packet
loss and latency. (Typically the congestion signals are dual
variables — Lagrange multipliers, or “shadow prices” —
with interesting economic interpretations.) For a survey of
results of this kind, see [41, 29]. A few specific technical
papers include [26, 2, 40, 17, 30, 52, 9].

Our interest in this paper is in protocols that are both on-
line and end-to-end: the number of packets sent on a path p
at time t is determined solely by the number of packets sent
and received on p in previous rounds. (The protocol has no
a-priori knowledge of the network or how the paths relate to
it, and learns about the network only through packet loss.)
Such protocols are implementable in the current Internet,
without modifications to routers. The protocol we analyze
in this paper, which we call the Linear MIMD Protocol, is
an example (see Fig. 1). It can be implemented by modify-
ing only the TCP server.

Generally, existing works (that formally analyze end-to-
end protocols implementable in the current Internet) assume
that all connections start at time 0 and continue indefinitely
in a static network. They show that the objective func-
tion is optimized in the limit as time tends to infinity. (See
Low’s survey and Kelly’s survey [29].) The only exceptions
that we are aware of are for the special case of a single-
bottleneck network [18, 9]. Thus, we do not yet have a
complete theoretical understanding of speed of convergence
(noted as important by Low in his survey [41]) or of the
effects of dynamic connections and changing network con-
ditions. (These issues have been studied empirically, e.g.
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Inputs for connection p: starting rate f0(p) > 0, active time interval Tp = {sp, sp + 1, . . . , ep}.
Parameters: αp > 0, βp ∈ (0, 1)

At times t = sp, sp + 1, . . . , sp + τp take sent(p, t) := f0(p).
At times t = sp + 1 + τp, . . . , ep, take

sent(p, t) := sent(p, t − 1 − τp) ×
[

1 + αp − βplsr(p, t− 1)
]

.

Figure 1. The Linear MIMD Protocol. In round t on path p, lsr(p, t) is the observed packet loss fraction,
τp is the round-trip time. For the main result, βp ∈ (0, ε] and αp = βpε val(p).

[10].)
Here we use a relatively dynamic model: time is dis-

crete, connections start and stop, network capacities vary
with time. The objective function we study is total weighted
throughput (the total value of all packets delivered).

Our main result is that, for some small T , as long as each
connection lasts at least T rounds, the protocol in Fig. 1
achieves a total weighted throughput of at least (1 − ε)opt.
Here opt is the maximum possible weighted throughput of
any solution that respects capacity constraints and assigns a
fixed rate f(p) to each path p while the path is active. T is
proportional to a logarithmic term over ε3. To sidestep the
question of how the protocol finds a reasonable starting rate
for each path, we analyze the speed of convergence given
arbitrary (feasible) initial rates.

Most existing works assume instantaneous feedback
about congestion. In practice feedback is delayed due to
round-trip times, but delayed feedback is harder to analyze
formally. Some recent works such as [46, 44, 54] study
the effect of delayed feedback on convergence, and even
suggest that some variants of TCP may become unstable as
network capacity becomes large [42]. Here we do model
delayed feedback, although we assume the delay on each
path p is a fixed constant τp . We show that the convergence
rate of the protocol grows linearly with delay.

Existing works model packet loss in the network in var-
ious ways. (Some also model variable latency due to queu-
ing, which we do not.) Roughly, we assume that a network
resource (switch, router, etc.) discards packets only if con-
gested, and then in an approximately fair manner — so that
no path incurs significantly disproportional loss over time
(see Condition (2) later in the paper). We believe the packet-
discard model is realistic in practice. (See the final section.)

Here is a formal statement of our result. Let τp be the
round-trip delay on path p. Note that αp and βp are param-
eters of the protocol and f0(p) is the initial sending rate on
path p.

Theorem 5 Assume each val(p) ≤ 1. Fix ε > 0. Assume
ε-fair loss on each path. Let Up be the maximum amount

received in any round on path p.
The weighted throughput achieved by the Linear MIMD

Protocol with βp = O(ε) and αp = ε βp val(p) is (1 −
O(ε))opt provided the duration |Tp| of each connection is
at least

Ω

(

max
p

(1 + τp) ln(Up/f0(p))

ε2βpval(p)

)

.

