
Approximation Algorithms for

the Joint Replenishment Problem with Deadlines

⇤

Marcin Bienkowski

†

Jaros law Byrka

†

Marek Chrobak

‡

Neil Dobbs

§

Tomasz Nowicki

§

Maxim Sviridenko

¶

Grzegorz

´

Swirszcz

§

Neal E. Young

‡

August 21, 2014

Abstract

The Joint Replenishment Problem (JRP) is a fundamental optimization problem in supply-
chain management, concerned with optimizing the flow of goods from a supplier to retailers.
Over time, in response to demands at the retailers, the supplier ships orders, via a warehouse,
to the retailers. The objective is to schedule these orders to minimize the sum of ordering costs
and retailers’ waiting costs.

We study the approximability of JRP-D, the version of JRP with deadlines, where instead
of waiting costs the retailers impose strict deadlines. We study the integrality gap of the
standard linear-program (LP) relaxation, giving a lower bound of 1.207, a stronger, computer-
assisted lower bound of 1.245, as well as an upper bound and approximation ratio of 1.574. The
best previous upper bound and approximation ratio was 1.667; no lower bound was previously
published. For the special case when all demand periods are of equal length we give an upper
bound of 1.5, a lower bound of 1.2, and show APX-hardness.

1 Introduction

The Joint Replenishment Problem with Deadlines (JRP-D) is an optimization problem in supply-
chain management concerned with scheduling shipments (orders) of a commodity from a supplier,
via a shared warehouse, to satisfy prior demands at m retailers (cf. Figure 1). The objective is to
find a schedule of orders that satisfies all demands before their deadlines expire, while minimizing
the total ordering cost.

Specifically, an instance of JRP-D is given by a tuple (C, c,D) where

• C 2 Q is the warehouse ordering cost ;

⇤A preliminary version of this work appeared in the Proceedings of the 40th International Colloquium on Automata,
Languages and Programming (ICALPÕ13). Research supported by NSF grants CCF-1217314, CCF-1117954, OISE-
1157129; EPSRC grants EP/J021814/1 and EP/D063191/1; FP7 Marie Curie Career Integration Grant; Royal Society
Wolfson Research Merit Award; and Polish National Science Centre grant DEC-2013/09/B/ST6/01538

 Institute of Computer Science, University of Wroc !law, Poland.
àDepartment of Computer Science, University of California at Riverside, USA.
¤IBM T.J. Watson Research Center, Yorktown Heights, USA.
¦ Department of Computer Science, University of Warwick, UK.

1

Journal of Scheduling, to appear (2015)						 doi: 10.1007/s10951-014-0392-y

C

c1 c2

c3
c4

re
ta
ile
rs

sup
plie
r

war
eho
use

Figure 1: An instance with four retailers, represented by a tree with ordering costs as weights
assigned to its edges. The cost of an order is the total weight of the subtree connecting the supplier
and the involved retailers.

• c is the vector of retailer ordering costs, where for each retailer ⇢ 2 {1, 2, . . . , m} its ordering
cost is c⇢ 2 Q;

• D is a set of n demands, with each demand represented by a triple (⇢, r, d), where ⇢ is the
retailer that issued the demand, r 2 Q is the demand’s release time and d 2 Q is its deadline.

For a demand (⇢, r, d), the interval [r, d] is called the demand period

1. In sections that prove upper
bounds we assume (without loss of generality by time scaling) that r, d 2 [2n], where [i] denotes
{1, 2, . . . , i}.

A solution (also called a schedule) is a set of orders, each specified by a pair (t, R), where t is
the time of the order and R is a subset of the retailers. An order (t, R) satisfies those demands
(⇢, r, d) whose retailer is in R and whose demand period contains t (that is, ⇢ 2 R and t 2 [r, d]).
A schedule is feasible if all demands are satisfied by some order in the schedule.

The cost of order (t, R) is the ordering cost of the warehouse plus the ordering costs of respective
retailers, i.e., C+

P

⇢! R c⇢. It is convenient to think of this order as consisting of a warehouse order
of cost C, which is then joined by each retailer ⇢ 2 R at cost c⇢. The cost of the schedule is the
sum of the costs of its orders. The objective is to find a feasible schedule of minimum cost.

Previous results. The decision variant of JRP-D was shown to be strongly NP-complete by
Becchetti et al. [3]. (They considered an equivalent problem of packet aggregation with deadlines
on two-level trees.) Nonner and Souza [12] then showed that JRP-D is APX-hard, even if each
retailer issues only three demands. Levi, Roundy and Shmoys [9] gave a 2-approximation algorithm
based on a primal-dual scheme. Using randomized rounding, Levi et al. [10, 11] (building on [8])
improved the approximation ratio to 1.8; Nonner and Souza [12] reduced it further to 5/ 3. These
results use a natural linear-program (LP) relaxation, which we use too.

The randomized-rounding approach from [12] uses a natural rounding scheme whose analysis
can be reduced to a probabilistic game. For any probability distribution p on [0, 1], the integrality
gap of the LP relaxation is at most 1/ Z(p), where Z(p) is a particular statistic of p (see Lemma 1).
The challenge in this approach is to find a distribution where 1/ Z(p) is small. Nonner and Souza
show that there is a distribution p with 1/ Z(p) 5/ 3 ⇡ 1.67. As long as the distribution can be
sampled from e! ciently, the approach yields a polynomial-time (1/ Z(p))-approximation algorithm.

Our contributions. We prove that there is a distribution p with 1/ Z(p) 1.574. We present this
result in two steps: we show the bound e/ (e� 1) ⇡ 1.58 with a simple and elegant analysis, then

1Note: our use of the term ÒperiodÓ is di" erent from its use in operations research literature on supply-chain
management problems.

2

improve it to 1.574 by refining the underlying distribution. This shows that the integrality gap is
at most 1.574 and it gives a 1.574-approximation algorithm. We also prove that the LP integrality
gap is at least 1.207 and we provide a computer-assisted proof that this gap is at least 1.245. As
far as we know, no explicit lower bounds have been previously published.

For the special case when all demand periods have the same length (as occurs in applications
where time-to-delivery is globally standardized) we give an upper bound of 1.5, a lower bound of
1.2, and show APX-hardness.

Other related work. JRP-D is a special case of the Joint Replenishment Problem (JRP). In JRP,
instead of having a deadline, each demand is associated with a delay-cost function that specifies the
cost for the delay between the time the demand is released and the time it is satisfied by an order.
JRP is NP-complete, even if the delay cost is linear [2, 12]. JRP is in turn a special case of the
One-Warehouse Multi-Retailer (OWMR) problem, where the commodities may be stored at the
warehouse for a given cost per time unit. The 1.8-approximation by Levi et al. [11] holds also
for OWMR. JRP was also studied in the online scenario: a 3-competitive algorithm was given by
Buchbinder et al. [6] (see also [5]).

The JRP model is an abstraction of a number of other optimization problems that arise in
supply-chain management. It is often presented as an inventory-management problem, where all
demands need to be satisfied immediately from the current inventory. In that scenario, orders
are issued to replenish the inventory, ensuring that all future demands are met. (In contrast, in
our model the orders are issued to satisfy past demands and there is no inventory.) Depending
on the application, orders can represent deliveries (via a shared warehouse), or a manufacturing
process that involves a joint set-up cost and individual set-up costs for retailers. The objective is
to minimize the total cost, defined as the sum of ordering costs and inventory holding costs.

Another generalization of JRP involves a tree-like structure with the supplier in the root and re-
tailers at the leaves, modeling control packet aggregation in computer networks. A 2-approximation
is known for the variant with deadlines [3]; the case of linear delay costs has also been studied [7, 5].
Recently, L. Chaves (private communication) has shown that the generalization of JRP to arbitrary
trees, even for arbitrary waiting cost functions, can be approximated within a factor of 2 through
a reduction to the multi-stage assembly problem, see [9].

2 Upper Bound of 1.574

In this section we derive our approximation algorithms for JRP-D, showing an approximation ratio
of e/ (e� 1) ⇡ 1.58, which we then improve to 1.574. Both algorithms are based on randomized
LP-rounding.

The LP relaxation. For the rest of this section, fix an arbitrary instance I = (C, c,D) of JRP-D.
Let finite set U ⇢ Q contain the release times and deadlines. Here is the standard LP relaxation of
the problem:

3

minimize cost(x) =
P

t! U

(C xt +
Pm

⇢=1

c⇢ x⇢
t)

subject to xt, x⇢
t � 0 for all t 2 U , ⇢ 2 {1, . . . , m}

xt � x⇢
t for all t 2 U , ⇢ 2 {1, . . . , m} (1)

X

t! U" [r,d]

x⇢
t � 1 for all (⇢, r, d) 2 D. (2)

The statistic Z(p). Let p be a probability distribution on [0, 1]. As we are about to show, the
approximation ratio of algorithm Roundp (defined below) and the integrality gap of the LP are at
most 1/ Z(p), where Z(p) is defined by the following so-called tally game (following [12]). To begin
the game, fix any threshold z � 0, then draw a sequence of independent samples s

1

, s
2

, . . . , sh from p,
stopping when their sum exceeds z, that is when s

1

+s
2

+. . .+sh > z . Call z�(s
1

+s
2

+. . .+sh# 1

) the
waste. Note that, since the waste is less than sh, it is in [0, 1). Let W(p, z) denote the expectation
of the waste. Abusing notation, let E [p] denote the expected value of a single sample drawn from p.
Then Z(p) is defined by

Z(p) = min
n

E [p] , 1 � sup
z$ 0

W(p, z)
o

.

