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Abstract

The Reverse Greedy algorithm (RGREEDY) for the k-median problem works as follows. It starts by placing facilities on
nodes. At each step, it removes a facility to minimize the total distance to the remaining facilities. It stops whenk facilities remain.
We prove that, if the distance function is metric, then the approximation ratio of RGREEDY is between�(logn/ log logn) and
O(logn).
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An instance of themetric k-median problem consists
of a metric spaceX = (X, c), whereX is a set of points
andc is a distance function (also called thecost) that
specifies the distancecxy � 0 between any pair of node
x, y ∈ X. The distance function is reflexive, symmetr
and satisfies the triangle inequality. Given a set of po
F ⊆ X, the cost ofF is defined by

cost(F ) =
∑
x∈X

cxF , where

cxF = min
f ∈F

cxf for x ∈ X.

* Corresponding author.
E-mail addresses: marek@cs.ucr.edu (M. Chrobak),
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0020-0190/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2005.09.009
Our objective is to find ak-element setF ⊆ X that min-
imizescost(F ).

Intuitively, we think of F as a set of facilities an
of cxF as the cost of serving a customer atx using the
facilities in F . Thencost(F ) is the overall service cos
associated withF . Thek-element set that achieves t
minimum value ofcost(F ) is called thek-median of X .

The k-median problem is a classical facility loc
tion problem and has a vast literature. Here, we rev
only the work most directly related to this paper. T
problem is well known to be NP-hard, and extensive
search has been done on approximation algorithm
the metric version. Arya et al. [1] show that the op
mal solution can be approximated in polynomial tim
within ratio 3+ ε, for anyε > 0, and this is the smalle
approximation ratio known. Earlier, several approxim
tion algorithms with constant, but somewhat larger
proximation ratios appeared in the works by Charika
al. [5], Charikar and Guha [4], and Jain and Vazirani [
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Jain et al. [7] show a lower bound of 1+ 2/e on the ap-
proximation ratio for this problem (assuming P�= NP).

In the oblivious version of thek-median problem
first studied by Mettu and Plaxton [9], the algorith
is not givenk in advance. Instead, requests for ad
tional facilities arrive over time. When a request arriv
a new facility must be added to the existing set. In ot
words, the algorithm computes a nested sequenc
facility setsF1 ⊂ F2 ⊂ · · · ⊂ Fn, where |Fk| = k for
all k. This problem is calledonline median in [9],in-
cremental median in [10], and the analog version f
clustering is calledoblivious clustering in [2,3]. The
algorithm presented by Mettu and Plaxton [9] guar
tees thatcost(Fk) approximates the optimalk-median
cost within a constant factor (independent ofk). They
also show that in this oblivious setting no algorithm c
achieve approximation ratio better than 2− 2/(n − 1).

The naive approach to the median problem is to
the greedy algorithm: Start withF0 = ∅, and at each
stepk = 1, . . . , n, letFk = Fk−1∪{fk}, wherefk ∈ X−
Fk−1 is chosen so thatcost(Fk) is minimized. Clearly,
this is an oblivious algorithm. It is not difficult to show
however, that its approximation ratio is�(n).

Reverse greedy. Amos Fiat [6] proposed the followin
alternative idea. Instead of starting with the empty
and adding facilities, start with all nodes being fac
ties and remove them one by one in a greedy fash
More formally, Algorithm RGREEDY works as follows:
Initially, let Rn = X. At step k = n,n − 1, . . . ,2, let
Rk−1 = Rk − {rk}, where rk ∈ Rk is chosen so tha
cost(Rk−1) is minimized. For the purpose of obliviou
computation, the sequence of facilities could be p
computed and then produced in order(r1, r2, . . . , rn).

Fiat [6] asked whether RGREEDY is an O(1)-ap-
proximation algorithm for the metrick-median prob-
lem. In this note we present a nearly tight analy
of RGREEDY by showing that its approximation rat
is between�(logn/ log logn) and O(logn). Thus, al-
though its ratio is not constant, RGREEDY performs
much better than the forward greedy algorithm.

2. The upper bound

One crucial step of the upper bound is captured
the following lemma, that was independently disco
ered by Jain and Vazirani, see [8].

