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PDES-A: Accelerators for Parallel Discrete Event Simulation

Implemented on FPGAs
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University of California Riverside

In this article, we present experiences implementing a general Parallel Discrete Event Simulation (PDES) ac-

celerator on a Field Programmable Gate Array (FPGA). The accelerator can be specialized to any particular

simulation model by defining the object states and the event handling code, which are then synthesized into a

custom accelerator for the given model. The accelerator consists of several event processors that can process

events in parallel while maintaining the dependencies between them. Events are automatically sorted by a

self-sorting event queue. The accelerator supports optimistic simulation by automatically keeping track of

event history and supporting rollbacks. The architecture is limited in scalability locally by the communica-

tion and port bandwidth of the different structures. However, it is designed to allow multiple accelerators

to be connected to scale up the simulation. We evaluate the design and explore several design trade-offs and

optimizations. We show that the accelerator can scale to 64 concurrent event processors relative to the perfor-

mance of a single event processor. At this point, the scalability becomes limited by contention on the shared

structures within the datapath. To alleviate this bottleneck, we also develop a new version of the datapath

that partitions the state and event space of the simulation but allows these partitions to share the use of the

event processors. The new design substantially reduces contention and improves the performance with 64

processors from 49x to 62x relative to a single processor design. We went through two iterations of the design

of PDES-A, first using Verilog and then using Chisel (for the partitioned version of the design). We report

in this article on some observations in the differences in prototyping accelerators using these two different

languages. PDES-A outperforms the ROSS simulator running on a 12-core Intel Xeon machine by a factor of

3.2x with less than 15% of the power consumption. Our future work includes building multiple interconnected

PDES-A cores.
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1 INTRODUCTION

Discrete Event Simulation (DES) is an important application used in the design and evaluation of

systems and phenomena in which the change of state is discrete. It is heavily used in a number

of scientific, engineering, medical, and industrial applications. Parallel Discrete Event Simulation

(PDES) leverages parallel processing to increase the performance and capacity of DES, enabling the

simulation of larger, more detailed models for more scenarios and in a shorter period of time. PDES

is a fine-grained application with irregular communication patterns and frequent synchronization,

making it challenging to parallelize.

In recent years, researchers have developed and analyzed PDES simulators on a variety of par-

allel and distributed hardware platforms as these platforms have continued to evolve. The wide-

spread use of both shared and distributed memory cluster environments has motivated the de-

velopment of PDES kernels optimized for these environments, such as GTW [11], ROSS [6] and

WarpIV [37]. The emergence of multi-core and many-core processors has attracted considerable

interest among high-performance computing communities to explore the performance of PDES ap-

plications in these emerging platforms. Typically, these simulators [15, 27, 40] use multi-threading

and develop synchronization-friendly data structures to take advantage of the low communica-

tion latency and tight memory integration among cores on same chip. PDES has been shown to

scale well on many-core architectures, such as the Tilera Tile64 [21] and the Intel Xeon Phi [8, 42].

Several researchers have also explored the use of GPGPUs to accelerate PDES [7, 26, 28, 39].

In contrast to these efforts, there are very few works describing acceleration of PDES using

non-conventional architectures, such as Field Programmable Gate Arrays (FPGAs). FPGA-based

accelerator development platforms have recently progressed rapidly to make them available to

all programmers. Amazon unveiled its EC2 F1 FPGA cluster [20], which makes high-performance

FPGAs on the cloud accessible to general consumers on demand. Microsoft’s Catapult [30] and the

Convey Wolverine [9] are examples of recent systems that offer programmability, tight integration,

advanced communication, and memory sharing with CPUs in industry standard HPC clusters. Intel

has already started shipping versions of its Xeon processors with integrated FPGA support [4]. The

latest evolution in memory technologies, such as Micron’s Hybrid Memory Cube (HMC) [19], can

offer up to 320GB/s effective bandwidth and many recent FPGAs come with built-in HMC. This

can provide a huge boost to applications requiring high memory bandwidth, such as PDES, and

emphasizes the need for specialized hardware support to take advantage of this bandwidth.

In particular, our interest in FPGAs stems from the fact that they do not limit the datapath orga-

nization of the accelerator, allowing us to experiment with how the computation should ideally be

supported. In addition, the end of Dennard scaling and the expected arrival of dark silicon makes

the use of custom accelerators for important applications one of the few remaining directions for

continued improvement of computing performance. Many types of accelerators have already been

proposed for a large number of important applications, such as deep learning [25, 35] and graph

processing [43]. The exploration of accelerator architecture for PDES can yield similar benefits

and inform the design decision of custom accelerators for many simulation applications.

An FPGA implementation of PDES offers two primary advantages:

• Low-latency and high-bandwidth on-chip communication: An FPGA can support fast and

high bandwidth on-chip communication, substantially alleviating the communication bot-

tleneck that often limits the performance of PDES [41]. On the other hand, the memory

latency experienced by FPGAs is very often high (but the available bandwidth is also high),

necessitating approaches to hide the memory access latency.

• Specialized, high-bandwidth datapaths: General-purpose processing provides high flexibility

but at the cost of high overhead and a fixed datapath. A specialized accelerator, in contrast,
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can more efficiently execute a required task without the unnecessary overheads of fetch-

ing instructions and moving data around a general datapath. These advantages have been

estimated to yield over 500x improvement in performance for video encoding, with 90% re-

duction in energy [16]. Moreover, an FPGA can allow high parallelism limited only by the

available memory bandwidth, number of processing units, and the communication band-

width available between them.

We believe that PDES is potentially an excellent fit for these strengths of FPGAs. PDES exhibits

ordered irregular parallelism (OIP) with the following three characteristics: (1) total or partial order

between tasks; (2) dynamic and unpredictable data dependencies; and (3) dynamic generation of

tasks that are not known beforehand [29]. It has inherent parallelism that is difficult to exploit in a

traditional multi-processor architecture without careful implementation. To preserve order among

the tasks and maintain causality, hardware-based speculative implementations such as thread-level

speculation (TLS) often introduce false data dependencies, for example, in the form of a priority

queue [23]. Runtime communication overheads limit the scalability of PDES [17]; these overheads

may be lowered and masked in the context of an FPGA [41]. For models with a computationally

expensive processing task, FPGA implementations are likely to yield to more streamlined cus-

tomized processors. On the other hand, if the event processing is simple, FPGAs can accommodate

a larger number of event processors, increasing the raw available hardware parallelism. Finally, FP-

GAs have exceptional energy properties compared to general-purpose graphical processing units

(GPGPUs) and many-cores.

In this article, we present our design of a PDES accelerator, which we call PDES-A. We show

that PDES-A can provide excellent scalability for Phold with up to 64 concurrent event proces-

sors. We explore the design trade-off space and explore alternatives in the design of the critical

structures supporting the simulation. Our initial prototype outperforms a similar simulation on

a 12-core, 3.5GHz Intel Xeon CPU by 2.5x. Analysis of the baseline design shows that contention

for the shared structures of the datapath starts to substantially limit performance when the num-

ber of event processors increases, accounting for 30% of the event processing time. Therefore, we

rearchitect PDES-A to relieve contention by partitioning all shared structures, such as event and

state queues, into multiple substructures and mapping each logical process (LP) to one of these

different partitions. Although causality is not maintained directly among the partitions, we use

the rollback mechanism to recover. Partitioning alleviates contention, resulting in another 25%

improvement in throughput; while the baseline design scaled to 49x with 64 event processors, the

new design is able to reach 62x. As a result, it outperforms the 12-core Intel Core i7 by 3.2x while

consuming less than 15% of the power (i.e., over 22x improvement in performance per watt). We

show that there remain several opportunities to further optimize the design. Moreover, we show

that multiple PDES-A accelerators can fit within the same FPGA chip, allowing us to further scale

the performance in the future.

