
PDES-A: a Parallel Discrete Event Simulation Accelerator
for FPGAs

Shafiur Rahman
University of California

Riverside
mrahm008@ucr.edu

Nael Abu-Ghazaleh
University of California

Riverside
nael@cs.ucr.edu

Walid Najjar
University of California

Riverside
najjar@cs.ucr.edu

ABSTRACT
In this paper, we present initial experiences implementing
a general Parallel Discrete Event Simulation (PDES) accel-
erator on a Field Programmable Gate Array (FPGA). The
accelerator can be specialized to any particular simulation
model by defining the object states and the event handling
logic, which are then synthesized into a custom accelerator
for the given model. The accelerator consists of several event
processors that can process events in parallel while maintain-
ing the dependencies between them. Events are automati-
cally sorted by a self-sorting event queue. The accelera-
tor supports optimistic simulation by automatically keeping
track of event history and supporting rollbacks. The archi-
tecture is limited in scalability locally by the communication
and port bandwidth of the different structures. However, it
is designed to allow multiple accelerators to be connected
together to scale up the simulation. We evaluate the design
and explore several design tradeoffs and optimizations. We
show the accelerator can scale to 64 concurrent event proces-
sors relative to the performance of a single event processor.

Keywords
PDES, FPGA, accelerator, coprocessor, parallel simulation

1. INTRODUCTION
Discrete event simulation (DES) is an important applica-

tion used in the design and evaluation of systems and phe-
nomena where the change of state is discrete. It is heav-
ily used in a number of scientific, engineering, medical and
industrial applications. Parallel Discrete Event Simulation
(PDES) leverages parallel processing to increase the per-
formance and capacity of DES, enabling the simulation of
larger, more detailed models, for more scenarios and in a
shorter period of time. PDES is a fine-grained application
with irregular communication patterns and frequent syn-
chronization making it challenging to parallelize.

In this paper, we present an initial exploration of a general
Parallel Discrete Event Simulation (PDES) accelerator im-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’17, May 24–26, 2017, Singapore.
c© 2017 ACM. ISBN 978-1-4503-4489-0/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3064911.3064930

plemented on an FPGA. In recent years, many researchers
have developed and analyzed PDES simulators for a variety
of parallel and distributed hardware platforms as these plat-
forms have continued to evolve. The widespread use of both
shared and distributed memory cluster environments has
motivated development of PDES kernels optimized for these
environments such as GTW [7], ROSS [3] and WarpIV [29].
The recent emergence of multi-core and many-core proces-
sors has attracted considerable interest among the high-
performance computing communities to explore PDES in
these emerging platforms. Typically, these simulators [32,
10, 26] use multi-threading and develop synchronization frie-
ndly data structures to take advantage of the low commu-
nication latency and tight memory integration among cores
on same chip. Using similar insights, PDES has been shown
to scale well on many-core architectures such as the Tilera
Tile64, the Intel Xeon Phi (also known as Many Integrated
Cores or MIC) as well as GPGPUs. Several researchers have
explored the use of GPGPUs to accelerated PDES [19, 31,
20]. Similarly, Jagtap et al. explored the performance of
PDES on the Tilera Tile64 [15], while Chen et al. studied
its performance on the Intel Xeon Phi coprocessor [4, 34].

In contrast to these effort, relatively fewer works have con-
sidered acceleration of PDES using non-conventional archi-
tectures such as FPGAs, motivating our study. In partic-
ular, our interest in FPGAs stems from the fact that they
do not limit the datapath organization of the accelerator,
allowing us to experiment with how the computation should
ideally be supported. In addition, the end of Dennard scal-
ing and the expected arrival of dark silicon makes the use of
custom accelerators for important applications one promis-
ing area of future progress. Many types of accelerators have
already been proposed for a large number of important appli-
cations such as deep learning [28] and graph processing [35].
Thus, the exploration of accelerator organization for PDES
informs possible design of custom accelerators for important
simulation applications.

An FPGA implementation of PDES offers several possible
advantages.

• Fast and high-bandwidth, on-chip communication: An
FPGA can support fast and high bandwidth on-chip
communication, substantially alleviating the commu-
nication bottleneck that often limits the performance
of PDES [33]. On the other hand, often the memory
latency experienced by FPGAs is high (but the avail-
able bandwidth is also high), necessitating approaches
to hide the memory access latency.

• Specialized, high-bandwidth datapaths: General pur-

133

pose processing provides high flexibility but at the
price of high overhead and a fixed datapath. A special-
ized accelerator in contrast, can more efficiently imple-
ment a required task without unnecessary overheads of
fetching instructions and moving data around a general
datapath. These advantages have been estimated to
yield over 500x improvement in performance for video
encoding, with 90% reduction in energy [11]. More-
over, an FPGA can allow high parallelism limited only
by the number of processing units and the communi-
cation bandwidth available between them, as well as
the memory bandwidth available to the FPGA chip.

We believe that PDES is potentially an excellent fit for these
strengths of FPGAs. PDES exhibits ordered irregular par-
allelism (OIP) with the following three characteristics: (1)
total or partial order between tasks; (2) dynamic and un-
predictable data dependencies; and (3) dynamic generation
of tasks that are not known beforehand [21]. OIP applica-
tions have inherent parallelism that is difficult to exploit in
a traditional multiprocessor architecture without careful im-
plementation. To preserve order among the tasks and main-
tain causality, hardware based speculative implementations
such as thread-level speculation (TLS) often introduce false
data dependencies, for example, in the form of a priority
queue [17]. Run-time overheads such as those of communica-
tion limit the scalability of PDES [12]; these overheads may
be both lower and more easily maskable in the context of an
FPGA[33]. For models where event process is computation-
ally expensive, FPGA implementations are likely to yield
to more streamlined customized processors. On the other
hand, if the event processing is simple, FPGAs can accom-
modate a larger number of event processors, increasing the
raw available hardware parallelism. Finally, for many rea-
sons, FPGAs have exceptional energy properties compared
to GPGPUs and many-cores.

We present our initial design of a PDES accelerator (PDES-
A). We show that PDES-A can provide excellent scalability
for Phold up to 64 concurrent event processors. Our ini-
tial prototype outperforms a similar simulation on a 12-core
3.5GHz Intel Core i7 CPU by 2.5x. We show that there re-
mains several opportunities to optimize our design further.
Moreover, we show that multiple PDES-A accelerators can
fit within the same FPGA chip, allowing us to further scale
the performance.

