Due: Monday, May 26, 1997

Problem Set 5

1. Recall the Chernoff bound we proved in class: the probability that any sum of independent random variables in [0, 1] exceeds its expected value μ by more than a factor of $1 + \epsilon$ is less than $\alpha(\epsilon)^{\mu}$, where

$$\alpha(\epsilon) = \frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}} < 1.$$

Let $\beta(\epsilon) = \ln 1/\alpha(\epsilon)$ so that $\alpha(\epsilon) = e^{-\beta(\epsilon)}$.

Using whatever means you like (a calculator, Mathematica, Maple, or calculus (e.g. Taylor series)), try to understand and describe the function β as best you can. In particular, try to get a reasonable approximation for β (say, within constant factors) in terms of ϵ and ϵ^2 .

It may help to consider the ranges $\epsilon \leq 1$ and $\epsilon \geq 1$ separately.

Proofs of the quality of your approximation would be nice but are not required.

2. Consider the following problem:

The input is a bipartite graph G = (V, W, E) and a number ℓ . The vertices in V are ordered v_1, v_2, \ldots, v_{2n} , and each odd vertex forms a *couple* with the next vertex. That is, v_1 and v_2 form a couple, v_3 and v_4 form a couple, and so on.

The goal is to choose one vertex from each couple (n vertices in total), in such a way that no vertex in W has more than ℓ of its neighbors chosen. (This may or may not be possible for any given input.)

No polynomial-time algorithm is known for this problem.

You are to develop and analyze a randomized polynomial-time algorithm for finding an approximate solution.

To start, consider the *relaxed* problem. The input is the same, but the goal is to assign non-negative weights to the vertices of V so that, for each couple, the sum of the weights on the two vertices is 1, while the total weight on edges incident to any vertex in W is at most ℓ .

- (a) Show how this relaxed version can be formulated as a linear program.
- (b) Suppose that the relaxed problem has a solution p.

 Consider the following random experiment. For each couple v, v', choose one of the two vertices at random: choose v with probability p(v) and choose v' with probability p(v') = 1 p(v).

Argue that for any vertex in W, the expected number of chosen neighbors is at most ℓ .

- (c) Figure out the smallest $\epsilon > 0$ you can so that (using the Chernoff bound) the probability that any given vertex in W has more than $(1 + \epsilon)\ell$ chosen neighbors is less than 1/2|W|. The value for ϵ will depend on ℓ .
- (d) Argue that the expected number of vertices in W with more than $(1 + \epsilon)\ell$ chosen neighbors is at most 1/2. Why does this mean that with probability at least 1/2, all vertices in W will have at most $(1 + \epsilon)\ell$ neighbors chosen?
- (e) Combine the above arguments to argue that there is a randomized algorithm for the original problem that runs in expected polynomial time and, if a solution exists, finds an approximate solution in that the number of chosen neighbors of any vertex w∈ W is at most ℓ + εℓ. Describe how the quantity εℓ varies as a function of ℓ.