Note that the distribution p that chooses 1

2

with probability 1 has Z(p) = 1

2

. The challenge is
to simultaneously increase E [p] and reduce the maximum expected waste.

A generic randomized-rounding algorithm. The upper bound of 1.574 relies on a randomized-
rounding algorithm, Roundp. The algorithm is parameterized by an arbitrary probability distribu-
tion p on [0, 1] and gives a (1/ Z(p))-approximation:

Lemma 1. For any distribution p on [0, 1] and fractional LP solution x , if Z(p) > 0, then with

probability 1, Algorithm Roundp(C, c,D, x) returns a feasible schedule. The expected cost of the

schedule is at most cost(x)/ Z(p).

The main ideas underlying Roundp and its analysis are from [12]; the presentation here (Sec-
tion 2.1) addresses some technical subtleties. Subsequent sections (with a minor exception) use
Lemma 1 as a black box; they can be read independently of the proof in Section 2.1.

2.1 The details of Roundp and proof of Lemma 1

Fix an arbitrary optimal fractional solution x of the LP relaxation for instance I. As previously
discussed, without loss of generality we can assume that the given universe U of release times and
deadlines is [U], where U (2n) is the maximum deadline. We focus on producing a “rounded”
schedule S for I with expected cost at most 1/ Z(p) times cost(x) =

PU
j=1

�

C xj +
P

⇢ c⇢ x⇢
j

�

.

Extend to continuous time. To start, we recast the problem of rounding x as a continuous-
time problem. Extend the universe U of times from the discrete set U = [U] to the continuous
interval U = (0, U] and relax each demand period [r, d], replacing it with the half-open period
(r–1, d]. Let I denote the modified instance. To find a schedule S for the given instance I, we will
find a schedule S for I, then take S = {(dte, R) : (t, R) 2 S}. S clearly has the cost not larger than
that of S and is also feasible (because the release times and deadline are integers).

4

6
0

1
r Ð1 d

x1

t
x!

1

52 3 41

Figure 2: The continuous solution x : the universe is U = (0, U]. At each time t in U , the solution
ships at rate xt = x%t& while each retailer ⇢ takes at rate x⇢

t = x⇢
%t&. During any demand period

(r � 1, d], the retailer’s cumulative take is at least 1.

For the algorithm, reinterpret the fractional solution x as a continuous-time solution x over
universe U : as t 2 U ranges continuously from 0 to U, the continuous-time solution x ships
continuously at the shipping rate xt = x%t& and has each retailer ⇢ join at his take rate x⇢

t = x⇢
%t&.

The example at the top of Figure 2 illustrates x over time.
At each time t in U , define the total shipped up to time t to be �(t) =

R t
0

xt dt =
R t
0

x%t&dt.
Define ⇢’s take up to time t to be ⌧⇢(t) =

R t
0

x⇢
t dt =

R t
0

x⇢
%t&dt. Over any interval (t, t '], define the

amount shipped to be �(t ') � �(t). Likewise define ⇢’s take to be ⌧⇢(t ') � ⌧⇢(t).

The algorithm. Roundp draws samples (s
1

, s
2

, . . . , sI) i.i.d. from the distribution p, stopping
when the sum of the samples first exceeds �(U)�1. It creates orders at the times t = (t

1

, t
2

, . . . , tI)
such that, for each i 2 [I], the continuous-time solution x ships si units in interval (t i# 1

, t i] (in-
terpreting t

0

as 0). By the choice of the number of samples I , x ships strictly less than 1 unit in
(tI , U].

After Roundp chooses t , for each retailer ⇢ independently, it has ⇢ join a minimum-size subset of
the orders that satisfies ⇢’s demands. (It computes this optimal subset using the standard earliest-
deadline-first algorithm.) This determines the schedule S for the continuous-time instance I. To
get the schedule S for the original instance I, the algorithm shifts each order time t i to its ceiling
dt ie. The algorithm is shown in Figure 3.

We remark that, in practice, modifying the algorithm to round up the times as soon as they are
chosen might yield lower-cost solutions for some instances. That is, take each t i to be the minimum
integer such that the amount shipped over interval (t i# 1

, t i] is at least si (interpreting t
0

as 0). Stop
when the amount shipped over (t i, U] is less than 1.

Proof. (Lemma 1) Correctness and feasibility. We claim first that the number I of order times
in line 1 has finite expectation; in other words, with probability 1, I is finite — line 1 finishes.
This follows from standard calculation: I is the number of samples taken before the sum of the
samples exceeds �(U) � 1. Since E [p] � Z(p) > 0, there exists ✏ > 0 such that Pr[s � ✏] � ✏.
Thus, the expected number of samples needed to increase the sum by ✏ is at most 1/ ✏. By linearity
of expectation, the expected number of samples needed to increase the sum by �(U) is at most
�(U)/ ✏2. Thus, E [I] �(U)/ ✏2 < 1.

In the argument below (for cost estimation) we show that each iteration of the inner loop on
line 4 satisfies some not-yet-satisfied demand (⇢, r, d). Thus, with probability 1, Roundp terminates.
By inspection, it does not terminate until all demands are satisfied. Thus, with probability 1,
Roundp returns a feasible solution.

Cost of the schedule. We use the following basic properties of x .

5

1: Draw samples (s
1

, s
2

, s
3

, . . . , sI) i.i.d. from p, stopping when the sum of the samples first
exceeds �(U) � 1. Schedule orders at times in t = (t

1

, t
2

, . . . , tI) such that, for each i 2 [I],
each t i is the minimum such that x ships si units in the interval (t i# 1

, t i] (interpreting t
0

as 0). (By the choice of I , x ships strictly less than 1 unit in interval (tI , U].)

2: for each ⇢ 2 [m] do
3: Use the earliest-deadline-first algorithm to choose a minimum-size subset of the orders for ⇢

to join to satisfy his demands. More explicitly:

4: while retailer ⇢ has any not-yet-satisfied demand (⇢, r, d) do
5: Let d(be the earliest deadline of such a demand.

6: Have ⇢ join the order at time T = max{t i 2 t : t i d(}.
7: end while
8: end for
9: Let S denote the resulting schedule for I. Return S =

�

(dte, R) : (t, R) 2 S

.

Figure 3: Roundp(C, c,D, x) randomly rounds the continuous-time fractional solution x .

1. Over any interval (t, t '] ✓ U , each retailer ⇢’s take is at most the amount shipped. This follows
directly from LP constraint (1).

2. For each demand (⇢, r, d), retailer ⇢’s take over the demand period (r �1, d] is at least 1. This
holds because the take equals

Pd
t=r xt, which is at least 1 by LP constraint (2). Consequently,

the amount shipped over (r � 1, d] is also at least 1.

The given fractional solution x has warehouse cost C�(U) and retailer cost
P

⇢ c⇢ ⌧⇢(U). (Recall
that �(U) is the amount x ships up to time U while ⌧⇢(U) is ⇢’s take up to time U.)

The algorithm’s schedule S has warehouse cost C I and retailer cost
P

⇢ c⇢ J⇢, where I is the
number of orders placed in line 1 and J⇢ is the number of those orders joined by ⇢ in lines 3–7.

We show E [I] �(U)/ Z(p) and E [J⇢] ⌧⇢(U)/ Z(p). By linearity of expectation, these bounds
imply that the schedule’s expected cost is a most 1/ Z(p) times the cost of x , proving the lemma.

First analyze E [I], the expected number of samples until the sum of the samples exceeds �(U)�
1. Clearly I is a stopping time.2 As noted previously, I has finite expectation. So, by Wald’s
Lemma (see Appendix A), the expectation of the sum of the first I samples is not smaller than
the expectation of I times the expectation of each sample: E [

PI
i=1

si] � E [I] E [p]. The sum is at
most �(U), because the sum of the first I � 1 samples is less than �(U) � 1 and the last sample is
at most 1. Thus, �(U) � E [I] E [p]. Rearranging, E [I] �(U)/ E [p] �(U)/ Z(p), as desired.

Next analyze E [J⇢]. Fix a retailer ⇢ 2 [m]. Focus on the inner loop, lines 3–7. For each iteration
j 2 [J⇢], let d(

j and Tj denote, respectively, the value of d(and T in iteration j . The order that ⇢
joins at time Tj indeed satisfies that iteration’s unmet demand (⇢, r, d(

j), because ⇢’s take over the
period (r � 1, d(

j] is at least 1, so the amount shipped over the period is at least 1, so, by the choice
of t in line 1, the period has to contain some order time t i, and Tj 2 [t i, d(

j]. Then, by a standard
induction on j , after ⇢ joins the order at time Tj , all of ⇢’s demands whose demand periods overlap
(0, Tj] are satisfied. Hence ⇢’s order times are strictly increasing: T

1

< T
2

< · · · < T J! .

2That is, for any i 2 N, the event I = i is determined by the Þrst i samples.

6

Consider any non-final iteration j of the loop. Define j = (s
1

, s
2

, . . . , sk), the state at the end

of iteration j , to be the first k samples drawn from p, where k = kj is the number of samples needed
to determine Tj in iteration j . Explicitly, k is determined by the condition

tk# 1

 d(
j < t k, (3)

which implies Tj = tk# 1

. (The sample sk is included in j because, for Tj to be the maximum
order time less than or equal to d(

j , the order time following Tj must exceed d(
j .) When we look

at the related warehouse shipments, tk# 1

 d(
j < t k implies �(tk# 1

) �(d(
j) �(tk). The last

inequality is in fact strict, because the algorithm chooses tk minimally. Since x ships each si over
the interval (t i# 1

, t i], the last relation implies that

k# 1

X

i=1

si �(d(
j) <

k
X

i=1

si. (4)

Define ⇢’s take during iteration j , denoted X j , to be ⇢’s take over the interval (Tj# 1

, Tj] (inter-

preting T
0

as 0). To finish the proof, consider the sum
PJ! # 1

j=1

X j , that is, ⇢’s take up to the start
of the last iteration.