FPGA based accelerator development platforms have re-
cently progressed rapidly to make FPGA based accelerators
available to all programmers. Microsoft’s Catapult [22] and
the Convey Wolverine [5] are examples of recent systems
that offer integrated FPGAs with programmability, tight
integration, advanced communication and memory sharing
with CPU in industry standard HPC clusters. After the ac-
quisition of Altera last year, Intel has already started ship-
ping versions of its Xeon processors with integrated FPGA
support [2]. Modern memory technologies such as Micron’s
Hybrid Memory Cube [14] can offer up to 320GB/s effective
bandwidth providing excellent bandwidth to applications re-
quiring high memory demand such as PDES. However, spe-
cialized hardware support is required to take advantage of
this bandwidth. The recent take over of Convey Comput-
ing by Micron paved the way to have Hybrid Memory Cube
in FPGA based coprocessors. Potentially, an FPGA imple-
mentation can yield high performance and low-power PDES

accelerators as well as inform the design of custom acceler-
ators for PDES.

Our work is in the vein of prior studies that explored cus-
tomized or programmable hardware support for PDES. Fu-
jimoto et al. propose the Rollback chip, a special purpose
processor to accelerate state saving and rollbacks in Time
Warp[9]. In the area of logic simulation and computer simu-
lation, the use of FPGA offers opportunities for performance
since the design being simulated can simply be emulated on
the FPGA [30]. Noronha and Abu-Ghazaleh explore the
use of a programmable network interface card to acceler-
ate GVT computation and direct message cancellation [18].
Similarly, Santoro and Quaglia use a programmable network
interface card to accelerate checkpointing for optimistic sim-
ulation [27]. Our work differs in the emphasis on support
of complete general optimistic PDES. Most similar to our
work, Herbrodt et al. [13] explore FPGA implementation
of a specific PDES model for molecular dynamics, but the
design is specialized to this one application rather than sup-
porting general simulation.

The remainder of this paper is organized as follows. We
use section 2 to present some background information re-
lated to PDES and introduce the Convey Wolverine FPGA
system we use in our experiments. Section 3 introduces the
design of our PDES-A accelerator and its various compo-
nents. Section 4 overviews some implementation details and
the verification of PDES-A. Section 5 presents a detailed
performance evaluation of the design. In section 6 we ex-
plore the overhead of PDES-A and project the potential
performance if we integrate multiple PDES-A accelerators
on the same FPGA chip. Finally, Section 7 presents some
concluding remarks.

2. BACKGROUND
In this section, we provide some background information

necessary for understanding our proposed design. First,
we discuss PDES and then present the Convey Wolverine
FPGA application accelerator we use in our experiments.

2.1 Parallel Discrete Event Simulation
A discrete event simulation (DES) models the behavior of

a system that has discrete changes in state. This is in con-
trast to the more typical time-stepped simulations where the
complete state of the system is computed at regular inter-
vals in time. DES has applications in many domains such
as computer and telecommunication simulations, war gam-
ing/military simulations, operations research, epidemic sim-
ulations, and many more. PDES leverages the additional
computational power and memory capacity of multiple pro-
cessors to increase the performance and capacity of PDES,
allowing the simulation of larger, more detailed models, and
the consideration of more scenarios, in a shorter amount of
time [8].

In a PDES simulation, the simulation objects are parti-
tioned across a number of logical processes (LPs) that are
distributed to different Processing Elements (PEs). Each PE
executes its events in simulation time order (similar to DES).
Each processed event can update the state of its object, and
possibly generate future events. Maintaining correct execu-
tion requires preserving time stamp order among dependent
events on different LPs. If a PE receives an event from
another PE, this event must be processed in time-stamped
order for correct simulation.

134

Figure 1: Overview of the Convey Hybrid-Core architecture

To ensure correct simulation, two synchronization algo-
rithms are commonly used: conservative and optimistic syn-
chronization. In conservative simulation, PEs coordinate
with each other to agree on a lookahead window in time
where events can be safely executed without compromising
causality; in other words, the model property determines a
time window in which events cannot be generated due to the
simulation time delay between processing an event and any
future events it schedules. This synchronization imposes a
overhead on the PEs to continue to advance. In contrast, op-
timistic simulation algorithms such as Time Warp [16] allow
PEs to process events without synchronization. As a result,
it is possible for an LP to receive a straggler event with a time
stamp earlier than their current simulation time. To pre-
serve causality, optimistic simulators maintain checkpoints
of the simulation, and rollback to a state in the past earlier
than the time of the straggler event. The rollback may re-
quire the LP to cancel out any event messages it generated
erroneously using anti-messages. This approach uses more
memory for keeping checkpoint information, which need to
be garbage collected when they are no longer needed to
bound the dynamic memory size. A Global Virtual Time
(GVT) algorithm is used to identify the minimum simula-
tion time that all LPs have reached: checkpoints with a time
lower than GVT can be garbage collected, and events earlier
than GVT may be safely committed.

2.2 Convey Wolverine FPGA Accelerator
The Convey Wolverine FPGA Accelerator is an FPGA

based coprocessor that augments a commodity processor
with processing elements optimized for key algorithms that
are inefficient to run in a conventional processors. The co-
processor contains standard FPGAs coupled with a standard
x86 host interface to communicate with the host processor.
The system also includes a standard Xeon based CPU inte-
grated with the Convey Wolverine WX2000 coprocessor.

The Wolverine WX2000 integrates three major subsys-
tems: Application Engine Hub (AEH), Application Engines
(AEs), and the Memory Subsystem (MCs) [5]. Figure 1
shows an abstracted view of the system architecture. AEs
are the core of the system and implement the specialized
functionality of the coprocessor. There are four AEs in the
system implemented inside a Xilinx Virtex-7 XC7V2000T
FPGAs. The AEs are connected to memory controllers via
10GB/s point-to-point network links. In an optimized im-
plementation, up to 40GB/s of bandwidth is available to
the system. The clock rate of the FPGAs is much lower

than that of the CPU (150MHz), but they can implement
many specialized functional units in parallel. When utiliz-
ing the memory bandwidth properly, the throughput can
be many times that of a single processor. This is why the
system is ideal for applications benefiting from high compu-
tation capability and large high-bandwidth memory. Each
of the Application Engines are dedicated FPGAs that can
be programmed with same or different application. Number
of processing elements in an AE is limited by the resources
available in the FPGA chip used. The processing elements
can connect to the memory subsystem through a crossbar
network which allows any processing element to access any
of the physical memory.