In today’s Internet, a generous upper bound for the ratio
Up/f0(p) is around 104 — the ratio between 100 Mbps (the
most a typical server can transmit) and 10Kbps (about one
packet per second).

Protocols that maximize weighted throughput within a
1 − ε factor are necessarily unfair (they may allocate little
or no bandwidth to some connections). Also, the protocol
that we study is not innately tcp-friendly, although, with a
proper setting of the parameters, the loss rates the proto-
col induces in the network can be made close to the “back-
ground” level of loss in the Internet (typically 2-4% in well-
capacitated networks). For a discussion of other limitations,
and future directions, see the final section.

The protocol can be tuned to network conditions. For
example, in a network with low packet-loss rates, a particu-
larly simple special case of the protocol — “for each packet
received, send 1+ε packets” — converges faster by a factor
of 1/ε. The analysis also generalizes to the case when each
path p can use a resource r to some extent Mpr ∈ [0, 1].
(These results are omitted from the proceedings version.)

Application: multi-path bandwidth testing. Suppose a
web site has multiple servers hosted in an Internet data cen-
ter. The web site owner has a contract with the network
provider for 100 Mbps access to the Internet. The servers
send traffic through multiple, possibly shared, up-links, and
then through the provider’s local network, toward a back-
bone and/or toward the provider’s local users. How can the
web site owner find an optimal traffic distribution, one that
maximizes the traffic sent from its servers while respecting
the local bandwidth constraints? How can the site owner
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verify that the maximum possible traffic is at least 100 Mbps
(or prove to the network provider that 100 Mbps is not pos-
sible, in violation of the contract)? This is the problem that
motivated this work. It involves multiple paths, in contrast
to the more-well studied problem of estimating bandwidth
along a single path [36, 31, 38, 37, 8].

The Linear MIMD Protocol (or any protocol that max-
imizes global aggregate throughput) can be used to solve
this problem as follows. Select a large representative sam-
ple of paths (from the servers to destination IP’s that the
servers serve). Run the Linear MIMD Protocol simultane-
ously on the paths (giving each path equal value) until near-
convergence. The resulting aggregate throughput will be a
good estimate of the maximum multi-path bandwidth.

In practice, it may suffice to send packets only over
appropriate prefixes of the paths; this requires packet-
programming techniques that we don’t describe here. In
our experience, the time it takes for a typical test is on the
order of a minute. An advantage of this approach is that it
works even in the presence of “hidden” bottlenecks, such as
switches, whose presence can be known to the network user
only through packet loss.

Note that a protocol such as TCP generally does not max-
imize aggregate throughput, and so doesn’t work for this
application.

Other related work. The protocol can be viewed as a
new Lagrangian-relaxation algorithm (adapted to and im-
plemented in the network setting) for the underlying pack-
ing/covering problem. It is most similar in spirit to recent
works such as [15, 55], which are in turn part of a large body
of work over the last decade [12, 19, 21, 27, 39, 32, 43, 48,
51]. The focus of all of these works are on Lagrangian-
relaxation algorithms with provable convergence rates (i.e.,
running-time bounds). Those works, and this one, are tech-
nically related to algorithms for “boosting” and “following
expert advice” in learning theory (e.g. [14]).

Within theoretical computer science, works focusing
on distributed optimization of related problems include
[7, 47, 6, 1, 35]. See also theoretical works on routing and
related problems [4, 5, 3]. Works studying related issues of
resource allocation in networks in a game-theoretical spirit
include [23, 49, 11, 16, 34].

For a critique of the pricing-based research agenda for
congestion control (which is closely related to the optimiza-
tion paradigm), see [53].