PDES-A is in the vein of prior studies that explore customized or programmable hardware sup-

port for PDES. Fujimoto et al. proposed the Rollback chip, a special-purpose processor to accelerate

state saving and rollbacks in Time Warp [14]. Most similar to our work, Herbordt et al. [18] ex-

plored FPGA implementation of a specific PDES model for molecular dynamics. In the area of

logic simulation, the use of FPGA offers opportunities for performance since the design being sim-

ulated can simply be emulated on the FPGA [38]. Noronha et al. explore the use of a programmable

network interface card to accelerate GVT computation and direct message cancellation [24]. Our

work differs in the way that a general optimistic PDES is implemented completely in hardware.

An earlier version of this article appeared in SIGSIM-PADS 2017 [31]. The current version ex-

tends the original paper in the following ways:
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• We identified contention as a major bottleneck in the design, and developed a completely

new design that alleviates contention by partitioning the datapath structures in multiple

independent components that share the event processors.

• We present an evaluation of the new design showing that it alleviates contention, leading

to near-perfect speedup (62x with 64 processors).

• The new design was rewritten using Chisel, a new higher-level hardware description lan-

guage; we discuss our experience in using Chisel versus Verilog, which is important for

future designers of accelerators.

• We extend and improve the description of several aspects of the design and analysis.

The remainder of this article is organized as follows. Section 2 presents some background in-

formation related to PDES and introduces the Convey Wolverine FPGA system that we used in

our experiments. Section 3 introduces the design of our PDES-A accelerator and its various com-

ponents. Section 4 contains an overview of some implementation details and the verification of

PDES-A. Section 5 presents a detailed performance evaluation of the design. Our optimizations on

the baseline design is discussed in detail in Section 6. Section 7 shows a comparison with a CPU-

based PDES simulator for better understanding of the performance gain. In Section 8, we explore

the overhead of PDES-A and project the potential performance if we integrate multiple PDES-A

accelerators on the same FPGA chip. Finally, Section 9 presents our concluding remarks.

2 BACKGROUND

In this section, we provide some background information necessary for understanding our pro-

posed design. First, we discuss PDES and then present the Convey Wolverine FPGA application

accelerator that we use in our experiments.

2.1 Parallel Discrete Event Simulation

A discrete event simulation (DES) models the behavior of a system that has discrete changes in

state. This is in contrast to the more typical time-stepped simulations in which the complete state

of the system is computed at regular intervals in time. DES has applications in many domains, such

as computer and telecommunication simulations, war gaming/military simulations, operations re-

search, epidemic simulations, and many more. PDES leverages the additional computational power

and memory capacity of multiple processors to increase the performance and capacity of DES, al-

lowing the simulation of larger, more detailed models and the consideration of more scenarios in

a shorter amount of time [12].

In a PDES simulation, the simulation objects are partitioned across a number of logical processes

(LPs) that are distributed to different Processing Elements (PEs). Each PE executes its events in

simulation time order (similar to DES). Each processed event can update the state of its object

and possibly generate future events. Maintaining correct execution requires preserving timestamp

order among dependent events on different LPs. If a PE receives an event from another PE, this

event must be processed in time-stamped order for correct simulation.

To ensure correct simulation, two synchronization algorithms are commonly used: conserva-

tive and optimistic synchronization. In conservative simulation, PEs coordinate with each other

to agree on a lookahead window in time where events can be safely executed without compro-

mising causality. This synchronization imposes an overhead on the PEs to continue to advance.

In contrast, optimistic simulation algorithms such as Time Warp [22] allow PEs to process events

without synchronization. As a result, it is possible for an LP to receive a straggler event with a

timestamp earlier than their current simulation time. To preserve causality, optimistic simulators

maintain checkpoints of the simulation and rollback to a state in the past earlier than the time of

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 2, Article 12. Publication date: April 2019.



PDES-A: Accelerators for Parallel Discrete Event Simulation Implemented on FPGAs 12:5

Fig. 1. Overview of the Convey Hybrid-Core architecture.

the straggler event. The rollback may require the LP to cancel out any event messages that it gen-

erated erroneously using anti-messages. This approach uses more memory for keeping checkpoint

information, which needs to be garbage collected when no longer needed to bound the dynamic

memory size. A Global Virtual Time (GVT) algorithm is used to identify the minimum simula-

tion time that all LPs have reached: checkpoints with a time lower than the GVT can be garbage

collected, and events earlier than the GVT may be safely committed.

2.2 Convey Wolverine FPGA Accelerator

The Convey Wolverine FPGA Accelerator is an FPGA-based coprocessor that augments a com-

modity processor with processing elements optimized for key algorithms that are inefficient to

run in a conventional processors. The coprocessor contains a standard FPGA that uses a standard

x86 host interface to communicate with a Intel Xeon-based host processor.

The Wolverine WX2000 integrates three major subsystems: Application Engine Hub (AEH), Ap-

plication Engines (AEs), and the Memory Subsystem (MCs) [9]. Figure 1 shows an abstracted view

of the system architecture. AEs are the core of the system and implement the specialized func-

tionality of the coprocessor. There are four AEs in the system implemented on a Xilinx Virtex-7

XC7V2000T FPGA. The AEs are connected to memory controllers via 10GB/s point-to-point net-

work links availing up to 40GB/s of bandwidth in an optimized implementation. The clock rate of

the FPGAs (150MHz) is much lower than that of the CPU, but they can implement many specialized

functional units in parallel. With proper utilization of the memory bandwidth, the throughput can

be many times that of a single processor. This makes the system ideal for applications benefiting

from high computation capability and large high-bandwidth memory. The number of processing

elements in an AE is limited by the resources available in the FPGA chip used. The processing

elements can connect to the memory subsystem through a crossbar network that allows each pro-

cessing element to access any part of the physical memory.

The AEH acts as the control and management interface to the coprocessor. The Hybrid Core

Memory Interconnect (HCMI), implemented in the AEH, connects the coprocessor to the processor

to fetch instructions and to process and route memory requests to the MCs. It also initializes the

AEs, programs them, and conveys execution instructions from the processor.

The memory subsystem includes 4 memory controllers supporting 4 DDR3 memory channels

providing a high bandwidth, but also high-latency, connection between memory and application

engines [10]. The memory subsystem provides simplified logical memory interface ports that con-

nect to a crossbar network, which, in turn, connects to the physical memory controller. Another

important part of the memory system is the Hybrid Core Globally Shared Memory architecture.

It creates a unified memory address space where all physical memory is addressable by both the

processor and the coprocessor using a virtual address. The memory subsystem implements the

address translation, crossbar routing, and configuration circuits.
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The architecture of the Convey system can present some advantages in the design of a PDES

system. Memory access latency and communication overhead prevent most PDES models from

achieving high throughput. The high bandwidth parallel data access capability in the Convey sys-

tem can be exploited to bypass the bottleneck by employing a large number of event processors.