The AEH acts as the control and management interface
to the coprocessor. The Hybrid Core Memory Interconnect
(HCMI), implemented in the AEH, connects the coproces-
sor to the processor to fetch instructions and to process and
route memory requests to the MCs. It also initializes the
AEs, programs them, and conveys execution instructions
from the processor. The memory subsystem includes 4 mem-
ory controllers supporting 8 DDR2 memory channels pro-
viding a high bandwidth, but also high-latency, connection
between memory and application engines [6]. The memory
subsystem provides simplified logical memory interface ports
that connects to a crossbar network which in turn connects
to the physical memory controller. Programmers can use
the memory interface ports in any implementation.

Another important part of the memory system is the Hy-
brid Core Globally Shared Memory architecture. It creates
a unified memory address space where all physical memory
is addressable by both the processor and the coprocessor
using virtual address. The memory subsystem implements
the address translation, crossbar routing, and configuration
circuits. Both the memory subsystem and the application
engines hub are provided by the vendor and their implemen-
tation remains the same in all designs. Note that there is a
substantial difference in the latency and bandwidth between
accesses to local memory and accesses to remote (CPU)
memory.

The architecture of the Convey system can present some
advantages in the design of a PDES system. The event pro-
cessing logic in PDES are simple for many models. Mem-
ory access latency and communication overhead usually pre-
vent the system from achieving high throughput. The high
bandwidth parallel data access capability in the Convey sys-
tem can be exploited to bypass the bottleneck by employ-
ing a large number of event processors. In this way, while

135

one event processor waits for memory, others can be ac-
tive, enabling the system to effectively use the high mem-
ory bandwidth. Also, the reconfigurable fabric allows us
to implement optimized datapaths, including the commu-
nication network among event processors to reduce com-
munication and synchronization overheads. Leveraging the
standard x86 interface, multiple Convey servers can be in-
terconnected, which opens up the possibilities to scale up
the PDES system to a large cluster based implementation.
And finally, the global shared memory architecture allows
the host processor to easily initialize and observe the simu-
lator.

3. PDES-A DESIGN OVERVIEW
In this section, we present an overview of the unit PDES

accelerator (PDES-A). Each PDES-A accelerator is a tightly
coupled high-performance PDES simulator in its own right.
However, hardware limitations such as contention for shared
event and state queue ports, local interconnection network
complexity, and bandwidth limit restrict the scalability of
this tightly coupled design approach. These scalability con-
straints invite a design where multiple interconnected PDES-
A accelerators together work on a large simulation model,
and exploiting the full available FPGA resources. In this
paper, we explore and analyze only PDES-A, and not the
full architecture consisting of many PDES-A accelerators.
In the design of PDES-A, we are careful to modularize it to
facilitate integration with other PDES-A accelerators or any
PDES execution engines that are compatible with its event
API.

In an FPGA implementation, event processing, communi-
cation, synchronization, and memory access operations oc-
cur in a way different from how these operations occur on
general purpose processors. Therefore, both performance
bottlenecks and optimization opportunities differ from those
in conventional software implementations of PDES. We de-
veloped a baseline implementation of PDES-A and used it
to identify performance bottlenecks. We then used these in-
sights to develop improved versions of the accelerator. We
describe our design and optimizations in this section.

3.1 Design Goals
The goal of the design is to provide a general PDES ac-

celerator, rather than an accelerator for a specific model or
class of models. We expect that knowledge of the model can
be exploited to fine tune the performance of PDES-A, but
we did not pursue such opportunities. To support this gen-
erality, PDES-A provides a modular framework where vari-
ous components can be adjusted independently to attain the
most effective data path flow control across different PDES
models. Since the time to process events in different models
will vary, we designed an event-driven execution model that
does not make assumption about event execution time. We
decided to implement an optimistically synchronized simula-
tor to allow the system to operate around the large memory
access latencies. However, the tight coupling within the sys-
tem should allow us to control the progress of the simulation
and naturally bound optimism.

3.2 General Overview
The overall design of PDES-A is shown in Figure 2. The

simulator is organized into four major components: (1) Event
Queue, which stores the pending events; (2) Event Proces-

Figure 2: PDES-A overall system organization

sors: custom datapaths for processing the event types in
the model; (3) System State Memory: holds relevant sys-
tem state, including checkpointing information; (4) and the
Controller: which coordinates all aspects of operation. The
first three components correspond to the same functionality
in traditional PDES engines in any discrete event simula-
tor, and the last one oversees the event processors to ensure
correct parallel operation and communication. We will look
into how these components fit together in a PDES system
first, and then into their implementation.

Communication between different components uses mes-
sage passing. We currently support three message types:
Event messages, anti-messages, and GVT messages. These
three message types are the minimum required for an op-
timistic simulator to operate, but additional message types
could be supported in the future to implement optimization,
or to coordinate between multiple PDES-A units. Please
note that the architecture can be modified to support con-
servative simulation while preserving most of its structure
because of the decision to support general message passing.
A conservative version of PDES-A requires changes to mes-
sage types and the controller (different dispatch logic, and
replacing GVT with synchronization), while eliminating the
checkpointing information; we did not build a conservative
version of PDES-A.

Figure 2 shows the major components of PDES-A and
their interactions. The event queue contains a sorted list of
all the unprocessed events. Event processors receive event
messages from the queue. After processing events, addi-
tional events that may be generated are sent and inserted
into the event queue for scheduling. The system needs to
keep track of all the processed events and the changes made
by them until it is guaranteed that the events will not be
rolled back. When an event is received for processing, the
event processor checks for any conflicting events from the
event history. Anti-messages are generated when the event
processor discovers that erroneous events have been gener-
ated by an event processed earlier. Since the state memory
is shared, a controller unit is necessary to monitor the event
processors for possible resource conflict and manage their
correct operation. Another integral function of the control
unit is the generation of GVT which is used to identify the
events and state changes that can be safely committed. The

136

Figure 3: The P-heap data structure[23]

control unit computes GVT continuously and forwards up-
dated estimates to the commit logic. These messages should
have low latency to limit the occurrence of rollbacks and to
control the size of the event and message history. In the re-
mainder of this section, we describe the primary components
in more detail.

3.3 Event Queue
The event queue maintains a time-ordered list of events

to be processed by the event processors. It needs to support
two basic operations - insert and dequeue. An invalidate op-
eration can be included to make early cancellation possible
for straggler events that have not been processed yet and
still reside in the queue.