Lemma 2.1. Consider two subsets R and M of X. De-
note by Q the set of facilities in R that serve M , that is, a
minimal subset of R such that cµQ = cµR for all µ ∈ M .
Then for every x ∈ X we have cxQ � 2cxM + cxR .
f

Proof. For anyx ∈ X, chooser ∈ R andµ ∈ M that
servex in R andM , respectively. In other words,cxR =
cxr and cxM = cxµ. We havecµr � cµQ, by the def-
inition of Q. Thus cxQ � cxµ + cµQ � cxµ + cµr �
2cxµ + cxr = 2cxµ + cxR . �

Now, fix k and letM be the optimalk-median ofX .
Consider a stepj of RGREEDY (when we removerj
from Rj to obtainRj−1), for j > k. Denote byQ the
set of facilities inRj that serveM . We estimate first the
incremental cost in stepj :

cost(Rj−1) − cost(Rj )

� min
r∈Rj \Q cost

(
Rj \ {r}) − cost(Rj ) (1)

� 1

|Rj \ Q|
∑

r∈Rj \Q

[
cost

(
Rj \ {r}) − cost(Rj )

]
(2)

� 1

j − k

∑
r∈Rj \Q

[
cost

(
Rj \ {r}) − cost(Rj )

]
(3)

� 1

j − k

[
cost(Q) − cost(Rj )

]
(4)

� 2

j − k
cost(M). (5)

The first inequality follows from the definition ofRj−1,
in the second one we estimate the minimum by the
erage, and the third one follows from|Q| � k. We now
justify the two remaining inequalities.

Inequality (4) is related to the super-modularity pro
erty of the cost function. We need to prove that∑
r∈R\Q

[
cost

(
R \ {r}) − cost(R)

]
� cost(Q) − cost(R),

whereR = Rj . To this end, we examine the contributi
of eachx ∈ X to both sides. The contribution ofx to the
right-hand side is exactlycxQ − cxR . On the left-hand
side, the contribution ofx is positive only ifcxQ > cxR

and, if this is so, thenx contributes only to one term
namely the one for ther ∈ R \ Q that servesx in R

(that is,cxr = cxR). Further, this contribution cannot b
greater thancxQ − cxR becauseQ ⊆ R \ {r}. (Note that
we do not use here any special properties ofQ andR.
This inequality holds for anyQ ⊂ R ⊆ X.)

Finally, to get (5), we apply Lemma 2.1 to the s
R = Rj , M , andQ, and sum over allx ∈ X.

We have thus proved thatcost(Rj−1) − cost(Rj ) �
2

j−k
cost(M). Summing up overj = n,n−1, . . . , k +1,

we obtain our upper bound.

Theorem 2.2. The approximation ratio of Algorithm
RGREEDY in metric spaces is at most 2Hn−k = O(logn).
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3. The lower bound

In this section we construct ann-point metric space
X where, for k = 1, the ratio between the cost
the RGREEDY’s facility set and the optimal cost
�(logn/ log logn). (For generalk, a lower bound of
�(log(n/k)/ log log(n/k)) follows easily, by simply
takingk copies ofX .)

To simplify presentation, we allow distances b
tween different points inX to be 0. These distances c
be changed to some appropriately smallε > 0 without
affecting the asymptotic ratio. Similarly, whenever co
venient, we will break the ties in RGREEDY in our favor.

Let T̂ be a graph that consists of a treeT with rootρ
and a nodeµ connected to all leaves ofT . T itself con-
sists ofh levels numbered 1,2, . . . , h, with the leaves
at level 1 and the rootρ at levelh. Each node at leve
j > 1 has(j + 1)3 children in levelj − 1.

To constructX , for each nodex of T at levelj we
create a cluster ofwj = j !3 points (includingx itself) at
distance 0 from each other. Nodeµ is a 1-point cluster
All other distances are defined by shortest-path len
in T̂ .

First, we show that, fork = 1, RGREEDY will end
up with the facility atρ. Indeed, RGREEDY will first re-
move all but one facility from each cluster. Without lo
of generality, let those remaining facilities be located
the nodes ofT̂ , and from now on we will think ofwj

as the weight of each node in layerj . At the next step
we break ties so that RGREEDY will remove the facility
from µ.

We claim that in any subsequent stept , if j is the
first layer that has a facility, then RGREEDY has a facil-
ity on each node ofT in layersj + 1, . . . , h. To prove
it, we show that this invariant is preserved in one step
a nodex in layerj has a facility then, by the invarian
this facility serves all the nodes in the subtreeTx of T

rooted atx, plus possiblyµ (if x has the last facility in
layerj ). What facility will be removed by RGREEDY at
this step? The cost of removing any facility from laye
j + 1, . . . , h is at leastwj+1. If we remove the facility
from x, all the nodes served byx can switch to the par
ent ofx, so the increase in cost is bounded by the t
weight ofTx (possibly plus one, ifx servesµ). Tx has
(j + 1)!3/(i + 1)!3 nodes in each layeri � j . So the
total weight ofTx is

w(Tx) =
j∑

i=1

wi · (j + 1)!3/(i + 1)!3

= (j + 1)!3
j∑

(i + 1)−3 < (j + 1)!3 = wj+1,
i=1
where the inequality above follows from

j∑
i=1

(i + 1)−3 �
∞∑
i=2

i−2 < 1.