In this way, while one event processor waits for memory, others can be active, enabling the sys-

tem to effectively use the high memory bandwidth. Also, the reconfigurable fabric allows us to

implement optimized datapaths, including the communication network among event processors

to reduce communication and synchronization overheads. Finally, leveraging the standard x86 in-

terface, multiple Convey servers can be interconnected, which opens up the possibilities to scale

up the PDES accelerator to a large cluster-based implementation.

3 PDES-A: DESIGN OVERVIEW

FPGAs are progressing quickly in terms of both capabilities and integration with computing plat-

forms, making them increasingly accessible to programmers. However, concerns regarding longer

development time and different development tools, as well as lack of flexibility and portability,

are significant impediments to FPGA adoption. Considering these concerns, our goal is to enable

simulation of different applications within an easy-to-use framework. An interesting character-

istic of PDES simulation algorithms is that, despite the irregular nature of the dependencies, the

algorithm itself has a fairly simple and clean execution semantics, iterating over the event list to

schedule events, processing these events, and then scheduling any events that result from their

execution. Most of the complexity lies in the data structures to manage the event lists and those

for handling synchronization and causality, which are both common to any PDES application. In

contrast, application-specific event processing often is computationally and logically contained,

and for many simulation models, they are simple. The Simian project [34] shows that a completely

functional PDES engine can be implemented in less that 500 lines of Python code. These properties

can be leveraged by an FPGA-based PDES engine to make it modular and scalable so that experts

in any domain can simulate their application models by simply defining the state transition and

event-processing logic, not requiring hardware development expertise.

In this article, we present an overview of the unit PDES accelerator (PDES-A), the building

block of our PDES accelerator. Each PDES-A accelerator is a tightly coupled high-performance

PDES simulator in its own right. However, hardware limitations—such as contention for shared

event and state queue ports, local interconnection network complexity, and bandwidth limit—

restrict the scalability of this tightly coupled design approach. These properties suggest a design

in which multiple interconnected PDES-A accelerators together work on a large simulation model

and exploiting the full available FPGA resources. In this article, we explore and analyze only PDES-

A and not the full architecture consisting of many PDES-A accelerators.

In an FPGA implementation, event processing, communication, synchronization, and memory

access operate differently from how they work in general-purpose processors. Therefore, both

performance bottlenecks and optimization opportunities differ from those in conventional soft-

ware implementations of PDES. We developed a baseline implementation of PDES-A and used it

to identify performance bottlenecks. We then used these insights to develop improved versions of

the accelerator. We describe our design and optimizations in this section.

3.1 Design Goals

PDES-A provides a modular framework in which various components can be adjusted indepen-

dently to attain the most effective datapath flow control across different PDES models. Since

the time to process events in different models will vary, we designed an event-driven execution

model that does not make assumptions about event execution time. We decided to implement an
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Fig. 2. Block diagram of basic control and dataflow in a PDES system.

optimistically synchronized simulator to allow the system to operate around the large memory

access latencies. However, the tight coupling within the system should allow us to control the

progress of the simulation and naturally bound optimism. We avoided any model-specific tuning

to retain generality of the accelerator.

3.2 General Overview

The simulator is organized into four major components: (1) Event Queue—stores the pending

events; (2) Event Processors—custom datapaths for processing the event tasks in the model;

(3) System State Memory—holds relevant system state, including checkpointing information;

(4) and the Controller—coordinates all aspects of operation. The first three components corre-

spond to the same functionality in traditional PDES engines in any discrete event simulator; the

last one oversees the event processors to ensure correct parallel operation and communication.

Communication between different components uses message passing. We currently support

three message types: Event messages, anti-messages, and GVT messages. These three message

types are the minimum required for an optimistic simulator to operate, but additional message

types could be supported in the future to implement optimization or to coordinate between mul-

tiple PDES-A units.

Figure 2 shows the major components of PDES-A and their interactions. The event queue con-

tains a list of all of the unprocessed events sorted in ascending order of their timestamp. Event

processors receive event messages from the queue. After processing events, additional events that

may be generated are sent and inserted into the event queue for scheduling. The system needs to

keep track of all of the processed events and the changes made by them until it is guaranteed that

the events will not be rolled back. When an event is received for processing, the event processor

checks for any conflicting events from the event history. Anti-messages are generated when the

event processor discovers that erroneous events have been generated by an event processed earlier.

Since the state memory is shared, a controller unit is necessary to monitor the event processors

for possible resource conflict and manage their correct operation. Another integral function of

the control unit is the generation of GVT, which is used to identify the events and state changes

that can be safely committed. The control unit computes GVT continuously and forwards updated

estimates to the commit logic. These messages should have low latency to limit the occurrence of

rollbacks and to control the size of the event and message history. In the remainder of this section,

we describe the primary components in more detail.

3.3 Event Queue

The event queue maintains a time-ordered list of events to be processed by the event processors. It

needs to support two basic operations: insert and dequeue. An invalidate operation can be included
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to facilitate faster cancellation of events that have not been processed yet. However, this function

was not considered in our preliminary implementation to avoid circuit complexity.

The event queue structure and its impact on PDES performance has been studied in the context

of software implementations [33]; however, it is important to understand suitable queue orga-

nizations implemented in hardware. Prior work has studied hardware queue structures support-

ing different features. Priority queues offer attractive properties for PDES such as constant time

operation, scalability, low area overhead, and simple hardware routing structures. Simple binary

heap–based priority queues are commonly used in hardware-based implementations but require

O (loд(n)) time for enqueue and dequeue operations. Other options have other drawbacks; for ex-

ample, Calendar Queues [3] support O (1) access time but are difficult and expensive to scale in

a hardware implementation. QuickQ [32] uses multiple dual-ported RAM in a pipelined struc-

ture that provides easy scalability and supports constant time access. However, the access time is

proportional to the size of each stage of RAM. Configuring them to achieve a small access time

necessitates a large number of stages, which leads to high hardware complexity. For these reasons,

we selected a pipelined heap (P-heap for short) [2] structure as the basic organization in our imple-

mentation, except for a few modifications described later. P-heap uses a pipelined binary heap to

provide constant access time of two cycles while having a hardware complexity similar to binary

heaps.

The P-heap structure uses a conventional binary heap, with each node storing a few additional

bits to represent the number of vacancies in the subtree rooted at the node (Figure 3). The capacity

values are used by insert operations to find the path in the heap through which it should percolate.

P-heap also keeps a token variable for each stage, which contains the current operation, target

node identifier, and value that is percolating down to that stage. During an insertion operation,

the value in token variable is compared with the target node: a smaller value replaces the target

node value and a larger value passes down to the token variable of the following stage. The id

value of the next stage is determined by checking the capacity associated with the nodes.

For the dequeue operation, the value of the root node is dequeued and replaced by the smaller

between its two child nodes. The same operation continues to move through the branch, promot-

ing the smallest child at every step. During any operation, any two of the consecutive stages are

accessed; one read access and the other write access. As a result, a stage can handle a new op-

eration every two cycles since the operation of the heap is pipelined with different insert and/or

dequeue operations at different stages in their operation [2].

