Problem Set 3

1. In class you figured out that the number of 5-digit decimal numbers with their digits summing to 27 was

$$[z^{27}] \left(\frac{1-z^{10}}{1-z}\right)^5.$$

(Recall that $[z^n]f(z)$ denotes the coefficient of z^n in f(z).)

Figure out the actual number.¹

- 2. Let S be the set of binary strings not containing "011" as a substring.
 - (a) Give a deterministic finite automata accepting S.
 - (b) Derive a generating function $\sum_n s_n z^n$ for S, where s_n is the number of strings in S of size n.²
 - (c) Use your generating function to obtain the best estimates you can for s_n .
- 3. The goal of this problem is to derive a closed form for the generating function $\sum_{n=0}^{\infty} {2n \choose n} z^{2n}$.

Let W be the set of binary strings with with equal numbers of 0's and 1's.

(a) Why are there exactly $\binom{2n}{n}$ strings of length 2n in W?

Let P be the subset of W such that every prefix of the string has as many 0's as 1's (essentially this is balanced parens).

Let Q be the subset of P such that every proper prefix of the string has more 0's than 1's.

- (b) Argue that $P \equiv Q^*$.
- (c) Argue that $Q \equiv \{0\} \times P \times \{1\}$.
- (d) Argue that $W \equiv (\{\text{up, down}\} \times Q)^*$.
- (e) Use (b,c,d) to derive a generating function for W.
- 4. Exercise 33.7-2.

¹ HINT: Use $(1 - z^{10})^5 = 1 - 5z^{10} + 10z^{20} - 10z^{30} + 5z^{40} - z^{50}$.

²HINT: for each state q of your DFA, let S_q denote the set of strings taking the DFA from the start state to q. Set up an unambiguous context free grammar for the sets S_q , from this obtain a set of equations relating the generating functions for the S_q 's. Solve the equations.