Thus removingx increases the cost by at mostw(Tx) +
1 � wj+1, so RGREEDY will remove x or some othe
node from layerj in this step, as claimed. Therefor
overall, aftern − 1 steps, RGREEDY will be left with
the facility atρ.

By the previous paragraph, the cardinality (to
weight) of X is n = w(T ) + 1 � (h + 1)!3, so h =
�(logn/ log logn). The optimal cost is

cost(µ) =
h∑

i=1

i · wi · (h + 1)!3/(i + 1)!3

= (h + 1)!3
h∑

i=1

i(i + 1)−3

< (h + 1)!3
∞∑
i=2

i−2 < (h + 1)!3,

while the cost of RGREEDY is

cost(ρ) =
h∑

i=1

(h − i) · wi · (h + 1)!3/(i + 1)!3

= (h + 1)!3
h∑

i=1

(h − i)(i + 1)−3

� (h − 1)(h + 1)!3/8,

where in the last step we estimate the sum by the
term. Thus the ratio iscost(ρ)/cost(µ) � (h − 1)/8 =
�(logn/ log logn).

In the argument above we considered only the c
k = 1. More generally, one might characterize the p
formance ratio of the algorithm as a function of bothn

andk. Any lower bound fork = 1 implies a lower bound
for largerk by simply takingk (widely separated) copie
of the metric space. Therefore we obtain:

Theorem 3.1. The approximation ratio of Algo-
rithm RGREEDY in metric spaces is not better than
�(log(n/k)/ log log(n/k)).

4. Technical observations

We have shown an O(logn) upper bound and a
�(logn/ log logn) lower bound on the approximatio
ratio of RGREEDY for k-medians in metric spaces. Ne
we make some observations about what it might tak
improve our bounds. We focus on the casek = 1.
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Comments on the upper bound. In the upper bound
proof in Section 2 we show that the incremental cos
RGREEDY when removingrj from Rj to obtainRj−1
is at most 2cost(µ)/(j − 1), whereµ denotes the opti
mal 1-median. The proof (inequalities (1) through (
does not use any information about the structure ofRj :
it shows that forany setR of sizej ,

min
r

cost
(
R \ {r}) − cost(R) � 2cost(µ)

j − 1
. (6)

Next we describe a setR of size j in a metric space
for which this latter bound is tight. The metric space
defined by the following weighted graph:

The space has pointsµ, x1, . . . , xj , y1, . . . , yj , where
the pointsxi have weightsw, for some large integerw.
(In other words, eachxi represents a cluster ofw points
at distance 0 from each other.) All other points ha
weight 1. Pointµ is connected to eachxi by an edge
of length 1. Eachxi is connected toyi by an edge
of length 1, and to eachyl , for l �= i, by an edge o
length 2. The distances are measured along the e
of this graph.

For k = 1, the optimal cost iscost(µ) = j (w + 2).
Now considerR = {y1, . . . , yj }. Removing anyyi ∈ R

increases the cost byw ≈ cost(µ)/j . Thus, for this ex-
ample, inequality (6) is tight, up to a constant factor
about 2.

Of course, RGREEDY would not produce the partic
ular setR assumed above forRj . Also, this example
only shows asingle iteration where the incremental co
matches the upper bound (6). Nonetheless, the exa
demonstrates that to improve the upper bound it is n
essary to consider some information about the struc
of Rj (due to the previous steps of RGREEDY).

Comments on the lower bound. We can show that th
lower-bound constructions similar to that in Section
are unlikely to give any improvement, in a technic
sense formalized in Lemma 4.1.

Fix a metric spaceX = (X, c) with n points, where
n is a large integer. Letµ be the 1-median ofX , and
assume (by scaling) that its cost iscost(µ) = n/2. Let
s

B be the unit ball aroundµ, that is, the set of points a
distance at most 1 fromµ. Note that|B| � n/2.

For i � 0, defineZi to be the pointsx ∈ X such that
i − 1 < cxµ � i, and such that there is a time whenx

is used by RGREEDY as a facility for some point inB.
ThusZ0 = {µ} andZ0 ∪ Z1 = B. Also, for i � j , let
Zi,j = ⋃j

l=i Zl .
Let h be the maximum index for whichZh �= ∅. De-

fine tj to be the time step when RGREEDY is about to
remove the last facility fromZ0,j , and forj � 7 let mj

be the number of points served byZj at timetj−6. (The
value of 6 is not critical; any constantC � 6 will work,
with some minor modifications.)

Lemma 4.1. Suppose that
∑h

i=10 imi = O(n). Then,
for k = 1, the approximation ratio of RGREEDY is
O(logn/ log logn).