The sum’s upper index J⇢ � 1 is a stopping time. (Indeed, j determines which of ⇢’s demands
remain unsatisfied at the start of iteration j +1. Iteration j +1 will be the final iteration J⇢ i" those
unsatisfied demands can be satisfied by a single order. Thus, j determines whether J⇢ � 1 = j .)
Clearly J⇢ � 1 has finite expectation. (Indeed, J⇢ is at most the number of demands.)

We claim that expectation of each term X j in the sum, given the state at the start of iteration
j , is at least Z(p):

E [X j | j# 1

] � Z(p). (5)

Before we prove Claim (5), observe that it implies the desired bound on J⇢, as follows. The

upper index J⇢ � 1 of the sum
PJ! # 1

j=1

X j is a stopping time with finite expectation, and the
conditional expectation of each term is at least Z(p), so, by Wald’s Lemma (see Appendix A), the
expectation of the sum is at least E [J⇢ � 1]Z(p). On the other hand, the value of the sum never
exceeds ⌧⇢(U) � 1. (Indeed, at the start of the last iteration j = J⇢, some demand (⇢, r, d) remains
unsatisfied, and that demand, which has total take at least 1, does not overlap (0, Tj# 1

], so ⇢’s take
up to time Tj# 1

can be at most 1 less than the total take.) Thus, E [J⇢� 1]Z(p) ⌧⇢(U)� 1. Since
Z(p) 1, this implies the desired bound E [J⇢] ⌧⇢(U)/ Z(p).

To finish, we prove Claim (5). Fix any state j# 1

and let k = kj# 1

= | j# 1

|. Consider
iteration j . Note that j# 1

determines both Tj# 1

and d(
j . Call the samples in j but not in

 j# 1

newly exposed. Crucially, j# 1

does not condition the newly exposed samples. Let random
variable h = kj � kj# 1

be the number of newly exposed samples. By Condition (4), h is the index

such that
Pk+h# 1

i=1

si �(d(
j) <

Pk+h
i=1

si.

Define z = �(d(
j)�

Pk
i=1

si. Then z � 0 with probability 1 and z is determined by j# 1

. Using
s'
1

, s'
2

, . . . , s'
h to denote the newly exposed samples (i.e., s'

` = sk+`), the condition on h above is
equivalent to

s'
1

+ s'
2

+ · · · + s'
h# 1

 z < s '
1

+ s'
2

+ · · · + s'
h# 1

+ s'
h.

7

z
w

s!
2 s!

hs!
1

! (d!
j)

. . .

! (Tj ! 1)

sksk ! 1

! (Tj)

. . .

Figure 4: The increase in ⇢’s take in each iteration corresponds to a play of the tally game.

That is, the iteration exposes new samples just until their sum exceeds z. Upon consideration, this
process corresponds to a play of the tally game with threshold z, in the definition of the statistic
Z(p). (See Figure 4.) Recall from the definition of Z(p) that the waste is w = z�(s'

1

+s'
2

+· · ·+s'
h# 1

).

By inspection, using that
Pk+h# 1

i=1

si = �(Tj), the waste w in this setting equals �(d(
j) � �(Tj),

so ⇢’s take X j during the iteration, that is, ⌧⇢(Tj) � ⌧⇢(Tj# 1

), equals

[⌧⇢(d(
j) � ⌧⇢(Tj# 1

)] � [⌧⇢(d(
j) � ⌧⇢(Tj)] � 1 � [⌧⇢(d(

j) � ⌧⇢(Tj)]

� 1 � [�(d(
j) � �(Tj)] = 1 � w.

The first inequality holds because, as observed previously, ⇢’s take over interval (Tj# 1

, d(
j] is at

least 1. The next inequality holds because ⇢’s take over (Tj , d(
j] is at most the amount shipped.

Recall that, by definition of Z(p), the expectation of (1�w) is at least Z(p). Thus, the inequality
above implies Claim (5) — that the conditional expectation of each X j is at least Z(p).

The next utility lemma says that, in analyzing the expected waste in the tally game, it is enough
to consider thresholds z in [0, 1).

Lemma 2. For any distribution p on [0, 1], supz$ 0

W(p, z) = supz! [0,1)W(p, z).

Proof. Play the tally game with any threshold z � 1. Consider the first prefix sum s
1

+s
2

+ · · ·+sh
of the samples, such that the “slack” z � (s

1

+ s
2

+ · · · + sh) is less than 1. Let random variable
z' be this slack. Note that z' 2 [0, 1). For any value u 2 [0, 1), the expected waste conditioned on
the event “z' = u” is W(p, u), which is at most supy! [0,1)W(p, y). Thus, for any threshold z � 1,
W(p, z) is at most supy! [0,1)W(p, y).

2.2 Upper bound of e/(e� 1) ⇡ 1.582

Consider the specific probability distribution p on [0, 1] with probability density function p(y) = 1/y
for y 2 [1/e, 1] and p(y) = 0 elsewhere.

Lemma 3. For this distribution p, Z(p) � (e� 1)/e = 1 � 1/e .

Proof. By Lemma 2, Z(p) is the minimum of E [p] and 1 � supz! [0,1)W(p, z).

By direct calculation, E [p] =
R

1

1/e y p(y) dy =
R

1

1/e 1 dy = 1 � 1/e . Now consider playing

the tally game with threshold z. If z 2 [0, 1/e], then (since the waste is at most z) trivially
W(p, z) z 1/e . So, consider any z 2 [1/e, 1]. Let s

1

be just the first sample. The waste is z if
s
1

> z and otherwise is at most z � s
1

. Thus, the expected waste is

8

W(p, z) Pr[s
1

> z] · z + Pr[s
1

 z] · E [z � s
1

| s
1

 z]

= z � Pr[s
1

 z] · E [s
1

| s
1

 z]

= z �
Z z

1/e
y p(y) dy = z �

Z z

1/e
dy = z � (z � 1/e) = 1/e.

Since both E [p] and 1 � supz! [0,1)W(p, z) are at least 1 � 1/e , the lemma follows.

From Lemma 3 and Lemma 1, the approximation ratio of our algorithm Roundp, with distribu-
tion p defined above, is at most 1/ Z(p) = e

e# 1

⇡ 1.582.

2.3 Upper bound of 1.574

On close inspection of the proof of Lemma 3, it is not hard to see that the estimate for the waste
in that proof is likely not tight. The reason is that the proof estimates the waste based on just
the first sample, while, for the distribution being analyzed, there is non-zero probability that two

samples are generated before reaching the threshold, further reducing the waste. To improve the
upper bound, we adjust the probability distribution (and the analysis) accordingly.

Define a probability distribution p on [0, 1], having a point mass at 1, as follows. Fix ✓ = 0.36455
(slightly less than 1/e). Over the half-open interval [0, 1), the probability density function is

p(y) =

8

>

<

>

:

0 for y 2 [0, ✓)

1/y for y 2 [✓, 2✓)
1# ln((y# ✓)/✓)

y for y 2 [2✓, 1).

Define the probability of choosing 1 to be 1 �
R

1

0

p(y) dy ⇡ 0.0821824. Note that p(y) � 0 for
y 2 [2✓, 1) since ln((1 � ✓)/ ✓) ⇡ 0.55567, so p is indeed a probability distribution on [0, 1].

Lemma 4. The statistic Z(p) for this p is at least 0.63533 > 1/ 1.574.

Proof. Recall that Z(p) = min{E [p], 1 � supz! [0,1)W(p, z)}. By calculation, the probability mea-
sure µ induced by p has µ[1] ⇡ 0.0821824 and

µ[0, v) =

8

>

<

>

:

0 for v 2 [0, ✓)

ln(v/ ✓) for v 2 [✓, 2✓)

ln(v/ ✓) �
R v
2✓

ln((y# ✓)/✓)
y dy for v 2 [2✓, 1).

The following calculation shows E [p] > 0.63533:

9

E [p] = µ[1] +

Z

1

✓
yp(y)dy

= µ[1] +

Z

1

✓
dy �

Z

1

2✓
ln ((y � ✓)/ ✓)dy

= µ[1] + (1 � ✓) � ((y � ✓) ln ((y � ✓)/ ✓) � y)
�

�

�

1

2✓

= µ[1] + 2 � 3✓ � (1 � ✓) ln ((1 � ✓)/ ✓)

> 0.0821 + 2 � 3 · 0.36455 � (1 � 0.36455) · 0.5557

> 0.63533.

To finish, we show supz$ 0

W(p, z) = ✓ 1 � 0.63533.
By Lemma 2, assume that z 2 [0, 1). In the tally game defining W(p, z), let s

1

be the first
random sample drawn from p. If s

1

> z , then the waste equals z. Otherwise, the process continues
recursively with z replaced by z' = z � s

1

. This gives the recurrence

W(p, z) = z µ[z,1] +

Z z

0

W(p, z� y)p(y) dy = z µ[z,1] +

Z z

✓
W(p, z� y) p(y) dy.

Break the analysis into three cases, depending on the value of z.

Case 1: z 2 [0, ✓). In this case µ[z,1] = 1, so W(p, z) = z ✓.

Case 2: z 2 [✓, 2✓). For y 2 [✓, z], we have z � y 2 [0, ✓], so, by Case 1, W(p, z� y) = z � y. Using
the recurrence,

W(p, z) = zµ[z,1] +

Z z

✓
(z � y)p(y) dy

= z
✓

1 �
Z z

✓
p(y)dy

◆

+

Z z

✓
(z � y)p(y)dy = z � z + ✓ = ✓.