The event queue structure and its impact on PDES per-
formance has been studied in the context of software imple-
mentations [25]; however, it’s important to understand suit-
able queue organizations implemented in hardware. Prior
work has studied hardware queue structures supporting dif-
ferent features. Priority queues offer attractive properties
for PDES such as constant time operation, scalability, low
area overhead, and simple hardware routing structures. Sim-
ple binary heap based priority queues are commonly used
in hardware based implementations, but requires O(log(n))
time for enqueue and dequeue operations. Other options
have other drawbacks; for example, Calendar Queues [1]
support O(1) access time but are difficult and expensive
to scale in a hardware implementation. QuickQ [24] uses
multiple dual-ported RAM in a pipelined structure which
provides easy scalability and to support constant time ac-
cess. However, the access time is proportional to the size
of each stage of RAM. Configuring these stages to achieve
a small access time necessitates a large number of stages,
which leads to high hardware complexity. For these reasons,
we selected a pipelined heap (P-heap in short) structure as
the basic organization in our implementation [23], except for
a few modifications which we describe later. P-heap uses a
pipelined binary heap to provide two cycles constant access
time (to initiate an enqueue or dequeue operation), while
having a hardware complexity similar to binary heaps.

The P-heap structure uses a conventional binary heap
with each node storing a few additional bits to represent
the number of vacancies in the sub-tree rooted at the node
(Figure 3). The capacity values are used by insert opera-
tions to find the path in the heap that it should percolate

Comparator

Randomizer

Network

New

Events

Dequeued

Events

Dequeue

Signal

Figure 4: Multiple event issue priority queue

through. P-heap also keeps a token variable for each stage
which contains the current operation, target node identifier
and value that is percolating down to that stage. During
an insertion operation, the value in token variable is com-
pared with the target node: the smaller value replaces the
target node value and the larger value passes down to the to-
ken variable of the following stage. The id value of the next
stage is determined by checking the capacity associated with
the nodes.

For the dequeue operation, the value of the root node
is dequeued and replaced by the smaller of its child nodes.
The same operation continues to recurse through the branch,
promoting the smallest child at every step. During any op-
eration any two of the consecutive stages are accessed; one
read access and the other write access. As a result, a stage
can handle a new operation every two cycles, since the op-
eration of the heap is pipelined with different insert and/or
dequeue operations at different stages in their operation [23].

P-heap can be efficiently implemented in hardware on an
FPGA. Every stage requires a Dual Ported RAM, which is
a memory element having one write port and two read port.
Depending on the size of that stage, it can be synthesized
with registers, distributed RAM, or block RAM elements
to maximize resource utilization. An arbitrary number of
stages can be added (limited by block RAM resource avail-
ability) as the performance is not hurt by the number of
stages in the heap due to pipelining, making it straightfor-
ward to scale.

In an optimistic PDES system, it is possible that ordering
can be relaxed to improve performance, while maintaining
simulation correctness via rollbacks to recover from occa-
sional ordering violations. This relaxation opens up possi-
bilities for optimization of the queue structure. For example,
multiple heaps may be used in parallel to service more than
one request in a single cycle. In an approach similar to that
used by Herbordt et al.[13], we can use a randomizer net-
work to direct multiple requests to multiple available heap
(Figure 4). There is a chance that two of the highest priority
events may reside in the same heap and ordering violation
will occur at the queue during multiple dequeue. However,
when the number of LPs and PEs are large, such occur-
rence which is handled by the rollback mechanism would be
rare resulting in a net performance gain. Although we have
a version of this queue implemented, we report our results
without using it. Other structures that sacrifice full order-

137

Figure 5: Simplified timeline representation showing scheduling of events in the system.

ing but admit higher parallelism such as Gupta and Wilsey’s
lock-free queue may also be explored [10].

The queue stores a key-value pair. We use 64 bit entries
with event time-stamp acting as the key. The value contains
the id of the target LP and a payload message. In cases
where the payload message is too large, we store a pointer
to a payload message in memory. For the Phold model we
use in our evaluation, all messages fit in the default value
field.

3.4 Event Processor
The event processor is at the core of PDES-A. The front-

end of the processor is common to all simulation models.
It is responsible for the following general operations: (1) to
check the event history for conflicts; (2) to store and clean
up state snapshots by checking GVT; (3) to support event
exchange with the event queue; and (4) to respond to control
signals to avoid conflicting event processing. In addition, the
event processors execute the actual event handlers which are
specialized to each simulation model to generate the next
events and compute state transitions.

The task processing logic is designed to be replaceable
and easily customizable to the events in different models. It
appears as a black box to the event processor system. All
communications are done through the pre-configured inter-
face. The event processor passes event message and relevant
data to the core logic by populating FIFO buffers. Once the
events are processed, the core logic uses output buffers to
store any generated events. The core logic has interfaces
to request state memory by supplying addresses and sizes.
The fetched memory is placed into a FIFO buffer to be read
from the core. The interface to the memory port is standard
and provided in the core to be easily accessible by the task
processing logic.

The model we use in our evaluation (Phold) has only one
type of event handler, simplifying the mapping of events to
handlers. However, in models where multiple event han-
dlers exist, interesting design decisions arise about whether
to specialize the event processors to each event type, or to
create more general, but perhaps less efficient event handling
engines. If a reasonable approximation of the distribution of
the task frequency in knows, the numbers of different kind
of event processors may be tuned to the requirement of the

model to maximize resource utilization. It is also possible
to create a mix of specialized handlers for common events,
and more general handlers to handle rare events. We will
consider such issues in our future work.

3.5 Event scheduling and processing
Figure 5 shows a representative event execution timeline

in the system. Events are assigned to the event processors
in order of their timestamps; on the figure, the event is rep-
resented by a tuple (x, y) where x is the LP number and y is
the simulation time. Event (1, 8) is scheduled to core C. A
second event (1, 12) belonging to the same LP is scheduled to
core A while event (1, 8) is still being processed. Because of
the dependency, core A is stalled by the controller unit until
the first event completes. At the completion of an event, the
controller allows the earliest timestamp among the waiting
(stalled) events for that core to proceed as shown in win-
dow 1. Each event may generate one or more new events
when it terminates. These events are scheduled at some
time in the future when a core is available. Occasionally,
an event is processed after another event with a later times-
tamp has already executed (i.e., a straggler event). When
discovering this causality error, the erroneously processed
events need to be rolled back to restore causality. Window
2 in Figure 5 shows one such event (2,22) which executes
before event (2,15). We use a lazy cancellation and roll-
back approach. Event processing logic detects the conflict
by checking the event history table and initiates the roll-
back. The new event will restore the states and generate
events it would have normally scheduled (6, 28) along with
anti-messages (anti-message (3, 27*) in this example) for all
events generated by the straggler event, and new event (2,
22) that reschedules the cancelled event.

The anti-messages may get processed before or after its
target event is done. An anti-message (3, 27*) checks the
event history and if the target event has already been pro-
cessed, it rolls back the states and generates other neces-
sary anti-messages (1, 30*) to chase the erroneous message
chain (i.e., cascading rollbacks) much like a regular events
as shown in window 3 of Figure 5. If the target message is
yet to arrive, the anti-message is stored in the event history
table. The target message (1,30) cancels itself upon discov-

138

ery of the anti-message in the history and no new event is
generated as shown in window 4.

