Problem Set 3 1. In class you figured out that the number of 5-digit decimal numbers with their digits summing to 27 was $$[z^{27}] \left(\frac{1-z^{10}}{1-z}\right)^5.$$ (Recall that $[z^n]f(z)$ denotes the coefficient of z^n in f(z).) Figure out the actual number.¹ - 2. Let S be the set of binary strings not containing "011" as a substring. - (a) Give a deterministic finite automata accepting S. - (b) Derive a generating function $\sum_n s_n z^n$ for S, where s_n is the number of strings in S of size n.² - (c) Use your generating function to obtain the best estimates you can for s_n . - 3. The goal of this problem is to derive a closed form for the generating function $\sum_{n=0}^{\infty} {2n \choose n} z^{2n}$. Let W be the set of binary strings with with equal numbers of 0's and 1's. (a) Why are there exactly $\binom{2n}{n}$ strings of length 2n in W? Let P be the subset of W such that every prefix of the string has as many 0's as 1's (essentially this is balanced parens). Let Q be the subset of P such that every proper prefix of the string has more 0's than 1's. - (b) Argue that $P \equiv Q^*$. - (c) Argue that $Q \equiv \{0\} \times P \times \{1\}$. - (d) Argue that $W \equiv (\{\text{up, down}\} \times Q)^*$. - (e) Use (b,c,d) to derive a generating function for W. - 4. Exercise 33.7-2. ¹ HINT: Use $(1 - z^{10})^5 = 1 - 5z^{10} + 10z^{20} - 10z^{30} + 5z^{40} - z^{50}$. ²HINT: for each state q of your DFA, let S_q denote the set of strings taking the DFA from the start state to q. Set up an unambiguous context free grammar for the sets S_q , from this obtain a set of equations relating the generating functions for the S_q 's. Solve the equations.