Case 3: z 2 [2✓, 1). For y 2 [✓, z], we have z � y 2 [0, 2✓], so, by Cases 1 and 2 and the recurrence,

10

W(p, z) = zµ[z,1] +

Z z# ✓

✓
✓p(y)dy +

Z z

z# ✓
(z � y)p(y)dy

= z � z
Z z# ✓

✓
p(y)dy +

Z z# ✓

✓
✓p(y)dy �

Z z

z# ✓
yp(y)dy

= z � (z � ✓) ln
z � ✓

✓
�
Z z

z# ✓
yp(y)dy

= z � (z � ✓) ln
z � ✓

✓
�
Z z

z# ✓
dy +

Z z

2✓
ln ((y � ✓)/ ✓)dy

= (z � ✓)

✓

1 � ln
z � ✓

✓

◆

+

Z z

2✓
ln ((y � ✓)/ ✓)dy

= (z � ✓)

✓

1 � ln
z � ✓

✓

◆

+ (y � ✓) · (ln ((y � ✓)/ ✓) � 1)
�

�

�

z

2✓

= (z � ✓)

✓

1 � ln
z � ✓

✓
+ ln

z � ✓

✓
� 1

◆

+ ✓ = ✓.

Thus, in all cases, W(p, z) ✓, completing the proof.

Theorem 1. JRP-D has a randomized polynomial-time 1.574-approximation algorithm, and the

integrality gap of the LP relaxation is at most 1.574.

Proof. By Lemma 4, for any fractional solution x , Algorithm Roundp (using the probability dis-
tribution p from that lemma) returns a feasible schedule of expected cost at most 1.574 times
cost(x).

To see that the schedule can be computed in polynomial time, note first that the LP relaxation
can be solved in polynomial time. The optimal solution x is minimal, so each xt is at most 1,
which implies that �(U) =

P

t xt is at most the number of demands, n. In Algorithm Roundp,
each sample from the distribution p from Lemma 4 can be drawn in polynomial time. Each sample
is # (1), and the sum of the samples is at most �(U) n, so the number of samples is O(n). In the
inner loop of the algorithm (starting at line 3), for each retailer ⇢, the subset of orders joined can
be computed in time O(n), by amortization, so the total time for this step is O(mn), where m is
the number of retailers.

3 Upper Bound of 1.5 for Equal-Length Periods

In this section, we present a 1.5-approximation algorithm for the case where all the demand periods
are of equal length. In this section release times and deadlines are arbitrary rational numbers, and
all demand periods have length 1.

Denote the input instance by I. Let the width of the instance be the di" erence between the
maximum deadline and the minimum release time. The building block of our approach is an
algorithm that creates an optimal solution to an instance of width at most 3. Later, we divide I
into overlapping sub-instances of width 3, solve each of them optimally, and show that aggregating
their solutions gives a 1.5-approximation.

11

retailer 1

dmin

retailer 2

retailer 3

retailer 4

retailer 5

retailer 6

t1 t2 rmax

Figure 5: An example of an instance and a schedule. Dashed vertical lines represent warehouse
orders, with thick segments indicating which retailers join these orders. For example, retailer 1
joins the order at time d

min

, retailer 2 joins the order at time r
max

, and retailer 3 joins the order
at time t

1

.

Lemma 5. A solution to any instance J of width at most 3 consisting of unit-length demand

periods can be computed in polynomial time.

Proof. Shift all demands in time, so that J is entirely contained in interval [0, 3]. Recall that C

is the warehouse ordering cost and c⇢ is the ordering cost of retailer ⇢ 2 [m]. Without loss of
generality, assume that m � 1 and each retailer has at least one demand.

Let d
min

be the first deadline of a demand from J and r
max

the last release time. If r
max

 d
min

,
then placing one order at any time from [r

max

, d
min

] is su! cient. Its cost is then equal to C+
P

⇢ c⇢,
which is clearly equal to the optimum value in this case.

Now focus on the case d
min

< r
max

. Any feasible solution has to place an order at or before d
min

and at or after r
max

. Furthermore, by shifting these orders, assume that the first and last orders
occur exactly at times d

min

and r
max

, respectively.
The problem is thus to choose a set T of warehouse ordering times that contains d

min

, r
max

,
and possibly other times from the interval (d

min

, r
max

), and then to decide, for each retailer ⇢,
which warehouse orders it joins. Note that r

max

� d
min

 1, and therefore each demand period
contains d

min

, r
max

, or both. Hence, all demands of a retailer ⇢ can be satisfied by joining the
warehouse orders at times d

min

and r
max

at additional cost of 2c⇢. It is possible to reduce the
retailer ordering cost to c⇢ if (and only if) there is a warehouse order that occurs within D⇢, where
D⇢ is the intersection of all demand periods of retailer ⇢. (To this end, D⇢ has to be non-empty.)

Hence, the optimal cost for J can be expressed as the sum of four parts:

(i) the unavoidable ordering cost c⇢ for each retailer ⇢,

(ii) the additional ordering cost c⇢ for each retailer ⇢ with empty D⇢,

(iii) the total warehouse ordering cost C · |T |, and

12

(iv) the additional ordering cost c⇢ for each retailer ⇢ whose D⇢ is non-empty and does not contain
any ordering time from T .

As the first two parts of the cost are independent of T , focus on minimizing the sum of parts (iii) and
(iv), which we call the adjusted cost. Let AC(t) be the minimum possible adjusted cost associated
with the interval [d

min

, t] under the assumption that there is an order at time t . Formally, AC(t) is
the minimum, over all choices of sets T ✓ [d

min

, t] that contain d
min

and t, of C · |T | +
P

⇢! Q(T)

c⇢,
where Q(T) is the set of retailers ⇢ for which D⇢ 6= ; and D⇢ ✓ [0, t] � T . (Note that the second
term consists of expenditures that actually occur outside the interval [d

min

, t].)
As there are no D⇢’s strictly to the left of d

min

, AC(d
min

) = C. Furthermore, AC(t) for any
t 2 (d

min

, r
max

] can be expressed recursively using the value of AC(u), where u 2 [d
min

, t) is the
warehouse order time immediately preceding t in the set T that realizes AC(t):

AC(t) = C + min
u! [dmin ,t)

⇣

AC(u) +
X

⇢:)*=D! + (u,t)

c⇢

⌘

.

The second term inside the minimum represents the cost of retailers whose sets D⇢ do not
contain an order. The minimum in the definition of AC(t) is determined by a u that is the deadline
of some demand. Restricting attention to t ’s and u’s that are deadlines of the demands, compute
the relevant values of function AC(·) by dynamic programming in polynomial time. Finally, the
total adjusted cost is AC(r

max

). The actual orders can be recovered by a standard extension of the
dynamic program.

We now show how to construct an approximate solution for the original instance I consisting of
unit-length demand periods. For i 2 N, let Ii be the sub-instance containing all demands entirely
contained in [i, i +3). By Lemma 5, an optimal solution for Ii, denoted A(Ii), can be computed in
polynomial time. Let S

0

be the solution created by aggregating A(I
0

), A(I
2

), A(I
4

), . . . and S
1

by
aggregating A(I

1

), A(I
3

), A(I
5

), Among solutions S
0

and S
1

, output the one with the smaller
cost.

Theorem 2. The above algorithm produces a feasible schedule of cost at most 1.5 times optimum.

Proof. Each unit-length demand of instance I is entirely contained in some I
2k for some k 2 N.

Hence, it is satisfied in A(I
2k), and thus also in S

0

, which yields the feasibility of S
0

. An analogous
argument shows the feasibility of S

1

.
To estimate the approximation ratio, fix an optimal solution Opt for instance I and let opti

be the cost of Opt’s orders in the interval [i, i + 1). Note that Opt’s orders in [i, i + 3) satisfy all
demands contained entirely in [i, i +3). Since A(Ii) is an optimal solution for these demands, we have
cost(A(Ii)) opti+opti+1

+opti+2

and, by taking the sum, cost(S
0

)+cost(S
1

)
P

i cost(A(Ii))
3 · cost(Opt). Therefore, at least one of the two solutions (S

0

or S
1

) has cost not larger than
1.5 · cost(Opt).

4 Lower Bounds of 1.207 and 1.245

In this section we prove the following lower bound on the integrality gap of the LP relaxation from
Section 1:

Theorem 3. The integrality gap of the LP relaxation is at least

1

2

(1 +
p

2) � 1.207.

13

We then sketch a computer-assisted proof of a stronger lower bound: 1.245.
Fix an arbitrarily large integer U. Define universe U = {i/U : i 2 N} \ [0, U] to contain the

non-negative integer multiples of 1/U in the interval [0, U]. (The restriction to multiples of 1/U is
a technicality; throughout, for intuition, one can consider instead U = [0, U].) Consider an instance
with warehouse-order cost C = 1 and two retailers, where retailer 1 has order cost c

1

= 0 and
retailer 2 has order cost c

2

=
p

2 + ✏, where c

2

is a multiple of 1/U and 0 ✏ < 1/U . Retailer 1
has a demand for every time interval of length 1; retailer 2 has a demand for every time interval of
length c

2

:

D = {(1, t, t + 1) : t, t + 1 2 U} [{(2, t, t + c

2

) : t, t + c

2

2 U}.

Intuitively, in any solution, retailer 1 must join at least one order in every subinterval of length
1, so the warehouse-order cost is at least 1 per time unit. Retailer 2 must join at least one order in
any subinterval of length c

2

, so his order cost (not including the warehouse-order cost) is at least
c

2

for every c

2

time units, i.e., 1 per time unit. Thus, even if the two retailers could coordinate
orders perfectly, the total cost would be at least 2 per time unit.