P-heap can be efficiently implemented in an FPGA. Every stage requires a Dual Port RAM. De-

pending on the size of the stage, it can be synthesized with registers, distributed RAM, or block

RAM to maximize resource utilization. An arbitrary number of stages can be added (limited by

resource availability) as the performance is not hurt by the number of stages in the heap, making

it straightforward to scale.

In an optimistic PDES system, it is possible that ordering can be relaxed to improve performance,

while maintaining simulation correctness via rollbacks to recover from occasional ordering vio-

lations. This opens up possibilities for optimization of the queue structure. For example, multiple

heaps may be used in parallel to service more than one request in a single cycle. In an approach

similar to [18], we can use a randomizer network to direct multiple requests to multiple available

heaps (Figure 4). There is a chance that two of the highest-priority events may reside in the same

heap and an ordering violation will occur when a lower-priority event from the same LP is de-

queued from another queue during multiple dequeues. However, as the number of LPs and events

grow, the probability that two events from the same LP are at different queue heads decreases.

Thus, the number of such events will be low enough to result in a net performance gain. We used

the simple P-heap model in the baseline implementation and explored the effect of this version in
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Fig. 3. The P-heap data structure [2]. Fig. 4. Multiple event issue priority queue.

Fig. 5. Simplified timeline representation showing scheduling of events in the system.

our optimized architecture, discussed in Section 6. Other structures that sacrifice full ordering but

admit higher parallelism, such as Gupta and Wilsey’s lock-free queue, may also be explored [15].

The queue stores a key-value pair. Event timestamp acts as the key and the value contains the

id of the target LP and a payload message. In case the payload message is too large, we store a

pointer to a payload message in memory.

3.4 Event Processor

The event processor is at the core of PDES-A. The front end of the processor is common to all

simulation models. It is responsible for the following general operations: (1) to check the event

history for conflicts; (2) to store and clean up state snapshots by checking GVT; (3) to support event

exchange with the event queue; and (4) to respond to control signals to avoid conflicting event

processing. In addition, the event processors execute the actual event handlers that are specialized

to each simulation model to generate the next events and compute state transitions.

The task processing logic is designed to be replaceable and easily customizable to the events

in different models. It appears as a black box to the event processor system. All communications

are done through the preconfigured interface. The event processor passes event messages and

relevant data to the core logic by populating FIFO buffers. Once the events are processed, the core

logic uses output buffers to load the generated events. The core logic has interfaces to request

state memory by supplying addresses and sizes. The fetched memory is placed into a FIFO buffer

to be read from the core. The interface to the memory port is standard and provided in the core

to be easily accessible by the task-processing logic.

3.5 Event Scheduling and Processing

Figure 5 shows a representative event execution timeline in the system. Events are assigned to the

event processors in order of their timestamps; in the figure, the event is represented by a tuple (x,y)
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where x is the LP number and y is the simulation time. When a second event (1, 12) is scheduled

while another event (1, 8) associated with the same LP is already being processed, the core is stalled

by the controller unit until the first event completes. At the completion of an event, the controller

unit allows the earliest timestamp among the waiting (stalled) events for that core to proceed

as shown in window 1. Each event generates one or more new events when it exits, which are

scheduled at some time in the future when a core is available. Occasionally, an event is processed

after another event with a later timestamp has already executed (i.e., a straggler event). It needs

to be rolled back to restore causality. Windows 2 in Figure 5 shows one such event, (2, 22), which

executes before event (2, 15). We use a lazy cancellation and rollback approach. Event-processing

logic detects the conflict by checking the processed events list and initiates the rollback. The new

event will restore the states and generate events it would have normally scheduled (6, 28) along

with anti-messages (3, 27*) for all events generated by the straggler event, and new event (2, 22)

that reschedules the straggler event itself.

The anti-messages may get processed before or after the target event is done. An anti-message

(3, 27*) checks the event history and if the target event has already been processed, it rolls back the

states and generates other anti-messages (1, 30*) to chase the erroneous message chain much like

a regular event, as shown in window 3 of Figure 5. If the target message is yet to arrive, the anti-

message is stored in the event history table. The target message (1, 30) cancels itself upon discovery

of the anti-message in the history and no new event is generated, as shown in window 4.

3.6 Event History

An important component for maintaining order of execution in an optimistic simulation is the

checkpointing and state restoration mechanism. To revert back the changes done by an event, we

keep records of it until it is guaranteed to be committed. To be able to do this, we store the processed

events along with a set of information required for rollbacks in an Event History Memory. The

memory is organized as a free list of memory blocks in the on-chip memory, each block containing

space for 4 entries and pointer metadata. The history entries contain event data and a rollback data

structure defined by the programmer. Hardware structure generation is done by the framework

based on the computed size of the entries after the user defines the data structure.

Each LP has a list for history where blocks are appended as history grows and entries are stored

in order of their execution. The on-chip memory gives fast access to the history but puts a restric-

tion on how large it can be. Thus, when the on-chip memory is close to being full, we allocate

memory blocks in the off-chip RAM. This will add latency to event history access and put a bur-

den on the memory bandwidth. To prevent this, when the event history starts spilling into off-chip

memory, we initiate a flush of the processing cores. A flush would temporarily prevent issuing new

events for processing until all event processors are idle. This allows the GVT to be recomputed, and

the pending event sets to be properly reordered. As a result, stale history entries can be removed

and the event history shrinks in size.

The history list is maintained and pruned at the processor. The list is pulled into the processor

as a whole, then the stale events with timestamps older than GVT are removed from the list. If

there are events violating causality, they are removed and passed to the rollback module. The

active event in the processor is appended to the rest of the list, and the list is stored to memory

when event processing is complete. The memory allocation and communication, when done in the

hardware, is cheap and does not add much overhead.

3.7 Rollback and Cancellation

The state restoration or reverse computation logic for rollback needs to be defined by the pro-

grammer. The programmer also defines the data structure for the event history and which values
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should be stored during forward computation. The model-specific logic populates the data struc-

ture with correct states and the framework takes care of storing the checkpoint data to the history.

On causality violation, the processor receives a list of violating events in reverse order of execu-

tion. The programmer needs to define the way that the checkpoint data is used to restore the states.

For smaller states, state value may be saved in the event history and later restored directly. For

more complex cases, the user can store other information, such as a random number generator

seed, that can be used to reverse compute the states and create anti-messages. We save the history

for each event and rollbacks are done for every event executed out of order.

Rolling back an event also reinserts the rolled-back event to the event queue and generates

anti-messages to revert the events that it wrongly created. This anti-messages are scheduled like

normal events and they trigger cancellation during the checking of event history in processors,

as described in Section 3.5. Each event message, along with its payload, carries a unique identifier

which is a tuple (processor ID, sequence number of active event) that serves as an identifier for its

parent event. The sequence number simply indicates the number of events processed in a processor

and each new event received in a processor gets a unique sequence number from a counter in the

processor. The unique identifier for the parent event is stored in its history entry along with the

rest of the event data. When the parent event is reversed, the rollback process emits anti-messages

carrying this identifier with timestamp and LP of the target events to be canceled. The anti-message

can be matched with the target event using the unique identifier and event timestamp.