4. IMPLEMENTATION OVERVIEW
We used a full RTL implementation on Convey WX-2000

accelerator for prototyping the simulator. The current pro-
totype fits in one of the four available Virtex-7 XC7v2000T
FPGAs (Figure 13). The event history table and queue were
implemented in the BRAM memory available in the FPGAs.
The on-board 32GB DDR3 memory was used for state mem-
ory implementation, although very little memory was nec-
essary for the Phold model prototype. The system uses a
150MHz clock rate. The host server was used to initialize
the memory and events at the beginning of the simulation.
The accelerator communicated through the host interface
to report results as well as other measurements we collected
to characterize the operation of the design. For any values
that we want to measure during run time, we instrument
the design with hardware counters that keep track of these
events. We complemented these results with others such as
queue and core occupancy that we obtained from functional
simulator of the RTL implementation using Modelsim.

Our goal in this paper is to present a general character-
ization of this initial prototype of PDES-A. We used the
Phold model for our experiments because it is widely used to
provide general characterization of PDES execution that is
sensitive to the system. On the Convey, the memory system
provides high bandwidth but also high latency (a few hun-
dred cycles). This latency could dominate event execution
time for fine-grained models where event handling is simple.
To emulate event-processing overhead we let each event in-
crement a counter to a value picked randomly between 10
and 75 cycles. The model generates memory accesses by
reading from the memory when the event starts and writing
back to it again when it ends.

Since our design is modular, we can scale the number of
event processors. However, as the number of processors in-
creases, we can expect contention to arise on the fixed com-
ponents of the design such as the event queue and the in-
terconnection network. We experiment with cluster sizes
from 8 to 64 in order to analyze the design trade-offs and
scalability bottlenecks. The performance of the system un-
der variable number of LPs and event distribution gives us
insight about the most effective design parameters for a sys-
tem. We sized our queues to support up to 512 initial events
in the system. The queue is flexible and can be expanded in
capacity, or even be made to dynamically grow.

Design Validation: Verification of hardware design is
complex since it is difficult to peek into the hardware as
it executes. However, the hardware design flow supports
a logic level simulator of the design that we used to vali-
date that the model correctly executes the simulation. In
particular, the Modelsim simulator was used to study the
complete model including the memory controllers, crossbar
network, and the PDES-A logic. Since the design admits
many legal execution paths, and many components of the
system introduce additional variability, we decided to vali-
date the model by checking a number of invariants that are
not model specific. In particular, we verified that no causal-
ity constraints are violated in the full event execution trace
of the simulation under a number of PDES-A and applica-
tion configurations.

1 8 16 32 64
0

10

20

30

40

50

(a) Throughput Scaling

1 8 16 32 64
0%

20%

40%

60%

80%

100%

(b) Utilization Ratio

Number of event processors

Figure 6: Effect of variation of number of cores on
(a) throughput and (b) percentage of core utilization
for 256 LP and 512 initial events.

5. PERFORMANCE EVALUATION
In this section, we evaluate the design under a number

of conditions to study its performance and scalability. In
addition, we analyze the hardware complexity of the de-
sign in terms of the percentage of the FPGA area it con-
sumes. Finally, we compare the performance to PDES on
a multi-core machine and use the area estimates to project
the performance of the full system with multiple PDES-A
accelerators.

5.1 Performance and Scalability
In this first experiment, we scale the number of event pro-

cessors from 1 to 64 while executing a Phold model. Figure
6-a shows the scalability of the throughput normalized to
the throughput of a configuration with a single event han-
dler. The scalability is almost linear up to 8 event handlers
and continues to scale with the number of processors up to
64 where it reaches a little bit above 49x. As the number of
cores increases contention for the bandwidth of the different
components in the simulation starts to increase leading to
very good but sub-linear improvement in performance. Fig-
ure 6-b shows the event processor occupancy, which is gen-
erally high, but starts dropping as we increase the number
of event processors reflecting that the additional contention
is preventing the issue of the events to the handlers in time.

Figure 7 shows the throughput of the accelerator as a func-
tion of the number of LPs and the density of events in the
system for 64 event processors. The throughput increases
significantly with the number of available LPs in the sys-
tem. As the events get distributed across a larger number
of LPs, the probability of events belonging to the same LP
and therefore blocking due to dependencies goes down. In
our implementation, we stall all but one event when mul-
tiple cores are processing events belonging to the same LP
to protect state memory consistency. Thus, having a higher
number of LPs reduces the average number of stalled proces-
sors and increases utilization. In contrast, the event density
in the system influences throughput to a lesser degree. Even
though having a sufficient number of events is important to
keeping the cores processing, once we have a large enough
number of events increasing the event population further
does not improve throughput appreciably.

139

32 LP 64 LP 128 LP 256 LP
0.00

0.05

0.10

0.15

E
v
en

ts
p

er
cy

cl
e

64 128 256 512 events

Figure 7: Event processing throughput using 64
event processors for different number of initial
events and LPs.

32 LP 64 LP 128 LP 256 LP
0.0

0.2

0.4

0.6

0.8

1.0
64 128 256 512 events

Figure 8: Ratio of number of committed events to
total processed events using 64 event processors.

5.2 Rollbacks and Simulation Efficiency
The efficiency of the simulation, measured as the ratio of

the number of committed events to processed events, is an
important indicator of the performance of optimistic PDES
simulators. Figure 8 shows the efficiency of a 64-processor
PDES-A as we vary the number of events and the number
of LPs. The fraction of events that are rolled-back depends
on the number of events in the system but is not strongly
correlated to the number of LPs. With a large population of
initial events, we observe virtually no rollbacks since there
are many events that are likely to be independent at any
given point in the simulation. Newly scheduled events will
tend to be in the future relative to currently existing events,
reducing the potential for rollbacks. However, keeping all
other parameters same, reducing the number of initial events
can cause the simulation efficiency to drop to around 80%
(reflecting around 20x increase in the percentage of rolled
back events). For similar reasons, the number of rolled-back
events decreases slightly with a greater number of LPs in
the simulation. Most causality concerns arise when events
associated with same LP are processed in the wrong order.
When events are more distributed when number of LPs is
higher, thus reducing the occurrence of stalled cores. How-
ever, this effect is relatively small.