We show next that, because the orders cannot be coordinated perfectly, the cost of any solution
is at least about 1 + c

2

⇡ 1 +
p

2 > 2 per time unit.
Throughout this section, o(1) denotes a term that tends to zero as U tends to infinity.

Lemma 6. For the above instance, the optimal cost is at least (1 +
p

2 � o(1))U.

Proof. Fix any schedule for the instance. Partition the time interval [0, U] into half-open subin-
tervals, separated by the times of orders that retailer 2 joins. Consider any such subinterval (t, t '].
That is, retailer 2 joins an order at time t (or t = 0), and, during the subinterval (t, t '] retailer 2
joins an order at time t ' and no other time. We argue that the cost per time unit during (t, t '] is at
least 1 +

p
2 � o(1).

First consider the case that the schedule has an order during (t, t '). The order at time t ' costs
1 + c

2

; the additional order during (t, t ') costs at least 1. The interval length t ' � t is at most
c

2

+1/U (otherwise it would contain a demand of retailer 2, which, by the choice of t and t ' , would
be unsatisfied). Thus, the cost per unit time is at least (1 + 1 + c

2

)/ (c
2

+ 1/U) = 1 +
p

2 � o(1).
In the remaining case there is no order during (t, t '). The interval length t ' � t is at most 1+1/U

(otherwise the interval would contain an unsatisfied demand of retailer 1). The order at time t '

costs 1 + c

2

. Thus, the cost per time unit is at least (1 + c

2

)/ (1 + 1/U) = 1 +
p

2 � o(1).
The last subinterval (t, t '] has to end at time U�c

2

or later, so, in each subinterval of [0, U�c

2

] =
[0, (1 � o(1))U] the algorithm pays at least 1 +

p
2 � o(1) per time unit.

Next we observe that there is a fractional LP solution x that costs 2 per time unit: for each
t 2 U , let xt = x1

t = 1/U and x2

t = 1/ (c
2

U).
Recall that U contains the integer multiples of 1/U in [0, U]. By calculation, the LP solution is

feasible. (For each demand of retailer 1, the demand period intersects U in U + 1 times, and so is
satisfied. Likewise, for each demand of retailer 2, the demand period intersects U in c

2

U + 1 times,
and so is satisfied.)

Since |U| = U2+1, the cost of fractional solution x is 2(U2+1)/U = (2+o(1))U. By Lemma 6,
any integer solution has cost (1 +

p
2 � o(1))U. Since the term o(1) can be made arbitrarily small

by choosing U large, the integrality gap of the LP is at least (1 +
p

2)/ 2, proving Theorem 3.

14

Given G = (V, E) and �, choose c, C, cost(), and $ to maximize � subject to

C � 0

c⇢ � 0 8⇢ 2 {1, . . . , m}
C/ min⇢ �⇢ +

P

⇢ c⇢/ �⇢ 1 (6)

cost(�,�') = C +
P

⇢! R(�,�0

)

c⇢ 8(�,�') 2 E (7)

$ � + cost(�,�') � $ �0 � %(�)� 8(�,�') 2 E. (8)

Figure 6: A linear program to choose the costs to maximize the integrality gap �, given the
configuration graph G and demand durations �⇢.

Increasing the lower bound by a computer-based proof. We now sketch how to increase the
lower bound slightly to 1.245. We reduce the problem to that of maximizing the minimum mean
cycle in a finite configuration graph, which we solve with the help of linear programming.

Let the universe be U = [U], where U is an arbitrarily large integer (tending to infinity). Fix a
vector � 2 Nm

+

. (Later we choose m = 5 and � = (6, 7, 8, 9, 11).) Focus on instances where, for each
retailer ⇢ 2 [m], the retailer has uniform demands — one for every subinterval of length �⇢. That
is, the demand set D is D =

�

(⇢, t, t + �⇢ � 1) : ⇢ 2 [m]; {t, t + �⇢ � 1} ✓ U

.

Define the “uniform” fractional solution x by x⇢
t = 1/ �⇢ for all ⇢ 2 [m] and xt = max⇢ 1/ �⇢ for

all t 2 U . This solution is feasible for the LP and has cost (C/ min⇢ �⇢ +
P

⇢ c⇢/ �⇢) · U.
To bound the integer schedules we use a configuration graph. Given any feasible schedule, for

each order in the schedule, define the configuration at the order time, t, to be a vector � 2 Nm
+

where �⇢ is the time elapsed since ⇢ last joined an order, up to and including time t . (If retailer
⇢ has not yet joined any order by time t, take �⇢ = t.) Feasibility of the schedule ensures that
each configuration � satisfies �⇢ < �⇢ for all ⇢ 2 [m], because otherwise one of retailer ⇢’s demands
would not be met. Thus, there are at most

Q

⇢ �⇢ distinct configurations. These are the nodes of
the configuration graph.

The edges of the graph model possible transitions from one order to the next. Let � denote
the configuration at some order time t. Let �' denote the next configuration, at the next order
time t ' > t . Let R be the set of retailers in the order at time t ' . Then �'

⇢ = 0 if ⇢ 2 R and
�'
⇢ = �⇢ + t ' � t otherwise. To ensure feasibility, for all ⇢ 2 [m], it must be that �⇢ + t ' � t �⇢

(even for ⇢ 2 R). Without loss of generality, assume that t ' is maximal subject to this constraint
(otherwise, delay the second order without increasing the schedule cost). That is, t ' = t + %(�),
where %(�) = min{�⇢ � �⇢ : ⇢ 2 [m]}. For each � and �' that relate as described above, the
configuration graph has a directed edge from � to �' . The cost of the edge is the cost of the
corresponding order, cost(�,�') = C+

P

⇢! R c⇢. Let G = (V, E) be the subgraph induced by nodes
reachable from the start configuration (0, . . . , 0). Explicitly construct the graph G, labeling each
edge (�,�') with its elapsed time %(�), order set R(�,�'), and cost function cost(�,�').

In the limit (as U ! 1), every schedule will incur cost at least � per time unit as long as, for
every cycle C in this graph, the sum of the costs of the edges in C is at least � times the sum of
the times elapsed on the edges in C. The integrality gap is then at least � divided by the cost (per
time unit) of the uniform fractional solution defined above. Note that � is essentially the minimum

15

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

retailer 0

retailer 1

retailer 2

Figure 7: The demand periods in D.

mean cycle cost in G.
Given any fixed m and vector � of period durations, the configuration graph is determined.

We will choose the costs (the warehouse-order cost C and each retailer cost c⇢) to maximize the
resulting value of �, subject to the constraint that the cost of the uniform fractional solution is
at most 1. The linear program (LP) in Figure 6 does this. The LP is based on the standard LP
dual for minimum mean cycle, but the edge costs are not determined — they are chosen subject to
appropriate side constraints. Constraint (6) of the LP is that the uniform fractional solution costs
at most 1 per time unit.

We implemented this construction and, for various manually selected duration vectors � with
small m, we solved the linear program to find the maximum �. For e! ciency, we used the following
observations to prune the configuration graph. We ordered � so that �

1

= min⇢ �⇢. Without loss of
generality we constrained c

1

to be 0 (otherwise replace C by C+ c

1

and c

1

by 0; by inspection this
gives an equivalent LP). Then, since c

1

= 0, without loss of generality, we assumed that retailer 1
is in every order R(�,�'). We pruned the graph further using similar elementary heuristics.

The best ratio we found was for � = (6, 7, 8, 9, 11). The pruned graph G had about two thousand
vertices. C was about 2.49, c

1

was 0, every other c⇢ was about 1.245, and � was just above 1.245.

5 Lower Bound of 1.2 for Equal-Length Periods

In this section we show an integrality gap for the linear program for JRP-D for instances with
equal-length demand periods. The gap is for an instance with three retailers. Numbering them for
convenience starting from 0, their order costs are c

0

= c

1

= c

2

= 1

3

. The warehouse-order cost is
C = 1.

In the demand set D, all intervals (demand periods) have length 2. Choose some large constant
U that is a multiple of 3. As illustrated in Figure 7, for ⇢ = 0, 1, 2, retailer ⇢’s demand periods are

[3i + ⇢, 3i + 2 + ⇢] and (3i � 3

2

+ ⇢, 3i + 1

2

+ ⇢), for i = 0, ..., U/ 3.

To simplify the presentation, allow the demand periods to be either closed or open intervals. (This
is only for convenience: to “close” any open interval, replace it by a closed interval slightly shifted
to the right, with the shifts increasing over time. Specifically, replace each interval (a, a+2) by the
interval [a+a/U 2, a+a/U 2+2]. This preserves the intersection pattern of all intervals; in particular

16

any two intervals (a, a+ 2) and (a + 2, a + 4) will remain disjoint after this change. Therefore this
change does not a" ect the values of the optimal fractional and integral solutions described below.)

This instance admits a fractional solution x whose cost is 5

6

U + O(1): For each integer time t ,
place a 1

2

-order that is joined by two retailers: the retailer t mod 3 whose closed interval starts at
t, and the retailer (t + 1) mod 3 whose closed interval ends at t (let s = (t � 1) mod 3; then xs

t = 0,
while xt = x⇢

t = 1

2

for ⇢ 6= s). The cost of the 1

2

-order at each time t is 1

2

(2 · 1

3

+ 1) = 5

6

.