4 IMPLEMENTATION OVERVIEW

We used a full RTL implementation on a Convey WX-2000 accelerator for prototyping the simu-

lator. The current prototype fits comfortably in a Virtex-7 XC7V2000T FPGA. The event history

table and queue were implemented in the BRAM memory available in the FPGA. The on-board

32GB DDR3 memory was used for state memory implementation, although very little memory

was necessary for our prototype. The system uses a 150MHz clock rate. The host server was used

to initialize the memory and events at the beginning of the simulation. The accelerator commu-

nicates through the host interface to report results and other measurements that we collected to

characterize the operation of the design. For any values that we wanted to measure during runtime,

we instrumented the design with hardware counters that keep track of these events. We comple-

mented these results with other statistics, such as queue and core occupancy, that we obtained

from a functional simulator of the RTL implementation using Modelsim.

Since our design is modular, we can scale the number of event processors easily. However, as the

number of processors increases, we can expect contention to arise on the fixed components of the

design such as the event queue and the interconnection network. We experiment with cluster sizes

from 8 to 64 in order to analyze the design trade-offs and scalability bottlenecks. The performance

of the system under variable numbers of LPs and event distribution gives us insight into the most

effective design parameters for a system. We sized our queues to support up to 512 initial events in

the system. The queue is flexible and can be expanded in capacity or can even be made to handle

overflow by spilling into the memory.

4.1 Design Language and Application Modeling

The baseline design was implemented using Verilog. However, during optimization, we reimple-

mented the system using Chisel [1], a hardware construction language. This decision was driven

primarily by the design goal of lowering the barrier for domain modelers to build and run sim-

ulation models on the framework. Chisel is based on Scala, which is an easy-to-use and already

familiar language to most domain experts. This would reduce development time and effort for any-

one inclined to use the framework. The encapsulation property of the object-oriented approach
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of Chisel also allows us to separate modeling and framework development code, which requires

less understanding of the framework from the end users. Moreover, the generated code is highly

parameterizable with metaprogramming. This gives the users the capability to configure size and

some basic parameters without the in-depth understanding of the language or design. Effectively,

the hardware implementation becomes almost similar to the CPU-based PDES engines from the

perspective of the user.

Additionally, quicker development and easier maintenance of the framework was possible

thanks to the object-oriented nature and metaprogramming capabilities of Scala language. The

code base was reduced in size by about 40%. The simplicity in code leads to better maintainability.

Unlike industrial applications, research projects are usually developed without a fixed set of con-

straints in mind; thus, constraints keep evolving rapidly throughout each experiment. In the stan-

dard HDL languages, small adjustments in one component tend to ripple through the whole design,

requiring extensive edits, which is not congenial to rapid prototyping. Because of the metapro-

gramming capabilities of the Chisel framework, effort and time required for such a task can be

reduced significantly, which makes many explorations feasible. This is tangential to the architec-

ture or performance of the accelerator, but we still offer these comments for the benefit of future

research.

Models: Our goal in the evaluation is to present a general characterization of this initial proto-

type of PDES-A. We used the Phold model for our experiments because it is widely used to provide

general characterization of PDES execution that is sensitive to the system. On Convey machines,

the memory system provides high bandwidth at the cost of high latency (a few hundred cycles)

which end up dominating event execution time. To emulate event processing, we let each event

increment a counter up to a value picked randomly between 10 and 75 cycles to represent compu-

tation complexity. The model generates memory accesses by reading from the memory when the

event starts and writing back to it again when it ends. Phold is state oblivious, but we still use a

dummy state holding a counter and restore it during rollback so that we can analyze the effects of

rollback in our system. New outgoing agents are generated to a random LP using a random num-

ber generator. We also use the Airport model [13] on our optimized system to analyze performance

for an application with multiple event type and larger state. We developed our model to represent

the Airport model included with ROSS models [5].

Design Validation: Verification of hardware design is complex since it is difficult to peek into

the simulation running on the hardware. However, the hardware design flow supports a logic level

simulator of the design that we used to validate that the model correctly executes the simulation. In

particular, the ModelSim simulator was used to study the complete model, including the memory

controllers, cross bar network and the PDES-A logic. Since the design admits many legal execu-

tion paths, and many components of the system introduce additional variability, we decided to

validate the model by checking a number of invariants. In particular, we verified that no causal-

ity constraints are violated in the full event execution trace of the simulation under a number of

PDES-A and application configurations.

5 PERFORMANCE EVALUATION

In this section, we evaluate the design under a number of conditions to study its performance

and scalability. In addition, we analyze the hardware complexity of the design in terms of the

percentage of the FPGA area that it consumes. Finally, we compare the performance to PDES on a

multi-core machine and use the area estimates to project the performance of the full system with

multiple PDES-A accelerators.
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Fig. 6. Effect of variation of number of cores on (a) throughput and (b) percentage of core utilization for 256

LP and 512 initial events.

Fig. 7. (a) Event processing throughput (events/cycle) and (b) ratio of number of committed events to number

of total processed events for different numbers of LPs and initial events on 64 event processors.

5.1 Performance and Scalability

In this first experiment, we scale the number of event processors from 1 to 64 while executing a

Phold model. Figure 6(a) shows the scalability of the throughput normalized with respect to the

throughput of a single event handler configuration. The scalability is almost linear up to 8 event

handlers and continues to scale with the number of processors up to 64, where it reaches above

49x. As the number of cores increases, contention for the bandwidth of the different components

in the simulation starts to increase, leading to very good but sublinear improvement in perfor-

mance. Figure 6(b) shows the event processor utilization, that is, the portion of time that the event

processor is actively processing an event and not stalling or waiting for resources. The utilization

is generally high but starts dropping as we increase the number of event processors, reflecting that

the additional contention is preventing the issuing of events to the handlers in time.

Figure 7(a) shows the throughput of the accelerator as a function of the number of LPs and the

events population in the system for 64 event processors. The throughput increases significantly

with the number of available LPs in the system. This is to be expected: as the events get distributed

across a larger number of LPs, the probability of events being at the same LP and therefore blocking

due to dependencies goes down. In our implementation, we stall all but one event when multiple

cores are processing events belonging to the same LP to protect state memory consistency. Thus,

having a higher number of LPs reduces the average number of stalled processors and increases

utilization. In contrast, the event population in the system influences throughput to a lesser de-

gree. Even though having a sufficient number of events is crucial to keeping the cores processing,

once we have a large enough number of events, increasing the event population further does not

improve throughput measurably.
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Fig. 8. Breakdown of time spent by the event processors on different tasks to process an event using

(a) 32 event processors and (b) 64 event processors with respects to different number of LPs and initial event

counts.

5.2 Rollbacks and Simulation Efficiency

The efficiency of the simulation, measured as the ratio of the number of committed events to

processed events, is an important indicator of the performance of optimistic PDES simulators. Fig-

ure 7(b) shows the efficiency of a 64-processor PDES-A as we vary the number of events and the

number of LPs. For our Phold experiment, we observed that the fraction of events that are rolled

back depends on the number of events in the system but is not strongly correlated to the number

of LPs in the presence of a sufficient number of events. With a large population of initial events,

we observe virtually no rollbacks since there are many events that are likely to be independent at

any given point in the simulation. Newly scheduled events will tend to be in the future relative to

currently existing events, reducing the potential for rollbacks. However, keeping all other param-

eters the same, reducing the number of initial events can cause simulation efficiency to drop to

around 80% (reflecting around a 20x increase in the percentage of rolled-back events). For similar

reasons, the number of rolled-back events decreases slightly with a greater number of LPs in the

simulation. Most causality concerns arise when events associated with the same LP are processed

in the wrong order. When events are more distributed, the number of LPs is higher, thus reducing

the occurrence of stalled cores. However, this effect is relatively small.