Proof (sketch). We will show that h = O(logn/

log logn). Since the facility computed by RGREEDY

for k = 1 is at distance at mosth from µ, this will imply
the lemma, by the triangle inequality.

We first argue thatZi = ∅ cannot happen for mor
than four consecutive values ofi < h. Indeed,Z0,Z1 �=
∅. Assume, towards a contradiction, thatZi �= ∅ and that
Zi+1,i+4 = ∅. Then at stepti , RGREEDY deletes the las
facility f ∈ Z0,i , its cost to serveµ increases by at lea
4 and its cost to serveB increases by more than 2|B| �
n. Let j > i + 4 be such thatZj �= ∅. By Lemma 2.1,
deleting a facilityf ′ ∈ Zj at timeti would increase the
cost by at most 2cost(µ) � n, hence less than the co
of deletingf at timeti—contradicting the definition o
RGREEDY.

Now, consider anyi � h − 9. It is easy to see tha
over all stepsti , ti + 1, . . . , ti+3, RGREEDY’s cost to
serveB increases by at least|B| � n/2, while, by the
triangle inequality, all facilities that serveB at steps
ti+1, ti+1 + 1, . . . , ti+3 are inZi+1,i+5. Thus, there ex
ists at ∈ [ti , ti+3] such that at stept , RGREEDY deletes
a facility f and pays an incremental cost of at le
(n/2)/(1+ |Zi+1,i+5|).

SupposeZi+9 �= ∅. Sincet � ti+3, the facilities in
Zi+9 serve at mostmj clients. Therefore, at stept ,
deletingall facilities in Zi+9 and serving their client
using a remaining facility fromZi,i+3 would have
increased the cost by O(imi+9), by the triangle in-
equality. So there exists a facilityf ′ in Zi+9 whose
deletion at stept would have increased the cost
O(imi+9/|Zi+9|). Since at timet RGREEDY prefers to
deletef rather thanf ′, we have

(n/2)/
(
1+ |Zi+1,i+5|

) = O
(
imi+9/|Zi+9|

)
.
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Rewriting and summing the above overi (including now
thosei for whichZi+9 is empty),

h−9∑
i=1

|Zi+9|
1+ |Zi+1,i+5| = O

(
1

n

h−9∑
i=1

imi+9

)

= O

(
1

n

h∑
i=10

imi

)
� A, (7)

for some constantA.
The intuition is that for this sum to be bounded

a constant, the cardinalities|Zi | must rapidly decreas
(except for some small number of abnormalities) a
h cannot be too large. To get a good estimate, letyi =
|Z8i+1,8i+8|, for i = 1, . . . , �h/8� − 1. Then,

�h/8�−2∑
i=1

yi+1

yi + yi+1
=

�h/8�−2∑
i=1

8i+8∑
j=8i+1

|Zj+8|
|Z8i+1,8i+16|

�
�h/8�−2∑

i=1

8i+8∑
j=8i+1

|Zj+8|
1+ |Zj,j+4|

� A,

where the next-to-last inequality holds because+
|Zj,j+4| � |Z8i+1,8i+16| for all j = 8i + 1, . . . ,8i + 12.
(Here, again, we use the fact that at most four cons
tive Zl ’s can be zero.)

Now let qi = yi+1/yi for all i = 1, . . . , �h/8� − 2.
We have

∑�h/8�−2
i=1 qi/(1 + qi) � A. Thereforeqi � 1

for all except at most 2A i ’s. So there arem andg �
(�h/8� − 2)/(2A) such thatqi � 1 for all i = m, . . . ,

m + g − 1. For thosei ’s we get

m+g−1∑
i=m

qi � 2 ·
m+g−1∑

i=m

qi

1+ qi

= 2 ·
m+g−1∑

i=m

yi+1

yi + yi+1
� 2A.

Let
∑m+g−1

i=m qi = B � 2A. Then
∏m+q−1

i=m qi is maxi-
mized when allqi are equal toB/g, and therefore

1

n
� ym+g

ym

=
m+g−1∏

i=m

qi � (B/g)g.
Thus(g/B)g � n, and we obtainh = O(g) = O(logn/

log logn), completing the proof. �
Note that assumption of the lemma holds for the m

ric space used in Section 3. There, each setZi , for
i = 1, . . . , h, consists of the nodes inT at level i, and
mi = (h + 1)!3/(i + 1)3 is the total weight of leve
i so, indeed,

∑h
i=1 imi = O(h!3) = O(n). The lemma

suggests that in order to improve the lower bound,
would need to design an example where at every t
ti , the facilities serving nodes at distance at mosti from
µ are distributed more or less uniformly across the
maining facilities.
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