Now consider any integer solution x̂ . Without loss of generality, assume that x̂ places orders
only at integer times. (Any order placed at a fractional time ⌧ can be shifted either left or right to
the first integer without changing the set of demands served.)

If a retailer ⇢ has an order at time t, then its next order must be at t +1, t +2 or t +3, because
for any t the interval (t, t + 4) contains a demand period of retailer ⇢. Thus, each retailer ⇢ has to
join some order in each triple {t +1, t +2, t + 3}. So, the retailer-cost per time unit for ⇢ is at least
c⇢/ 3 = 1

9

, and the total retailer-cost per time unit is at least 3

9

= 1

3

.
Similarly, if there is a warehouse order at time t, then the next order must be at time t + 1 or

t + 2, because the interval (t, t + 3) contains a demand period of some retailer. So there must be
some order in each pair {t +1, t +2}. So the warehouse-order cost per time unit is at least C/ 2 = 1

2

.
In total, the total cost per time unit is at least 1

3

+ 1

2

= 5

6

(matching the cost of the fractional
solution), even if the retailer orders could be coordinated perfectly with the warehouse orders. In
the rest of this section, we show that, because perfect coordination is not possible, the actual cost
is higher.

Recall that (without loss of generality) in x̂ orders occur only at integer times. For each ⇢, call
the endpoints of ⇢’s closed intervals ⇢’s endpoint times (these are times t with (t�⇢) mod 3 2 {0, 2}).
Call the midpoints of ⇢’s closed intervals ⇢’s inner times (these are times t with (t �⇢) mod 3 = 1).
Assume (without loss of generality by the feasibility and optimality of x̂) that x̂ satisfies the
following conditions:

(c1) For any ⇢ and any pair of consecutive endpoint times {t, t + 1} of ⇢, ⇢ joins an order at time
t or t + 1 (because ⇢ has an open interval containing only integers {t, t + 1}).

(c2) If t is an inner time of retailer ⇢ and ⇢ joins an order at t , then

(c2.1) there is no order at time t � 1 or t + 1, and

(c2.2) all retailers have orders at time t.

(For (c2.1): if there is an order at time t � 1 or t + 1, then retailer ⇢ can be moved to that
order from the order at time t. For (c2.2): for each retailer ⇢' 6= ⇢ both time t and either t � 1
or t + 1 are endpoint times, but per (c2.1) there is no order at t � 1 or at t + 1, so, by (c1), ⇢'

must have an order at t .)

The idea of the analysis is similar to the argument in Section 4 for the lower bound of 1.245 for
general instances: represent the possible schedules by walks in a finite configuration graph.

Fix any feasible schedule. At any integer time t , the configuration of the schedule at time t is
the 4-digit string s�

0

�
1

�
2

, where s = t mod 3 and, for each retailer ⇢ = 0, 1, 2, the elapsed time
since the retailer last joined an order is �⇢. Since the schedule is feasible, each �⇢ is in {0, 1, 2}, so
there are at most 34 possible configurations.

Suppose a schedule is in configuration s�
0

�
1

�
2

at time t , then transitions to s'�
0

�
1

�
2

at time
t + 1. Necessarily s' = (s + 1) mod 3. Let R be the set of retailers (possibly empty) that join the

17

t t+1

2 =

tt-1

0002 1000 0000

Figure 8: Graphical representation of a transition. Configuration 0002 is on the left. At time t + 1
all retailers issue an order. After removing spurious orders (keeping track of only the last one),
the new configuration is 1000, which is equivalent (by symmetry) to 0000. The transition costs
1 + 1

3

· 3 = 2.

order (if any) at time t + 1. For each retailer ⇢, (i) if ⇢ /2 R then �⇢ = �⇢ + 1, while (ii) if ⇢ 2 R
then �⇢ = 0. Say a pair s�

0

�
1

�
2

! s'�
0

�
1

�
2

is a possible transition if the pair relates this way for
some R. The cost of the transition equals the cost of the order: 0 if R = ;, or 1 + 1

3

|R| otherwise.
(Here, unlike in Section 4, the elapsed time per transition is always 1, and R can be empty.)

Represent each possible configuration graphically by a rectangle with a row for each retailer
⇢ = 0, 1, 2. Each row has two cells, representing times t � 1 and t, respectively: a circle in the first
cell means �⇢ = 1, a circle in the second cell means �⇢ = 0, no circle means �⇢ = 2. A dot in the
cell means that time is an endpoint time for the retailer; no dot means the time is an inner time.
The dot pattern of any one row determines, and is determined by, s. Figure 8 shows an example
of a single transition.

Any two configurations are equivalent if one can be obtained from the other by permuting the
rows of the graphical representation (i.e., the retailers). Each graphical representation has one row
with a dot in both columns, one row with a dot in the second column only, and one row with
a dot in the first column only. Define the canonical representative of an equivalence class to be
the configuration in which these three rows are, respectively, first, second, and third. In all such
configurations, s is zero, so there are at most 33 equivalence classes.

Now restrict the configurations further to those that are realizable in x̂ , in that they don’t
violate conditions (c1)–(c2): by Condition (c1), if a row has two dots, then one of the dots must
be circled; by Condition (c2), if a column has a dot-less circle, then all cells in the column have
circles. Note that the equivalence relation respects these conditions: in a given equivalence class,
either all configurations meet both conditions, or none do.

Finally, define graph G to have a node for each realizable equivalence class. For each possible
transition � ! �' between remaining configurations � and �' , add a directed edge in G from the
equivalence class of � to that of �' . Give the edge cost equal to the cost of the transition. By a
routine but tedious calculation, G is the 10-node graph shown in Figure 9. Each node is represented
by its canonical representative.

Next we argue that every cycle in this graph has average edge cost at least 1. Define the
following potential function $ (�) on configurations:

� 0000 0001 0002 0021 0022 0101 0102 0111 0121 0122

$ (�) 1 1 2
3

2
3

1
3 1 0 0 0 0

18

0002

0000

0122

0022

0102

0121

0111

0101

0

4/3

0

0

4/3

4/3
2

5/3

5/3

4/3

5/3

00214/3

0001

5/3

4/3

4/3

5/3

5/3

5/3

4/3

5/3

2

4/3

5/3

2

2/3

2/3

1

1

1

1/3

0

0

0

0

Figure 9: The complete transition diagram.

It is routine (if tedious) to verify that for each edge � ! �' , its cost cost(�,�') satisfies

cost(�,�') � $ (�') � $ (�) + 1. (9)

For any path of length U in G (summing inequality (9) along all edges on this path) the cost of
the path is U � O(1).

The equivalence classes of the configurations of the schedule x̂ (one for each time t 2 [U]) form
a path of length U in G. The cost of x̂ equals the cost of the path, which must be at least U�O(1).
Recalling that there is a fractional solution of cost 5

6

U + O(1), this shows that the integrality gap
is at least 6

5

= 1.2:

Theorem 4. For instances with all demand periods equal, the integrality gap of the LP at least 1.2.

(The bound in the above proof is tight: the following cycles have average edge cost 1: 0000 !
0111 ! 0000, 0101 ! 0122 ! 0002 ! 0101, and 0121 ! 0022 ! 0001 ! 0121.)

6 APX-Hardness for Equal-Length Demand Periods

Let JRP-D
E4

be the restriction of JRP-D where each retailer has at most four demands and all
demand periods are of the same length. In this section, we show that JRP-D

E4

is APX-hard by
giving a PTAS-reduction from Vertex Cover in cubic graphs, that is graphs with every vertex of
degree three. Vertex Cover is known to be APX-complete for such graphs [1].

19

vertex ρc,i

support

edge ej

vertex ρj,i

vertex ρb,i

0 2m 4m 6m 8mβiαj,i

EGj

VGi

SG

-4m

Figure 10: The construction of instance JG. The figure shows the support gadget SG, an edge
gadget EGj and a vertex gadget VGi for a vertex i with edges ej , eb, ec. Shaded regions represent
retailers. Horizontal line segments represent demand periods.

Roughly speaking, given any cubic graph G = (V, E) with n vertices and m (= 3n/ 2) edges,
the reduction produces an instance JG of JRP-D

E4

, such that G has a vertex cover of size K i"
JG has a schedule of cost 10.5n + K + 6. Since any vertex cover has size at least m/ 3 = n/ 2, this
is a PTAS-reduction. Such reduction and a PTAS for JG would give a PTAS for Vertex Cover in
degree-three graphs.

Construction of instance JG. Fix a given undirected cubic graph G with vertex set V =
{0, . . . , n � 1} and edges e

0

, . . . , em# 1

. JG consists of 1 + m + n gadgets: one support gadget SG,
an edge gadget EGj for each edge ej , and a vertex gadget VGi for each vertex i . All retailer and
order costs equal 1 (C = c⇢ = 1) and all demand periods have length 4m. All release times and
deadlines are integers in the interval [�4m, 12m + 1]; without loss of generality, restrict attention
to schedules with integer order times. The gadgets are as follows.

The support gadget SG. SG has its own retailer, the support-gadget retailer, having three demands
with periods [�4m � 1,�1], [2m, 6m], and [8m + 1, 12m + 1]. These periods are separated by two
gaps of length 2m. Call the times {�1, 4m, 8m + 1} support gadget times; orders at these times
su! ce to satisfy the three demands.

Edge gadgets EGj. Each edge ej in G has its own edge retailer, having two demands with, re-
spectively, periods [2j + 1 � 4m, 2j + 1] and [2j, 2j + 4m]. These demands can be satisfied with a
single order at time 2j or 2j + 1. Think of these two times as being associated with this edge ej ,
each associated with one endpoint of ej (as explained below). All such times are in the first gap,
[0, 2m � 1].