5.3 Breakdown of Event-Processing Time

Figure 8 shows how average event-processing time varies with the number of LPs and initial events

and breaks down the time taken for different tasks for systems with 32 and 64 processors. The

primary source of delay in event processing is the large memory access latency on the Convey

system. Another major delay is due to the processors stalling for potentially conflicting events.

These two primary delays in the system dominate other overheads in the event processors, such

as task-processing delays and event-history maintenance, which increase as we go from 32 to 64

cores.

The average event-processing time is highest when the number of LPs or number of initial

events is low. The average number of cycles goes down as more events are issued to the system

or the number of LPs is increased (which reduces the probability of a stall). The reason for this

behavior is apparent when we consider the breakdown of the event cycles. We note that about

the same number of cycles is consumed for memory access regardless of the configuration of the
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Fig. 9. Timeline demonstrating different states of the cores during a 5000-cycle frame of the simulation.

system because the memory bandwidth of the system is very large. However, the average stall

time for the processors is significantly higher with fewer LPs and constitutes the major portion

of the event-processing delay. For example, with 64 cores and 32 LPs, we can have no more than

32 cores active; any additional cores would hold an event for an LP that has another active event

at the moment. A system of 64 LPs has over 150 stall cycles on average stall with 64 processors.

The stall times drop substantially as we increase the number of LPs and events in the model. These

dependencies result in a high number of stall cycles to prevent conflicts in LP-specific memory and

event history. At the same time, a small number of LPs increases the chance of a causality violation.

This effect is most severe when the number of LPs is close to the number of event processors. As

the number of LPs is increased, the events are more distributed in terms of their associated LPs,

and can be safely processed in parallel. Even if stalls are less frequent, each can take a long time

to resolve.

Figure 9 helps visualize PDES-A’s operation by showing how the processors are behaving over

time for a simulation with 256 LPs and 512 events. The black marks show the cycles when the

processors are idle before receiving a new event. Each yellow streak highlights the time a processor

is stalled.

The memory access time remains mostly unaffected by the parameters in the system. The state

memory is distributed in multiple banks of RAM and accesses depend on the LPs being processed.

The appearance of different LPs in the event processor are not correlated in Phold and, therefore,

poor locality results without any special hardware support. However, having a higher number

of events may increase the probability of consecutive accesses to the same memory area and,

therefore, occasionally decrease the memory access latency, reducing the average memory access

time slightly.

We note that the actual event handler processing time is a minor component, less than 10%, of

the overall event-processing time even in the best case. This observation motivates our future work

to optimize PDES. In particular, the memory access time can be hidden behind event processing

if we allow multiple applications to be handled concurrently by each handler: when one event

accesses memory, others can continue execution. This and other optimization opportunities are a

topic of our future research.

5.4 Memory Access

Memory access latency is a dominant part of the time required to process an event. Figure 10 shows

the effect of variation of state memory access pattern on average execution time. The number of

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 2, Article 12. Publication date: April 2019.



12:16 S. Rahman et al.

Fig. 10. Effect of number/size of state memory access on event-processing time.

Fig. 11. Effect of variation of processing delays (in cycles) on (a) throughput and (b) ratio of core utilization

for 64 event processors with 256 LP and 512 initial events.

memory accesses can also be thought of as the size of state memory read and updated during

each event processing. The leftmost column in the plot shows the execution time without any

memory access, which is small compared to the execution time with memory accesses. About

300 cycles are added for the first memory access. Each additional memory access adds about 50

cycles to the execution time. The changes in the average execution time are almost completely the

result of the changes in memory access latency. It is apparent that the memory access latency does

not scale linearly with the number or size of memory requested. Even if stalls are less frequent,

each can take a long time to resolve. Thus, we believe that the memory system can issue multiple

independent memory operations concurrently, leading to overlap in their access time. We have

made the memory accessed by any event a contiguous region in the memory address space, which

may also lead to DRAM side row-buffer hits and/or request coalescing at the memory controller. In

an optimized event-processing logic, the processor may continue operation with partially available

state memory to overlap computation and communication time.

5.5 Effect of Event-Processing Time

Figure 11 shows the effect of event-processing time on system performance. Since a computation

can be synthesized differently in hardware (single-cycle combinational vs. multi-cycle sequential)

with different resource usage footprints, a different processing time may be achieved for the same

model. We use this experiment to analyze how different processing time affects performance to

serve as a guideline for RTL design of the model. Since memory access latency is a major source that
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is currently not being hidden (and, therefore, adds a constant time to event processing), we config-

ure a model that does not access memory in this experiment. We also allow the event-processing

time to be artificially adjusted. The results of this study are shown in Figure 11(a). A higher pro-

cessing time represents computations for models that have computationally intensive event pro-

cessing. When the processing time is low, changes in the processing time do not reflect much in the

system throughput since the system overheads lead to low utilization of the event-handling cores

causing throttled speed. When processing time is higher, the utilization rises (Figure 11(b)), and

increasing the event-processing time starts to lower the throughput. Thus, reducing processing

time can improve performance, but up to a certain degree. Throughput gain becomes negligible

for reduction of processing time beyond 150 cycles.

6 DATAPATH OPTIMIZATION VIA STRUCTURAL PARTITIONING

From the performance analysis of the baseline PDES-A simulation engine presented in the previous

section, we observed that a key source of inefficiency is the overhead that results from multiple

event processors contending for access to one of the shared processor components, such as the

event list. This contention both hurts the performance of the system and presents a major barrier

to future optimizations. In particular, Figure 13(a) shows that the contention at the interfaces of

the processed events list, state memory, and event queue grows quickly as the number of event

processors increases. With 64 event processors, through 30% of the total execution time, at least

one processor is waiting for the processed events list to become available. The same happens for

the event queue through 15% of total simulation time. We discover that going to a larger scale

does not result in additional performance as expected since the shared structures are not able to

meet the demands of the event processors. Additional problems can be observed in Figure 11(a),

where we see that the throughput of the system remains flat at 0.25 events per cycle even when

the event processing time is made very small. This indicates that these shared structures form a

significant bottleneck at this scale, and memory optimizations (the other major bottleneck) will

not be rewarded by a proportional improvement in performance due to contention.

Reducing wait times due to contention can result in substantial improvement in performance

because contention delay creates an implicit positive feedback loop that can amplify the effect:

waiting for resources increases event-processing time, which, in turn, causes longer stall for other

conflicting events if present. Moreover, delay in processing events increases the probability that

the resulting event will be a straggler event, which consequently creates more rollbacks, anti-

messages, and more entries in processed event history, again increasing contention.

One approach for alleviating this problem is to increase the number of ports available for each

resource. However, handling simultaneous requests requires an arbitration mechanism (e.g., cross-

point switches) to allow event processors to access any of the available resources; such structures

introduce significant hardware complexity. Moreover, while this approach is conceptually sim-

ple, implementation becomes difficult because of the increased complexity of synchronization in

the presence of multiple communication paths. In contrast, the baseline design needs only simple

synchronization since critical events were already being serialized as exchanges happen at one in-

terface at a time. This serialization did not obstruct parallelization when the number of processors

was smaller and concurrent accesses to any particular resource were rare. However, as the number

of event processors increases, we observe sublinear throughput scaling as contention grows.