5.3 Breakdown of event processing time
Figure 9 shows how the average event processing time

varies with the number of LPs and the initial number of
events, along with the breakdown of the time taken for dif-
ferent tasks, for systems with 32 and 64 processors. The pri-
mary source of delay in event processing is the large memory

access latency on the Convey system. Another other major
delay source is the delay of processors stalling to wait for
potentially conflicting events. These two factors are the pri-
mary delays in the system and dominate other overheads in
the event processors such as task logic delays and maintain-
ing event history, which also increase as we go from 32 to 64
cores.

The average event processing time is highest when the
number of LPs or number of initial events are low. The av-
erage number of cycles goes down as more events are issued
to the system or the number of LPs is increased (which re-
duces the probability of a stall). The reason for this behavior
is apparent when we consider the breakdown of the event cy-
cles. We notice that about the same number of cycles are
consumed for memory access regardless of the configuration
of the system because the memory bandwidth of the system
is very large. However, the average stall time for the proces-
sors is significantly higher with fewer LPs and constitutes
the major portion of the event processing delay. For exam-
ple, with 64 cores, and 32 LPs, we can have no more than
32 cores active; any additional cores would hold an event
for an LP that has another active event at the moment. A
system of 64 LPs has over 150 stall cycles on average, with
64 processors. The stall times drop substantially as we in-
crease the number of LPs and events in the model. These
dependencies result in a high number of stall cycles to pre-
vent conflicts in LP specific memory and event history. At
the same time, a small number of LPs increases the chance
of a causality violation. The probability that an event will
become a straggler goes up with a smaller number of LPs
This effect is most severe when the number of LPs is close
to the number of event processors. As the number of LPs is
increased the events are distributed to more LP, and can be
safely processed in parallel.

Figure 10 shows a visualization fo the PDES-A’s core op-
eration by showing how the processors are behaving over
time for a simulation with 256 LPs and 512 events. The
black color shows the cycles when the processors are idle
before receiving a new event. Yellow streaks represt the
times a processor is stalled. Since an event processor has
to stall until all other events associated with the same LP
finish, the stall time can sometimes be long if more than
two events belonging to the same LP are dispatched. Fortu-
nately, scenarios like this are rare when there are sufficiently
large number of LPs and for models that achieve uniform
event distribution over the LPs.

The memory access time remains mostly unaffected by the
parameters in the system. The state memory is distributed
in multiple memory banks and accesses depend on the LPs
being processed. The appearance of different LPs in the
event processor are not correlated in Phold and therefore
poor locality results without any special hardware support.
However, the higher number of events may increase the prob-
ability of repeating accesses in the same memory area and
therefore occasionally decrease the memory access time as
these accesses are coalesced by the memory controller or
cached by the DRAM row buffers. This effect reduces the
average memory access delay slightly.

We note that the actual event handler processing time is
a minor component of the event execution time consuming
less than 10% of the overall event processing time even in
the worst case. We believe that this observation motivates
our future work to optimize PDES. In particular, the mem-

140

64 12
8

25
6

51
2 64 12

8
25

6
51

2 64 12
8

25
6

51
2 64 12

8
25

6
51

2 64 12
8

25
6

51
2 64 12

8
25

6
51

2 64 12
8

25
6

51
2 64 12

8
25

6
51

2
0

200

400

600

800

1,000

1,200

32 LP 64 LP 128 LP 256 LP 32 LP 64 LP 128 LP 256 LP

C
y
cl
es

Memory Access Stall Event Processing Record Keeping Idle

Events

(a) 32 Cores (b) 64 Cores

Figure 9: Breakdown of time spent by the event processors on different tasks to process an event using (a)
32 event processors and (b) 64 event processors with respects to different number of LPs and initial event
counts.

0 1000 2000 3000 4000 5000
0

8

16

24

32

40

48

56

Act iveIdle Stalled

Cycles

C
o

re
s

Figure 10: Timeline demonstrating different states
of the cores for during a 5000 cycles frame of the
simulation.

ory access time can be hidden behind event processing if we
allow multiple event executions to be handled concurrently
by each handler: when one event accesses memory, others
can continue execution. This and other optimization oppor-
tunities are a topic of our future research.

5.4 Memory Access
Memory access latency is a dominant part of the time

required to process an event. Figure 11 shows the effect
of variation of the memory access pattern on average exe-
cution time. The number of memory accesses can also be
thought of as the size of the state memory read and updated
in the course of event processing. The leftmost column in
the plot shows the execution time without any memory ac-
cess, which is small compared to the execution time with
memory accesses. About 300 cycles are needed for the first
memory access. Each additional memory access adds about
50 cycles to the execution time. The changes in the average
execution time are almost completely the result of changes
in memory access latency. It is apparent that the memory
access latency does not scale linearly with the number or
size of memory requested. Even if stalls are less frequent,
each can take a long time to resolve. Thus, we believe the

0 1 2 3 4 5 0 1 2 3 4 5

0

500

1,000

1,500

32 cores 64 cores

Number of memory accesses

C
y
cl
es

Average memory access Average total

Figure 11: Effect of number/size of state memory
access on event processing time

memory system can issue multiple independent memory op-
erations concurrently leading to overlap in their access time.
We have made the memory accessed by any event a contigu-
ous region in the memory address space, which may also lead
to DRAM side row-buffer hits and/or request coalescing at
the memory controller.

5.5 Effect of event processing granularity
Figure 12 shows the effect of processing time granularity

on the system performance. Since memory access latency is
a major source of delay that is currently not being hidden
(and therefore adds a constant time to event processing), we
configure a model that does not access memory in this exper-
iment. We also allow the event processing to be configured to
a controllable delay by controlling the number of iterations
the event handler increments a counter. The results of this
study are shown in Figure 12-a. As the granularity increases,
we simulate models that have increasingly computationally
intensive event processing. Initially, the additional process-
ing per event does not affect the system throughput since the
system overheads lead to low utilization of the event han-
dling cores when the granularity is small. As the utilization
rises (Figure 12-b), additional increases in the event gran-

141

1 50 10
0

15
0

20
0

25
0

0.00

0.05

0.10

0.15

0.20

0.25

(a) Throughput

1 50 10
0

15
0

20
0

25
0

0.00

0.20

0.40

0.60

0.80

(b) utilization ratio

Event processing delay in cycles

Figure 12: Effect of variation of processing delays
(in cycles) on (a) throughput, (b) ratio of core uti-
lization for 64 event processors with 256 LP and 512
initial events.

Figure 13: Implementation of the synthesized de-
sign on a Virtex-7 XC7V2000T FPGA. Red high-
light marks the core simulator, green shows crossbar
network, and memory interface logic is highlighted
purple.

ularity start to lower the average rate of committed events
per cycle since each event is more computationally demand-
ing. Throughput does not improve after reaching 150 cycles
event processing time.