Let ej = {i, i '}, that is i, i ' are the endpoints of edge ej . Intuitively, to satisfy ej ’s retailer
cheaply, there can be an order at time 2j or at 2j + 1; this models that ej can be covered by either
of its two endpoints. We associate one of the two times 2j or 2j +1 (it does not matter which one)
with i and call it ↵j,i, while the other one is associated with i ' and, naturally, called ↵j,i0 .

Vertex gadgets VGi. For each vertex i , define its “vertex” time �i = 8m � i . (All such times are

20

in the second gap, [6m + 1, 8m].) Do the following for each of vertex i ’s edges. Let ej denote the
edge. Add a new vertex retailer ⇢j,i, having four demands with respective periods

[↵j,i � 4m, ↵j,i], [↵j,i, ↵j,i + 4m], [�i � 4m, �i], and [�i, �i + 4m].

Denote the periods of these four demands as Q0

j,i, Q1

j,i, Q2

j,i and Q3

j,i, in the above order. Note

that Q0

j,i \Q1

j,i = {↵j,i}, Q1

j,i \Q2

j,i = [�i � 4m, ↵j,i + 4m] 6= ;, Q2

j,i \Q3

j,i = {�i}, but otherwise the
four demand periods are pairwise-disjoint.

The important property is that retailer ⇢j,i’s four demands can be satisfied with two orders i"
the two orders are at times ↵j,i and �i. Also, if orders do happen to be placed at these two times,
then (because ↵j,i is one of the two times belonging to ej) the order at time ↵j,i can satisfy both
demands of edge ej ’s retailer with no additional warehouse cost for that retailer.

Figure 10 illustrates the reduction.

Lemma 7. If G has a vertex cover U of size K , then JG has a schedule of cost at most 10.5n+K +6.

Proof. Let U be a vertex cover of size K .
To construct the schedule for JG, start with orders at the support-gadget times {�1, 4m, 8m+1},

each of which is joined by the support-gadget retailer. This costs 6.
Next, consider each vertex i . If i /2 U, then have i ’s vertex retailers (that is, retailers ⇢j,i for

ej 3 i) join the support-gadget orders at times {�1, 4m, 8m+1}. This option increases the schedule
cost by 3 · 3 = 9.

Otherwise (for i 2 U), create an order at time �i. For each of three i ’s retailers ⇢j,i create an
order at time ↵j,i, and have the retailer join that order and the one at time �i. The order at time
�i is shared between i ’s three retailers, so that order costs 1 + 3 = 4. Each of the three orders
created at times ↵j,i costs 2. The total cost for the four orders is 3 · 2 + 4 = 10.

Next, consider each edge ej . As U is a vertex cover, some vertex i 2 U covers ej , that is
i 2 U \ ej . By the construction of the i ’s gadget, since i 2 U, there is already an order at ej ’s time
↵j,i. Have edge ej ’s retailer join this order. Both demands of this retailer will be satisfied, since
they both contain ↵j,i. The cost increases by 1 per edge.

Adding up the above costs, the total cost is 6 + 9(n � K) + 10K + m = 10.5n + K + 6.

Recovering a vertex cover from an order schedule. We now show the converse: given any
order schedule of cost 10.5n + K + 6 for JG, we can compute a vertex cover of G of size K . Recall
that ↵j,i denotes the time (either 2j or 2j + 1) that edge ej shares with endpoint i .

Say that an order schedule S meeting the following desirable conditions is in normal form:

(nf1) In S, the support-gadget retailer joins orders at the support-gadget times {�1, 4m, 8m + 1}.

(nf2) In S, for each edge ej = {i, i '}, the edge’s retailer joins an order at time ↵j,i or ↵j,i0 .

(nf3) For each vertex i , exactly one of the following two conditions holds:

(a) each of i ’s retailers ⇢j,i joins orders at times �i and ↵j,i;

(b) each of i ’s retailers ⇢j,i joins the support-gadget orders at times {�1, 4m, 8m + 1}, and
S has no order at time �i nor at any time ↵j,i.

(nf4) For each edge ej = {i, i '}, at least one of its endpoints i, i ' satisfies Condition (nf3) (a).

21

(nf5) S has no orders other than the ones described above.

Given any feasible order schedule, we can put it in normal form without increasing the cost:

Lemma 8. Given any order schedule S for JG, one can compute in polynomial time a normal-form

schedule S'
whose cost is at most the cost of S.

Proof. Modify S to satisfy Conditions (nf1) through (nf5) in turn, maintaining feasibility without
increasing the cost, as follows.
(nf1) Combine all orders in times (�1,�1] into a single order at time �1. By inspection, the

earliest deadline of any demand is the deadline of the first support-gadget demand, which is �1. So
this modification is safe — it maintains feasibility without increasing the cost — and the support-
gadget retailer joins the order at time �1.

Likewise, combine all orders in times [8m + 1,1) into a single order at time 8m + 1. The last
release time of any demand is the release time of the last support-gadget demand, which is 8m +1.
So this modification is also safe and the support-gadget retailer joins the order at time 8m + 1.

Finally, combine all orders in times [2m, 6m] into a single order at time 4m. The support-gadget
has demand period [2m, 6m], so the support-gadget retailer must join at least one order at some
time in [2m, 6m]. Thus this modification does not increase the cost. There are no deadlines in
[2m, 4m) and no release times in (4m, 6m], so the modification maintains feasibility.

The resulting schedule satisfies Condition (nf1).

(nf2) Consider any edge ej = {i, i '}. If the edge’s retailer does not join an order at one of the
times ↵j,i or ↵j,i0 associated with ej then, by inspection of his demands, the retailer must join at
least two orders. Remove him from these two orders, reducing the cost by two, and have him join
a (possibly) new order at, time, say ↵j,i, satisfying both his demands and increasing the cost by
two or less. The resulting schedule satisfies Conditions (nf1) and (nf2).

(nf3) Consider any vertex i . Assume first that S has an order at time �i. If any of vertex i ’s
retailers, say ⇢j,i, does not join the order at time �i, then move him from some order at any later
time (there must be one in his last demand period Q3

j,i = [�i,�i + 4m]) to the existing order at
time �i. Then, if retailer ⇢j,i does not join an order at time ↵j,i (or there is no such order), he must
participate in at least two orders at times other than �i; remove him from these two orders and
have him join a (possibly new) order at time ↵j,i. Finally, remove the retailer from all orders other
than those at times �i and ↵j,i. These operations are safe, and now vertex i meets Condition (nf3).

In the other case S has no order at time �i. Then each of vertex i ’s retailers must join at least
three orders. Remove each such retailer from all those orders and add him instead to the existing
orders at the support-gadget times {�1, 4m, 8m +1}. Note that support-gadget times are di" erent
than all times ↵j,i. This is safe, does not increase the cost, and now vertex i meets Condition (nf3).

As these operations a" ect only vertex retailers, Conditions (nf1) and (nf2) still hold too.

(nf4) Consider any edge ej = {i, i '}. By Condition (nf2), there is an order at time ↵j,i or ↵j,i0 . By
symmetry, we can assume that there is an order at time ↵j,i. If vertex i satisfies Condition (nf3) (a),
we are done. Otherwise, i satisfies Condition (nf3) (b). Remove each of i ’s three retailers from orders
at times �1, 4m, 8m + 1, reducing i ’s cost by 9. Then: create an order at time �i and have them
join this order (at cost 4), have retailer ⇢j,i join the order at time ↵j,i (at cost 1), and have the
other two retailers ⇢j0,i and ⇢j”,i join (possibly new) orders at times ↵j0,i and ↵j”,i (at cost at most
2 each). The total cost of these new orders is at most 9, thus this modification does not increase
the overall cost, and afterwards ej satisfies Condition (nf4).

22

(nf5) Remove all retailers from orders not described above, then delete empty orders. As the
orders described above satisfy all the demands, this is safe. Now Condition (nf5) holds as well.

Lemma 9. Given an order schedule S for JG of cost 10.5n+K +6, one can compute in polynomial

time a vertex cover of G of size K .

Proof. By Lemma 8, without loss of generality we can assume that that S is in normal form.
By Condition (nf1), the cost for the support-gadget orders (at times {�1, 4m, 8m + 1}, but not

yet counting the retailer cost for any vertices) is 3 · 2 = 6.
By Condition (nf3), the cost associated with vertices is as follows. Fix any vertex i . If S has

an order at time �i then that order is joined by each of vertex i ’s retailers, at cost 1 + 3 = 4; also,
each of i ’s retailers joins its own order (at a time ↵j,i where ej 3 i), which costs 2. Thus the cost
associated with vertex i is 4 + 2 · 3 = 10. Otherwise (that is, when S has no order at time �i), each
of i ’s three retailers joins the three support-gadget orders, so the cost associated with i is 3 · 3 = 9.
Putting it together, and letting ` be the number of vertices i that have an order at time �i, the
total cost associated with all vertices can be written as 10`+ 9(n � `) = 9n + `.

By Condition (nf2), the cost associated with edges is as follows. For each edge ej = {i, i '},
Condition (nf4) guarantees that one of i or i ' satisfies Condition (nf3) (a). By symmetry, assume
that it is i . Since ⇢j,i already has an order at ↵j,i, we can have retailer ej join this order at cost 1.
In total, the additional cost associated with the edge gadgets is m = 1.5n.

In sum, the schedule costs 6 + (9n + `) + 1.5n = 10.5n + `+ 6. Hence, ` = K .
Now define U to contain the ` vertices i for which S makes an order at time �i. For each

edge ej = {i, i '}, by Condition (nf4), there is an order at one of ej ’s associated times, say ↵j,i.
By Condition (nf3), there is also an order at time �i, so, by definition, U contains vertex i . Thus,
U is a vertex cover.