2. On-line end-to-end network model

We model a network as a set of resources (e.g., ca-
bles, routers, switches). Each resource r has a capacity
cap(r, t) ≥ 0 that can vary over time. A connection in
the network is identified with a path p, and has a value

val(p) ∈ [0, 1] and an active time interval Tp (a finite con-
tiguous subsequence of the times {0, 1, 2, . . .}). The path
p represents the fixed route (determined by the routers) in
the network from the source to the destination. We iden-
tify each path with the ordered sequence of resources that it
uses, and we write p ∼ r or r ∼ p if path p uses resource r.

To model feedback delay (round-trip times), we assume
static latencies along the paths: τpr ∈ {0, 1, . . .} denotes the
number of time intervals it takes a packet to reach its desti-
nation after going through resource r, while τp ∈ {0, 1, . . .}
denotes the number of time intervals for a packet to travel
the entire length of p. (We assume τp ≥ maxr∼p τpr .) We
use the following notations to count the number of the pro-
tocol’s packets of various kinds during time t:

sent(p, t) – packets injected at path p’s source,
rcvd(p, t) – packets received at p’s destination,
lost(p, t) – sent(p, t − τp) − rcvd(p, t),
into(r, t) – packets entering resource r,
lost(r, t) – packets discarded at resource r.

We assume for simplicity that all packets are the same size,
and (adopting the standard “fluid” model) we allow the
number of packets sent, received, lost, etc. to take on ar-
bitrary real values (rather than integer values). We assume
that the source of each path, by time t, knows rcvd(p, t−1)
(by some mechanism such as TCP acknowledgments).

We assume that packet loss occurs at a resource r at time
t only if the number of packets entering the resource at time
t exceeds the capacity cap(r, t). If this occurs, then the
loss is adversarial (arbitrary) subject to a fair loss condition,
which says that packet loss is not unduly biased against any
particular user. To explain, note that if packet loss were per-
fectly distributed at each iteration, then for each path p and
time t it would be the case that

rcvd(p, t) = sent(p, t− τp)
∏

r∼p

[

1 −
lost(r, t− τpr)

into(r, t− τpr)

]

.

(1)
The above would imply

lost(p, t)

sent(p, t − τp)
= 1 −

rcvd(p, t)

sent(p, t − τp)

= 1 −
∏

r∼p

[

1 −
lost(r, t− τpr)

into(r, t− τpr)

]

≤
∑

r∼p

lost(r, t− τpr)

into(r, t− τpr)
.

The expression on the left-hand side is the fraction of pack-
ets sent on p at time t − τp that are lost. One can interpret
the fraction on the right-hand side as the probability that any
particular packet is lost at resource r at the time the packets
in question enter it. Under this interpretation, the equation
above will hold if the fraction of packets lost on p is at most
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the expected number. The fair loss condition (ε-fair loss) is
that this holds approximately over time:

(∀p)
∑

t∈Tp+τp

lost(p, t)

sent(p, t − τp)

≤ (1 + ε)
∑

t∈Tp+τp

∑

r∼p

lost(r, t− τpr)

into(r, t − τpr)
. (2)

We are interested here in protocols that are both on-
line and end-to-end: that is, they determine the packets
sent on a path p at time t as a function of the values
{sent(p, s), rcvd(p, s) : s < t} (and possibly other path-
specific information such as val(p)). The protocols have no
a-priori knowledge of the network.

The objective is to maximize the total value of the re-
ceived packets

∑

p

∑

t∈Tp+τp
val(p)rcvd(p, t). The com-

petitive ratio (a.k.a. performance ratio) of the protocol is
the worst-case ratio (over all inputs) of this quantity to opt

— the maximum that could by assigning a fixed sending
rate f(p) to each path p while its active (without exceeding
capacity constraints).

3. Analysis of the Linear MIMD Protocol

Definitions 1 Let T ′

p = Tp + τp = {sp + τp, . . . , ep + τp}
and lost-to-sent ratio lsr(p, t) = lost(p, t)/sent(p, t − τp).