5.6 Comparison With ROSS
To provide an idea of the performance of PDES-A rel-

ative to a CPU-based PDES simulator, we compared the
performance of PDES-A with MPI based PDES simulator
ROSS[3]. Although the modeling flow for the two environ-
ments is quite different, we configured ROSS to run the
Phold model with similar parameters to the PDES-A sim-
ulation. The FPGA implementation has the advantage of
having access to customized data paths to provide functions
such as a single cycle hardware implemented Pseudo Ran-
dom Number Generator (PNRG), which would require sig-
nificantly longer time to implement on the CPU in software.
On the other hand, the CPU can handle irregular tasks well,

Table 1: Comparative analysis of PDES simulation
of Phold model ROSS and PDES-A

Parameters ROSS PDES-A

System
Device Intel Xeon E5-1650

12 MB L2
Xilinx Virtex-7
XC7V2000T

Frequency 3.50GHz 150MHz
Memory 32 GB 32 GB

Simulation
PE 72 (12 cores×6 KP) 64
LP 252 256
Event Density 504 512
Remote Event 5% 100%

Performance
Events/second 9.2 million 23.85 million
Efficiency 80% ∼100%
Power 130 Watt <25 Watt

and execute multiple instructions per cycle at a much higher
clock rates.

We changed the Phold model in ROSS to resemble our
system by replacing the exponential timestamp distribution
with a uniform distribution. We set the number of process-
ing elements, LPs and number of events to match our system
closely. One particular difference is in the way remote events
are generated and handled in ROSS. In our system, all cores
are connected to a shared set of LPs, so there is no differ-
ence between local and remote events. In ROSS, remote
events have to suffer the extra overhead of message passing
in MPI, although MPI uses shared memory on a single ma-
chine. We set the remote event threshold in ROSS to 5% to
allow marginal communication between cores.

Table 1 shows the parameters for both the systems and
their performance. At this configuration, PDES-A can pro-
cesses events 2.5x faster than a 12-core CPU version of
ROSS. When the remote percentage drops to 0% (all events
are generated to local LPs), the PDES-A advantage drops
to 2x that of ROSS. At higher remote percentages, the ad-
vantage increases, up to 10x at 100% remote messages. We
believe that as we continue to optimize PDES-A this advan-
tage will be even larger. Moreover, as we see in the next
section, there is room on the device to integrate multiple
PDES-A cores, further improving the performance.

6. FPGA RESOURCE UTILIZATION AND
SCALING ESTIMATES

In this section, we first present an analysis of the area re-
quirements and resource utilization of PDES-A. The FPGA
resources utilization by the cores is presented in table 2. A
picture of the layout of the design with a single PDES-A core
is shown in Figure 13. The overall system takes over about
20% of the available LUTs in the FPGA. The larger portion
of this is consumed by the memory interface and other static
coprocessor circuitry which will remain constant when the
simulator size scales. The core simulator logic utilizes 3.3%
of the device logics. Each individual Phold event processor
contributes to less than 0.03% resource usage. Register us-
age is less than 2% in the simulator. We can reasonably ex-
pect to replicate the simulation cluster more than 16 times in

142

Table 2: FPGA resource utilization

Component LUT (1221600) FF (2443200) BRAM (1203)

Utilization % Util. Utilization % Util. Utilization % Util.

Simulator 40412 3.31% 46715 1.91% 4 0.33%
Event Processor (1x) 391 0.03% 393 0.02% 0 0%
Controller 3610 0.30% 5557 0.23% 0 0%
Event Queue 6795 0.56% 5278 0.22% 0 0%

Memory Interface 143945 11.78% 132857 5.44% 206 17.12%
Crossbar Network 22051 1.81% 38713 1.58% 0 0%

Overall 236673 19.37% 261567 10.71% 223.5 18.58%

an FPGA, even when a more complex PDES model is con-
sidered and networking overheads are taken into account.
Thus, there is significant potential to improve the perfor-
mance of PDES-A as we use more of the available FPGA
real-estate.

Finally, an inherent advantage of FPGAs is their low power
usage. The estimated power of PDES-A was less than 25
Watts in contrast to the rated 130 Watts TDP of the Intel
Xeon CPU. We believe that this result shows that PDES-A
holds promise to uncover significant boost in PDES simula-
tion performance.

7. CONCLUDING REMARKS
In this paper, we presented and analyzed the design of a

PDES accelerator on an FPGA. PDES-A is designed to allow
supporting arbitrary PDES models although we studied our
initial design only with Phold. The design shows excellent
scalability up to 64 concurrent event handlers, outperform-
ing a 12-core CPU PDES simulator by 2.5x for this model.
We identified major opportunities to further improve the
performance of PDES-A targeted around hiding the very
high memory latency on the system. We also analyzed the
resource utilization of PDES-A: we believe that we can fit
up to 16 PDES-A processors with 64 event processing cores
on the same FPGA chip, further improving performance, at
a fraction of the power consumed by CPUs.

Our future work spans at least three different directions.
First, we will continue to optimize PDES-A to reduce the im-
pact of memory access time and resource contention. Next
our goal is to study a full chip (or even multi-chip) de-
sign consisting of multiple PDES-A accelerators working on
larger models. Finally, we hope to provide programming en-
vironments that allow rapid prototyping of PDES-A cores
specialized to different simulation models.

Acknowledgements
This material is based upon work supported by the Air Force
Office of Scientific Research (AFOSR) under Award No.
FA9550-15-1-0384 and a DURIP award FA9550-15-1-0376.

8. REFERENCES
[1] R. Brown. Calendar queues: A fast 0 (1) priority

queue implementation for the simulation event set
problem. 31(10):1220–1227.

[2] J. Burt. Intel begins shipping xeon chips with fpga
accelerators, June 2016. Downloaded Feb. 2017 from
eWeek: http://www.eweek.com/servers/

intel-begins-shipping-xeon-chips-with-fpga-accelerators.
html.

[3] C. D. Carothers, D. Bauer, and S. Pearce. Ross: A
high-performance, low memory, modular time warp
system. In Proceedings of the Fourteenth Workshop on
Parallel and Distributed Simulation, PADS ’00, pages
53–60, Washington, DC, USA, 2000. IEEE Computer
Society.

[4] H. Chen, Y. Yao, W. Tang, D. Meng, F. Zhu, and
Y. Fu. Can mic find its place in the field of pdes? an
early performance evaluation of pdes simulator on
intel many integrated cores coprocessor. In 2015
IEEE/ACM 19th International Symposium on
Distributed Simulation and Real Time Applications
(DS-RT), pages 41–49, Oct 2015.