Here is the proof of APX-hardness. Recall that JRP-D
E4

is JRP-D restricted to instances with
equal-length demand periods and at most four demands.

Theorem 5. JRP-DE4 is APX-hard.

Proof. Vertex Cover in cubic graphs is APX-hard [1, S3]. We give a PTAS-reduction from that
problem to JRP-D

E4

.
Given any cubic graph G with n � 6 vertices, and any ✏ > 0, compute the instance JG from

Lemma 7. By inspection of the proof, in JG all demand periods have equal length and (because G
has degree three) each retailer has at most four demands, so JG is an instance of JRP-D

E4

.
Now suppose we are given any (1 + ✏/ 24)-approximate solution S to JG. From S, compute a

vertex cover U for G using the computation from Lemma 9. The computations of JG from G, and
of U from S, can be done in time polynomial in n. To finish, we show that the vertex cover U has
size at most (1 + ✏)K (, where K (is the size of the optimal vertex cover in G.

By Lemma 7, JG has an order schedule of cost at most 10.5n + K (+ 6. Since G is cubic,
K (� m/ 3 = n/ 2, so 10.5n + 6 11.5n 23K (. Thus S has cost at most

(1 + ✏/ 24)(10.5n + K (+ 6) = 10.5n + K (+ 6 + (✏/ 24)(10.5n + K (+ 6)

 10.5n + K (+ 6 + (✏/ 24)(23K (+ K ()

= 10.5n + (1 + ✏)K (+ 6.

23

Since all costs are integer, the cost of S is in fact at most 10.5n+K +6, where K = b(1 + ✏)K (c.
Using this bound and Lemma 9, the vertex cover U has size at most K (1 + ✏)K (.

Since JRP-D
E4

2 APX (it has a constant-factor approximation algorithm), the theorem implies
that JRP-D

E4

is APX-complete.
Of course, APX-hardness implies that, unless P = NP, there is no PTAS for JRP-D

E4

: that is,
for some � > 0, there is no polynomial-time (1 + �)-approximation algorithm for JRP-D

E4

.

7 Final Comments

The integrality gap for the standard JRP-D LP relaxation is between 1.245 and 1.574. We con-
jecture that neither bound is tight. Although we do not have a formal proof, we believe that our
refined distribution for the tally game given here is optimal: it was optimized under the assumption
that it never generates more than two samples, and allowing more than two samples, according to
our calculations, can only increase the value of Z(p). Thus improving the upper bound will likely
require a di" erent approach.

There is a simple algorithm for JRP-D that provides a (1, 2)-approximation, meaning that
its warehouse order cost is not larger than that in the optimum, while its retailer order cost is
at most twice that in the optimum [12]. One can combine that algorithm and the one here by
choosing each algorithm with a certain probability. This simple approach does not improve the
approximation ratio, but it may be possible to do so if, instead of using the algorithm presented
here, one appropriately adjusts the probability distribution.

The computational complexity of general JRP-D, as a function of the maximum number p of
demand periods of each retailer, is essentially resolved: for p � 3 the problem is APX-hard [12],
while for p 2 it can be solved in polynomial time (for p = 1 it can be solved with a greedy
algorithm; for p = 2 one can apply a dynamic programming algorithm similar to that used in the
proof of Lemma 5). For the case of equal-length demand periods, we showed that the problem
remains APX-hard for p � 4. It would be nice to settle the case p = 3, which remains open. We
conjecture that this case is also NP-complete.

Finally, we note that any LP-based algorithm for JRP-D can be used as a building block for
general JRP (with arbitrary waiting costs) [4]. The construction combines One-Sided Retailer Push
and Two-Sided Retailer Push algorithms [10] with an appropriately crafted and scaled instance of
JRP-D. By plugging our 1.574-approximation to solve the JRP-D instance, the algorithm of [4]
yields a 1.791-approximation for JRP.

Acknowledgements. We would like to thank &Lukasz Jeż, Dorian Nogneng, Jǐŕı Sgall, and Grze-
gorz Stachowiak for stimulating discussions and useful comments. We are also grateful to anony-
mous reviewers of earlier versions of this manuscript for pointing out several mistakes and sugges-
tions for improving the presentation.

References

[1] Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoretical Com-
puter Science 237(1–2) (2000) 123–134

24

[2] Arkin, E., Joneja, D., Roundy, R.: Computational complexity of uncapacitated multi-echelon
production planning problems. Operations Research Letters 8(2) (1989) 61–66

[3] Becchetti, L., Marchetti-Spaccamela, A., Vitaletti, A., Korteweg, P., Skutella, M., Stougie, L.:
Latency-constrained aggregation in sensor networks. ACM Transactions on Algorithms 6(1)
(2009) 13:1–13:20

[4] Bienkowski, M., Byrka, J., Chrobak, M., Jeż, &L., Sgall, J.: Better approximation bounds
for the joint replenishment problem. In: Proc. of the 25th ACM-SIAM Symp. on Discrete
Algorithms (SODA). (2014) 42–54

[5] Brito, C., Koutsoupias, E., Vaya, S.: Competitive analysis of organization networks or multi-
cast acknowledgement: How much to wait? Algorithmica 64(4) (2012) 584–605

[6] Buchbinder, N., Kimbrel, T., Levi, R., Makarychev, K., Sviridenko, M.: Online make-to-
order joint replenishment model: Primal dual competitive algorithms. In: Proc. of the 19th
ACM-SIAM Symp. on Discrete Algorithms (SODA). (2008) 952–961

[7] Khanna, S., Naor, J., Raz, D.: Control message aggregation in group communication protocols.
In: Proc. of the 29th Int. Colloq. on Automata, Languages and Programming (ICALP). (2002)
135–146

[8] Levi, R., Roundy, R., Shmoys, D.B.: A constant approximation algorithm for the one-
warehouse multi-retailer problem. In: Proc. of the 16th ACM-SIAM Symp. on Discrete Algo-
rithms (SODA). (2005) 365–374

[9] Levi, R., Roundy, R., Shmoys, D.B.: Primal-dual algorithms for deterministic inventory
problems. Mathematics of Operations Research 31(2) (2006) 267–284

[10] Levi, R., Roundy, R., Shmoys, D.B., Sviridenko, M.: A constant approximation algorithm for
the one-warehouse multiretailer problem. Management Science 54(4) (2008) 763–776

[11] Levi, R., Sviridenko, M.: Improved approximation algorithm for the one-warehouse multi-
retailer problem. In: Proc. of the 9th Int. Workshop on Approximation Algorithms for Com-
binatorial Optimization (APPROX). (2006) 188–199

[12] Nonner, T., Souza, A.: Approximating the joint replenishment problem with deadlines. Dis-
crete Mathematics, Algorithms and Applications 1(2) (2009) 153–174

A WaldÕs Lemma

Here is the variant of Wald’s Lemma (also known as Wald’s identity, and a consequence of standard
“optional stopping” theorems) that we use in Section 2. The proof is standard; we present it for
completeness.

Lemma 10 (Wald’s Lemma). Consider a random experiment that, starting from a fixed start

state S
0

, produces a random sequence of states S
1

, S
2

, S
3

, . . . Let random index T 2 {0, 1, 2, . . .} be

a stopping time for the sequence (that is, for each positive integer t, the event “T t” is determined

25

by state St). Let function � : {St} ! R map the states to R. Suppose that, for some fixed constants

⇠ and F ,

(i) (8t < T) E [�(St+1

) | St] � �(St) + ⇠,

(ii) either (8t < T) �(St+1

) � �(St) � F in all outcomes, or (8t < T) �(St+1

) � �(St) F in all

outcomes, and

(iii) T has finite expectation.

Then, E [�(ST)] � �(S
0

) + ⇠ E [T].

Proof. For each t � 0, define random variable �t = �(St+1

)��(St). By assumption (i), E [�t | St] � ⇠
for t < T . Since the event “T > t ” is determined by St, this implies that E [�t | T > t] � ⇠. Then
the inequality in the lemma can be derived as follows:

E [�(ST) � �(S
0

)] = E [
P

t<T �t] =
P

⌧$ 0

Pr[T = ⌧] · E [
P

t<⌧ �t | T = ⌧]

=
P

⌧$ 0

P

t<⌧ Pr[T = ⌧] · E [�t | T = ⌧]

=
P

t$ 0

P

⌧>t Pr[T = ⌧] · E [�t | T = ⌧]

=
P

t$ 0

Pr[T > t] · E [�t | T > t]

�
P

t$ 0

Pr[T > t] · ⇠
= ⇠ E [T],

Exchanging the order of summation in the third step above does not change the value of the
sum, because (by assumptions (ii) and (iii)) either the sum of all negative terms is at least
P

⌧$ 0

P

t<⌧ Pr[T = ⌧]F = F
P

⌧$ 0

⌧ Pr[T = ⌧] = F E [T], which is finite, or (likewise) the
sum of all positive terms is finite.

Each application in Section 2 has ⇠ � Z(p) > 0 and �(ST) � �(S
0

) U for some fixed U. In
this case Wald’s Lemma implies E [T] U/ ⇠ U/Z(p).

26

	Introduction
	Upper Bound of 1.574
	The details of Roundp and proof of Lemma 1
	Upper bound of e/(e-1) = 1.582
	Upper bound of 1.574

	Upper Bound of 1.5 for Equal-Length Periods
	Lower Bounds of 1.207 and 1.245
	Lower Bound of 1.2 for Equal-Length Periods
	APX-Hardness for Equal-Length Demand Periods
	Final Comments
	Wald's Lemma