First, we lower-bound the throughput in terms of the
packet loss:

Lemma 1 The Linear MIMD Protocol satisfies, for each
path p,

∑

t∈T ′

p

rcvd(p, t) ≥ (βp/αp − 1)
∑

t∈T ′

p

lost(p, t)

− α−1
p (τp + 1)f0(p).

Proof: Let S =
∑

t∈T ′

p

sent(p, t− τp),

R =
∑

t∈T ′

p

rcvd(p, t), and L =
∑

t∈T ′

p

lost(p, t).

Expanding the product on the right-hand side in the def-
inition of the protocol, for t ∈ T ′

p ,

sent(p, t + 1) ≤ (1 + αp)sent(p, t − τp) − βplost(p, t).

Summing over t ∈ T ′

p gives

∑

t∈T ′

p

sent(p, t + 1) ≤ (1 + αp) S − βpL.

Subtracting S from both sides and substituting R + L for S
gives

αpR ≥ (βp − αp)L − (1 + τp)f0(p)

Next, we lower-bound the packet loss in terms of opt,
but with a condition.

Definitions 2 Let rcvd∗(p) denote the number of pack-
ets the optimal algorithm would send on path p when it
is active. Define into∗(r, t) to be the number of pack-
ets the optimal algorithm would send through r at time
t. Let opt =

∑

p val(p)rcvd∗(p)|Tp| denote the optimum
weighted throughput.

Lemma 2 Assume that only congested resources
discard packets. If, for some c and each p,
∑

t∈T ′

p

∑

r∼p

lost(r,t−τpr)
into(r,t−τpr)

≥ c |Tp|val(p), then the

number of packets lost,
∑

t

∑

r lost(r, t), is at least c opt.

Proof: We show that the loss rates at the resources im-
plicitly define a solution to the dual linear program of the
problem, and we use the dual solution to bound opt.

For each of the protocol’s packets lost at a resource r
at time t where into∗(r, t) > 0, allocate a charge of one
credit uniformly across each of the into∗(r, t) packets sent
through r by opt at time t. The assumption that pack-
ets are discarded only by congested resources means that
lost(r, t) > 0 only if into(r, t) ≥ cap(r, t) ≥ into∗(r, t), so
the charge to each packet that opt sends through r at time t
is

lost(r, t)

into∗(r, t)
≥

lost(r, t)

into(r, t)
.

The number of lost packets is at least the total charge to
opt’s packets, which by the above (and the supposition in
the lemma about each path p) is at least

∑

p

rcvd
∗(p)

∑

r∼p

∑

t∈T ′

p

lost(r, t − τpr)

into(r, t − τpr)

≥
∑

p

rcvd∗(p) c |Tp|val(p)

= c opt.

Lemma 3 Let Up be the most received in any round on path
p. The Linear MIMD Protocol satisfies, for each path p,

∑

t∈T ′

p

lsr(p, t) ≥
αp(1 − βp)

βp(1 + αp)
(|Tp| − 1 − τp)

−
1 − βp

βp

(1 + τp) ln
βpUp

(βp − αp)f0(p)
.

Proof: We use that (for 0 ≤ a ≤ α and 0 ≤ b ≤ β < 1),

1+a−b ≥ (1+a)(1−b) ≥ exp[a/(1+α)−b/(1−β)].
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Fix a path p. Recall lsr(p, t) = lost(p, t)/sent(p, t− τp).
By the definition of the protocol and the stated inequality,
for t = sp + 1 + τp, . . . , ep,

sent(p, t)

sent(p, t− 1 − τp)
= 1 + αp − βp lsr(p, t − 1)

≥ exp

[

αp

1 + αp

−
βp lsr(p, t − 1)

1 − βp

]

.

Taking logs and summing over t,

ep
∑

t=sp+1+τp

ln
sent(p, t)

sent(p, t − 1 − τp)

≥

ep
∑

t=sp+1+τp

αp

1 + αp

− lsr(p, t)
βp

1− βp

.