[5] Convey ComputersTM Corporation. The Convey WX
Series, conv-13-045.5 edition, 2013.

[6] Convey ComputersTM Corporation. Convey PDK2
Reference Manual, 2.0 edition, jul 2014.

[7] S. Das, R. Fujimoto, K. Panesar, D. Allison, and
M. Hybinette. Gtw: A time warp system for shared
memory multiprocessors. In Proceedings of the 26th
Conference on Winter Simulation, WSC ’94, pages
1332–1339, San Diego, CA, USA, 1994. Society for
Computer Simulation International.

[8] R. Fujimoto. Parallel and distributed simulation. In
Proceedings of the 2015 Winter Simulation
Conference, WSC ’15, pages 45–59, Piscataway, NJ,
USA, 2015. IEEE Press.

[9] R. M. Fujimoto, J.-J. Tsai, and G. C. Gopalakrishnan.
Design and evaluation of the rollback chip: Special
purpose hardware for time warp. IEEE Transactions
on Computers, 41(1):68–82, 1992.

[10] S. Gupta and P. A. Wilsey. Lock-free pending event
set management in time warp. In Proceedings of the
2nd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, pages 15–26, 2014.

[11] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In
Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA), pages
37–47, 2010.

[12] M. A. Hassaan, M. Burtscher, and K. Pingali. Ordered
vs. unordered: A comparison of parallelism and
work-efficiency in irregular algorithms. In Proceedings
of the 16th ACM Symposium on Principles and

143

Practice of Parallel Programming, PPoPP ’11, pages
3–12, New York, NY, USA, 2011. ACM.

[13] M. C. Herbordt, F. Kosie, and J. Model. An Efficient
O(1) Priority Queue for Large FPGA-Based Discrete
Event Simulations of Molecular Dynamics. pages
248–257. IEEE.

[14] Hybrid Memory Cube Consortium. Hybrid Memory
Cube Specification 2.1, 2.1 edition, 2014.

[15] D. Jagtap, K. Bahulkar, D. Ponomarev, and
N. Abu-Ghazaleh. Characterizing and understanding
pdes behavior on tilera architecture. In Proceedings of
the 2012 ACM/IEEE/SCS 26th Workshop on
Principles of Advanced and Distributed Simulation,
PADS ’12, pages 53–62, Washington, DC, USA, 2012.
IEEE Computer Society.

[16] D. R. Jefferson. Virtual time. ACM Trans. Program.
Lang. Syst., 7(3):404–425, July 1985.

[17] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and
D. Sanchez. A scalable architecture for ordered
parallelism. In Proceedings of the 48th International
Symposium on Microarchitecture, MICRO-48, pages
228–241, New York, NY, USA, 2015. ACM.

[18] R. Noronha and N. B. Abu-Ghazaleh. Early
cancellation: an active nic optimization for time-warp.
In Proceedings of the sixteenth workshop on Parallel
and distributed simulation, pages 43–50. IEEE
Computer Society, 2002.

[19] H. Park and P. A. Fishwick. A gpu-based application
framework supporting fast discrete-event simulation.
Simulation, 86(10):613–628, Oct. 2010.

[20] K. S. Perumalla. Discrete-event execution alternatives
on general purpose graphical processing units
(gpgpus). In 20th Workshop on Principles of Advanced
and Distributed Simulation (PADS’06), pages 74–81,
2006.

[21] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, D. Prountzos, and
X. Sui. The tao of parallelism in algorithms.
SIGPLAN Not., 46(6):12–25, June 2011.

[22] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh,
J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger. A reconfigurable fabric for
accelerating large-scale datacenter services. In
Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14,
pages 13–24, Piscataway, NJ, USA, 2014. IEEE Press.

[23] B. L. Ranjita Bhagwan. Fast and Scalable Priority
Queue Architecture for High-Speed Network Switches.
In In Proceedings of Infocom 2000. IEEE
Communications Society.

[24] J. Rios. An efficient FPGA priority queue
implementation with application to the routing

problem. Technical Report UCSC-CRL-07-01,
University of California, Santa Cruz, 2007.
Downloaded March 2017 from https://www.soe.ucsc.
edu/research/technical-reports/UCSC-CRL-07-01.

[25] R. Rönngren and R. Ayani. A comparative study of
parallel and sequential priority queue algorithms.
ACM Transactions on Modeling and Computer
Simulation (TOMACS), 7(2):157–209, 1997.

[26] A. Santoro and F. Quaglia. Multiprogrammed
non-blocking checkpoints in support of optimistic
simulation on myrinet clusters. Journal of Systems
Architecture, 53(9):659 – 676, 2007.

[27] A. Santoro and F. Quaglia. Multiprogrammed
non-blocking checkpoints in support of optimistic
simulation on myrinet clusters. Journal of Systems
Architecture, 53(9):659–676, 2007.

[28] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K.
Kim, C. Shao, A. Mishra, and H. Esmaeilzadeh. From
high-level deep neural models to fpgas. In 2016 49th
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–12, Oct 2016.

[29] J. S. Steinman. The warpiv simulation kernel. In
Proceedings of the 19th Workshop on Principles of
Advanced and Distributed Simulation, PADS ’05,
pages 161–170, Washington, DC, USA, 2005. IEEE
Computer Society.

[30] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook,
D. Patterson, and K. Asanovic. Ramp gold: an
fpga-based architecture simulator for multiprocessors.
In Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pages 463–468. IEEE, 2010.

[31] W. Tang and Y. Yao. A gpu-based discrete event
simulation kernel. Simulation, 89(11):1335–1354, Nov.
2013.

[32] J. Wang, D. Jagtap, N. Abu-Ghazaleh, and
D. Ponomarev. Parallel discrete event simulation for
multi-core systems: Analysis and optimization. IEEE
Transactions on Parallel and Distributed Systems,
25(6):1574–1584, 2014.

[33] J. Wang, D. Ponomarev, and N. Abu-Ghazaleh.
Performance analysis of a multithreaded pdes
simulator on multicore clusters. In 2012
ACM/IEEE/SCS 26th Workshop on Principles of
Advanced and Distributed Simulation, pages 93–95,
July 2012.

[34] B. Williams, D. Ponomarev, N. Abu-Ghazaleh, and
P. Wilsey. Performance characterization of parallel
discrete event simulation on knights landing processor.
In Proc. ACM SIGSIM International Conference on
Principles of Advanced Discrete Simulation, 2017.

[35] S. Zhou, C. Chelmis, and V. K. Prasanna.
High-throughput and energy-efficient graph processing
on fpga. In International Symposium on
Field-Programmable Custom Computing Machines
(FCCM), pages 103–110, May 2016.

144