Instead of increasing the number of ports, we elected to re-architect the communication scheme

in a way that simplifies the synchronization requirements, making the synchronization less tightly

coupled. Our future vision for the framework also motivated this change: we plan to integrate mul-

tiple PDES-A engines on the same FPGA or even across multiple FPGAs to increase the throughput

of the system. In such a setting, the system must be able to manage a high volume of remote events.
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A centralized synchronization scheme would result in very high contention at event queues, mak-

ing fast event exchange nearly impossible.

As discussed in Section 3.3, it is possible to drain events from the event queue without maintain-

ing strict order because the chance of violating causality constraints is small among events near

the top of the heap. When causality is violated, we have the rollback mechanism to fall back on

and recover. Therefore, we built the event queue out of multiple smaller queues and created an

interface for each of them to be accessed independently. From our simulations, we have observed

that violating the order between events associated to the same LP causes rollbacks that keep cas-

cading in the absence of order. Therefore, we map events for each LP to one queue to make sure

that they remain ordered with respect to each other. We do not maintain order between different

queues, and an event for LP A may be processed ahead of another at LP B even if it has a later

timestamp when the LPs are mapped to different event queues.

We have added a replace capability to the queues (described in Section 3.3) so that insert and

delete operations become independent of each other. All event processors were given the ability

to push events to any of the queue interfaces based on the target LP using a crossbar. The task of

governing event issue was separated into a controller that translates an event request from avail-

able event handlers to event issue instructions for the cores. This controller can, based on status

of the event queues, optimize the event issue task to achieve minimum rollback and maximum

utilization. The events issued from the queues are delivered to the recipient event handler using a

broadcast network. A broadcast network is simpler than a more precise event delivery mechanism

since the number of cores can be large, which complicates routing if a different network structure

is used. The broadcast mechanism can be hierarchical and easily alterable to fit any system config-

uration efficiently. Thus, decoupling the task of insertion and removal of events makes it possible

to separate the control and dataflow paths for the queues and reduces interdependence between

the two tasks.

To adapt the state memory and processed events history for servicing multiple requests while

maintaining memory consistency semantics, we partitioned the state space and events history with

respect to LPs in a fashion similar to the event queue. This design ensures consistency without

special mechanisms when considering the fact that the design guarantees that no read will be

performed to data associated with an LP while another event processor is in the process of updating

it. Similar to the event queue, requests are sent through a crossbar network and responses are

broadcast to the core.

Essentially, this design creates different partitions for each LP while preserving their ability

to share event processors. It also spreads contention to two stages: the crossbar followed by the

partitioned queues, resulting in a higher throughput multi-stage network. As a result, the effective

bandwidth of each of the shared structures is multiplied by the number of partitions since each of

them can operate on an event independently. This relaxation in synchronization comes at the price

of relaxing strict (sequential) event processing across partitions, which can result in additional

rollbacks. However, in practice, since the design keeps the LPs within similar simulation time of

each other, this effect is minimal.

6.1 Decoupled Event-Processing Flow

Figure 12 shows the event-processing flow in the optimized design. An event goes through three

different phases throughout its life cycle.

Issue Phase: At any given moment, a list of idle event processors is available to the issue con-

troller. Whenever any processor is idle, the issue control logic requests events from the event

queue on behalf of the idle event processors in step 1. In step 2, the event at the head of the queue
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Fig. 12. Overview of an event-processing cycle.

is broadcast to a bus connected to all processors. The targeted event processor picks up the event

from the broadcast bus. An execution controller always monitors the event broadcast activity and

keeps a record of the LP-processor association. The controller checks whether it is safe to process

the event and signals the event processor in step 3 to start execution when it is not going to create

any conflicts with other event processors.

Compute Phase: The event processor, upon receiving this signal, fetches state memory and

the processed events list in step 4. The event history is checked in the preprocessing step (step 5)

to determine whether any rollback or cancellation is necessary. At the same time, the processor

cleans up the stale history entries from the event history list. The event data, state memory, and

event types are then delivered to the model-specific event-handling logic provided by the user.

Depending on the event type, in steps 6 and 7, the event handler performs rollback computation if

necessary, computes new states based on the model, and creates the next set of events along with

any anti-messages generated due to rollback.

Apply Phase: When the event-handling logic returns, the event processor does the necessary

clean up by pushing the new event to the appropriate queues in step 8. At the same time, the

updates to state memory and the processed events list are written to the memory in step 9. At

this point, event processing is complete and the event processor notifies the execution controller

and issue controller in step 10 so that their internal records can be updated. Then, the processor

prepares to receive a new event.

6.2 Operational Characteristics

Figure 13 shows different performance measures of the optimized design along with the baseline

design at different point of scaling. We see in Figure 13(a) that contention at the interfaces was

almost completely eliminated. The effect of this is apparent in the plot of cycles required on average

for event processing shown in Figure 13(b). The average event-processing time decreases to the

same level as it was for 16 event processors in parallel. The time spent stalling to avoid conflicts

also reduces as a result of faster event-processing time. Consequently, the system achieves better

utilization ratio, as can be seen in Figure 13(c), which shows improvement in the fraction of time

that a processor remains active. Finally, all of these effects combine into significant improvement

in throughput.

This organization is highly throughput oriented and almost completely removes interdepen-

dence among the dataflow paths. The only remaining source of divergence is straggler events.
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Fig. 13. Effects of optimized dataflow and concurrent resource access on accelerator performance compared

with the baseline engine with different numbers of event handlers.

This organization restores the throughput to almost linear scaling. With 64 cores, this organiza-

tion achieves approximately 62 times the throughput of a single core (Figure 13(d)), where the

baseline design shows throughput dwindling to only 49x. We expect the design to be scalable to a

higher number of event processors given the reduction in contention.

7 COMPARISON WITH ROSS

To provide an idea of the performance of PDES-A relative to a CPU-based PDES simulator, we

compared the performance of PDES-A with MPI-based PDES simulator ROSS [6].

We urge the readers to note that a simple comparison between a software framework and hard-

ware cannot be taken as a serious benchmark. In a realistic application, major performance gain

for the hardware accelerator will come from the superiority of hardware primitives. For example,

many mathematical and scientific libraries require floating point numbers and vector computa-

tions, long iterative operations, and traverse many conditional branches. A programmer can re-

duce these expensive tasks to only a few cycles with hardware support. This will contribute to

massive throughput gain in hardware compared with a conventional CPU.