The sum on the left-hand side telescopes. Since at most Up

is received on p in any round, a proof by induction shows
that at most Upβp/(βp −αp) is ever sent on p in any round.
Thus,

(1 + τp) ln
Upβp

(βp − αp)f0(p)

≥ (|Tp| − τp − 1)
αp

1 + αp

−

ep
∑

t=sp+1+τp

lsr(p, t)
βp

1 − βp

.

The lemma follows.

Next we combine the three lemmas.

Lemma 4 Fix ε > 0. Assume ε-fair loss. Let Up be the
maximum amount received in any round on path p. Define
b = minp(βp/αp − 1)val(p). Define

c = min
p

αp(1 − βp)

βp(1 + αp)val(p)
(1 −

1 + τp

|Tp|
)

−
1 − βp

βpval(p)

1 + τp

|Tp|
ln

βpUp

(βp − αp)f0(p)
.

Then the total weighted throughput achieved by the protocol
by round T is at least

b c opt/(1 + ε) −
∑

p

(1 + τp)f0(p)val(p)

αp

Proof: Applying Lemma 1 and the choice of b, the total
weighted throughput is

∑

p

∑

t∈T ′

p

val(p)rcvd(p, t)

≥ b
∑

p

(

∑

t∈T ′

p

lost(p, t) −
(1 + τp)f0(p)val(p)

αp

)

.(3)

Applying Lemma 3 and the choice of c,
∑

t∈T ′

p

lsr(p, t) ≥ c|Tp|val(p). (4)

ε-fair loss over period T ′

p means that, for each p,

∑

t∈T ′

p

lsr(p, t) ≤ (1 + ε)
∑

t∈T ′

p

∑

r∼p

lost(r, t − τpr)

into(r, t − τpr)
. (5)

Combining (4) and (5),

∑

t∈T ′

p

∑

r∼p

lost(r, t− τp)

into(r, t − τp)
≥ c|Tp|val(p)/(1 + ε).

This means the condition of Lemma 2 is met, so
∑

t

∑

r

lost(r, t) ≥ c opt/(1 + ε)

Since every lost packet is eventually observed lost on a path,
∑

p

∑

t∈T ′

p

lost(p, t) ≥
∑

t

∑

r

lost(r, t).

Substituting the previous two inequalities into (3), the total
weighted throughput is at least

b c opt/(1 + ε) −
∑

p

α−1
p (τp + 1)f0(p)val(p).

Theorem 5 Assume each val(p) ≤ 1. Fix ε > 0. Assume
ε-fair loss on each path. Let Up be the maximum amount
received in any round on path p.

The weighted throughput achieved by the Linear MIMD
Protocol with βp = O(ε) and αp = ε βp val(p) is (1 −
O(ε))opt provided the duration |Tp| of each connection is
at least

Ω

(

max
p

(1 + τp) ln(Up/f0(p))

ε2βpval(p)

)

.

Proof: Apply Lemma 4. With these choices for αp and βp ,
in that lemma, b = ε(1 − O(ε)), c = ε−1(1 − O(ε)), and
∑

p(1 + τp)f0(p)val(p)/αp = O(εopt). Thus, the lower
bound that lemma gives on the weighted throughput is [1−
O(ε)]opt.

4. Discussion

Limitations of the model. This paper assumes static
packet latencies (round-trip times). In practice, a U.S.
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coast-to-coast packet round-trip time is on the order of tens
of milliseconds. A typical router queue might hold about
1/10 seconds worth of packets. So, the variation in round-
trip time due to queuing can be larger than the round-trip
time itself — our assumption of static latencies is not re-
alistic. How will this affect the protocol in practice? Can
one generalize the analysis to show that some amount of
queuing doesn’t hurt, or can queuing destabilize the proto-
col? (For one discussion of the effects of large queues in
the Internet, see [45].) One workaround is to take the time
per iteration in the protocol to be on the order of 1/10 sec-
ond to 1 second — long enough so that, even with queuing,
round-trip times are likely to be only one iteration.

Here we’ve assumed all packets are the same size. This
hides two practical issues: typically routing has a per-packet
cost, and large packets tend to be more likely to be dropped
by congested routers (as routers queue packets in different
queues by size).

In the current Internet, although long-lasting connections
carry most of the traffic, most connections are short-lived.
Do short-lived connections interfere?

The “fluid packet model” – in which we assume that ar-
bitrary sending rates are possible, is unrealistic in the case
that the sending rate on a path becomes very low. To have
confidence that the analysis in this paper is realistic, each
path should be sending at least one packet per iteration. (In
practice, it may be useful to modify the protocol so that each
path sends at least this minimal rate.) Can one modify the
analysis to model discrete packets?

We do consider the “fair loss” assumption here realistic
(modulo the problem of low sending rates). We note that
existing theoretical analyses of end-to-end protocols typi-
cally assume fair loss at each point in time (that is, that (1)
holds exactly or approximately in each round). Other mod-
els are plausible — for example, random discards [13] as in
random early detection (RED) — and would allow similar
assumptions.

We proved performance guarantees with respect to the
static optimum (i.e., the sending rate on a path during its
active interval is constant). How much does this restrict opt

in a network where capacities change slowly?

Interesting directions. Prove upper and lower bounds on
best-possible convergence rates of on-line, end-to-end pro-
tocols that approximately optimize various objective func-
tions.

For example, it is straightforward to prove that any pro-
tocol requires Ω(log[log(U/f0)/ε]) rounds to estimate the
capacity of a single link of capacity U within a factor of
1 + ε, and 1/ε times this many rounds to achieve an aver-
age throughput of 1 − ε times U . If we restrict the proto-
col so that it can’t send more than 1 + O(ε) times what it
has successfully transmitted, then these lower bounds can

be improved to Ω(log(U/f0)/ε) rounds to estimate the ca-
pacity of the link and 1/ε times that to achieve an average
throughput of 1−ε times U . Strengthen these lower bounds.

Lower bounds on related algorithms have been proven in
the contexts of static optimization [33] and learning theory
[14]. For some lower bounds for particular protocols (e.g. a
comparison of MIMD and AIMD convergence on a single-
path network), see [18, 9].

An important objective function to study is proportional
fairness (e.g.

∑

p log f(p)). For upper bounds, a natu-
ral starting point would be to first develop a Lagrangian-
relaxation algorithm that solves the underlying optimization
problem with a provably good running time [24, 20].

Find a protocol that simultaneously maximizes aggregate
throughput within a constant factor and maximizes propor-
tional fairness within an additive constant.

A natural objection to the model in this paper is that, in
practice, most connections are open not for a given period of
time, but rather until a given number of bits have been trans-
mitted. What is a reasonable objective function to model
this? Perhaps an objective functions related to scheduling
— e.g. minimize the total wait (sum of transfer times).

Appendix

Connection to existing algorithms. We briefly sketch the
connection between the protocols described here and ex-
isting packing and covering algorithms [15, 55]. Under-
standing this connection may be useful to aid further re-
search. We designed the protocol in this paper by starting
with Lagrangian-relaxation algorithms for the dual problem
(a covering problem — fractional weighted set cover) of
the underlying static multicommodity flow problem, and
then adapting it to the current setting (e.g. with the fair
loss assumption, round-trip times, etc.). The resulting al-
gorithm is by no means a direct translation of an existing
algorithm — in fact, appropriately parameterized, it runs
faster than existing algorithms as they are implemented in
the literature. However, some connections remain. Briefly,
each round of the protocol corresponds to an iteration of
the algorithm. Each path p’s sending rate is proportional
to a path variable xp in the algorithm. Each resource r’s
cumulative packet loss is proportional to a resource vari-
able `r in the algorithm. Roughly, the algorithm ensures
that (by time T ) we get something like the familiar invari-

ant xp ≈ (1 − ε)

∑

r∼p
`r . When a resource discards a

packet, the resulting adjustments in the sending rates corre-
spond to incrementing the corresponding path variable; that
only congested resources lose packets means that resource
variables get incremented only if their corresponding con-
straints are “sufficiently violated”.
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