The purpose of our comparison with ROSS is to establish that the base framework has compara-

ble performance with software. It also helps us estimate the relative complexity of the models from

their software evaluation and use that knowledge in hardware analysis. For this reason, Phold is

a good choice of benchmark because it models the underlying operations without being burdened

by application-specific logic.
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Table 1. Summary of Configuration Used for Performance

Comparison of ROSS and PDES-A Using Phold

Parameters ROSS PDES-A

System

Device Intel Xeon E5-1650 Xilinx Virtex-7

12MB L2 XC7V2000T

Frequency 3.50GHz 150MHz

Memory 32GB 32GB

Simulation

PE 72 (12 cores× 6 KP) 64

LP 252 256

Event Density 504 512

Remote Events 5% 100%

Table 2. Comparative Analysis of PDES Simulation Performance

of Phold and Airport Models on ROSS and PDES-A

Performance Phold Airport

ROSS Basic PDES-A Opt. PDES-A ROSS Opt. PDES-A

Events/second 9.2 mil 23.85 mil 29.98 mil 5.7 mil 8.7 mil

Commit Efficiency 80% ∼100% ∼100% 83% 100%

Power Estimate 130 Watt ∼17.8 Watt ∼18.5 Watt 130 Watt ∼18.5 Watt

Although the modeling flow for the two environments is quite different, we configured ROSS

to run the Phold model with similar parameters to the PDES-A model. We changed the Phold

model in ROSS to resemble our system by replacing the exponential timestamp distribution with

a uniform distribution. We set the number of processing elements, LPs, and number of events to

match our system closely. One particular difference is in the way that remote events are generated

and handled in ROSS. In our system, all cores are connected to a shared set of LPs; thus, there is no

difference between local and remote events. In ROSS, remote events have to suffer the extra over-

head of message passing in MPI, although MPI uses shared memory on a single machine. We set

the remote event threshold in ROSS to only 5% to allow marginal communication between cores.

Table 1 shows the parameters for both systems used in comparison. Their performance reported

in Table 2 includes the numbers for both the baseline and optimized architecture. At this configu-

ration, baseline PDES-A can process events 2.5x faster than a 12-core CPU version of ROSS; after

optimization, the advantage grows to 3.2x. When the remote event percentage in ROSS is higher,

ROSS performance suffers and the PDES-A advantage increases, gaining up to 15x for 100% remote

messages. We believe that as we continue to optimize PDES-A, this advantage will be even larger.

We also run the Airport model in the partitioned version of the accelerator to compare perfor-

mance in the presence of multiple types of events. We achieve about 1.5x performance gain over

ROSS. The gain drops compared with the Phold model. LPs in this model send two-thirds of the

events to self. Therefore, the processors are often processing the same LPs and have to stall more

to avoid conflicts. This result highlights the need to implement new strategies to reduce stalls, such

as interrupt-based preemption and workload reassignment. We are exploring these optimizations

for the next iteration of our design.
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Table 3. FPGA Resource Utilization for Optimized Datapath PDES-A

Component LUT (1221600) FF (2443200) BRAM (1203)

Used % Util. Used % Util. Used % Util.

Simulator 74670 6.11% 56115 2.30% 8 0.67%

Event Processor (each) 367 0.03% 211 0.01% 0 0%

Controller 3610 0.30% 5557 0.23% 0 0%

Event Queue (each) 4488 0.37% 1402 0.06% 0 0%

Memory Interface 116799 9.56% 4748 0.19% 222 18.45%

Crossbar Network 15757 1.29% 28192 1.15% 32 2.66%

Overall 300695 24.61% 320728 13.13% 271 22.53%

8 RESOURCE UTILIZATION ANALYSIS AND SCALING ESTIMATES

In this section, we first present an analysis of the area/utilization requirements of PDES-A. The

FPGA resources utilization by the cores is presented in Table 3. The overall system takes over

about 25% of the available LUTs in the FPGA. The larger portion of this is consumed by the mem-

ory interface and other static coprocessor circuitry that will remain constant when the simulator

size scales. The core simulator logic uses 6.11% of the device logics. Each individual Phold event

processor contributes to less than 0.03% resource usage. Register usage is less than 3% in the simu-

lator. We can reasonably expect to replicate the simulation cluster more than 10 times in an FPGA,

even when a more complex PDES model is considered and networking overheads are taken into

account. This would put 640 cores in the coprocessor. The simulator offers good raw computing

potential if it can be scaled up to this extent.

Finally, an inherent advantage of FPGAs is their low power usage. The estimated power of

PDES-A was less than 18 Watts in contrast to the rated 130 Watts TDP of the Intel Xeon CPU. We

believe that this result shows that PDES-A holds promise to uncover a significant boost in PDES

simulation performance.

FPGA designs are limited by a lot of engineering constraints. Even when scaling shows a promis-

ing trend of performance increase, sometimes it is undesirable to simply increase the design size:

since the design has to be physically synthesized using limited resources of the chosen FPGA,

routing complexity puts a limit on how large a tightly coupled module can be.

In our design, we observe that without sufficient event saturation and higher number of LPs, the

amount of time spent in stall and the possibility of causality violation becomes prohibitively large,

reducing commit efficiency, and can slow the system down (Figure 7(a)). Increasing the number

of events is relatively simple. Either the queue sizes need to be increased to accommodate more

events or queues should be spilled into the main memory in case of overflow. The first approach

requires a linear increase in on-chip memory usage; the second chokes the system if it occurs

repeatedly. Increasing the number of LPs also requires proportional increase in memory for states

and processed event history. The on-chip memory is a limited resource that is scattered throughout

the chip. One cannot simply use as many of them as needed in a compact design because the routing

complexity will prevent synthesis at optimum frequency.

However, the routing complexity becomes most prominent when scaling the number of event

processors because they need to be connected to the same interfaces and synchronization mech-

anisms. The custom logic has to be physically synthesized alongside the common logic. However,

the design is then highly likely to fail timing constraints. A good engineer with enough persever-

ance can probably make any configuration work by using hierarchies and buffers, but this contra-

dicts our design objective of making a portable framework with minimal user input. Proper parti-

tioning of the design is crucial in ensuring that the design should work after customizations [36].

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 2, Article 12. Publication date: April 2019.



PDES-A: Accelerators for Parallel Discrete Event Simulation Implemented on FPGAs 12:23

We found that the optimal size for a PDES-A engine is 64 event processors. At this scale, the en-

gine remains tightly coupled with sufficient parallelism while remaining capable of synthesizing

any model-specific logic. It should be noted that this observation is purely empirical in nature and

the number should increase for different generations of more powerful FPGAs. Each PDES-A en-

gine would be equivalent to a design partition interconnected in a larger simulation environment.

Designers may also choose to develop an Application-Specific IC (ASIC) version of their model

using PDES-A as base, in which case we expect PDES-A to continue to scale to reach either the

limit on parallelism within the model or the memory bandwidth of the chip.

9 CONCLUDING REMARKS

In this article, we presented and analyzed the design of a PDES accelerator on an FPGA. PDES-A is

designed to allow supporting arbitrary PDES models, although we studied our initial design only

with Phold. The design shows excellent scalability up to 64 concurrent event handlers, outper-

forming a 12-core CPU PDES simulator by 3.2x for this model. We identified major opportunities

to further improve the performance of PDES-A targeted around hiding the very high memory

latency on the system. We also analyzed the resource utilization of PDES-A: we believe that we

can fit more than 10 PDES-A processors with 64 event-processing cores on the same FPGA chip,

further improving performance at a fraction of the power consumed by CPUs.

Our future work spans at least three different directions. First, we will continue to optimize

PDES-A to reduce the impact of memory access time and resource contention. Next our goal is

to study a full chip (or even multi-chip) design consisting of multiple PDES-A accelerators work-

ing on larger models. Finally, we hope to provide programming environments that allow rapid

prototyping of PDES-A cores specialized to different simulation models.
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